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This paper discusses distributed controller design and analysis for distributed systems with ar-
bitrary discrete symmetry groups. We show how recent results for designing control systems for
spatially interconnected systems, based on semidefinite programming, are applicable to a much
larger class of interconnection topologies. We also show how to exploit the form of the symmetry
group to produce a hierarchy of decreasingly conservative analysis and synthesis conditions.

I. INTRODUCTION

With the advent of cheap sensors and pervasive communication and computing, there has been substantial activity
in the controls community to develop analysis and synthesis tools for systems consisting of extremely large numbers of
interconnected subsystems. A large part of this effort has been devoted to developing tools that scale gracefully with
the number of subsystems, which in practice can each have local sensing, actuating, and computing elements. Clearly
for systems that are comprised of thousands and thousands of subsystems (see [1], for example, for a description of a
system which consists of thousands of interacting elements), the structure of these systems must be fully exploited in
order to obtain tractable analysis and control synthesis algorithms.

Recent work has made a great deal of progress in exploiting the symmetry present in such systems. Control laws can
be distributed such that they only rely on local communication, yet can still give rise to the desired global behavior.
In certain settings, it has been shown that spatially distributed controllers are optimal for the control of spatially
invariant systems [2] [3]. The synthesis of such distributed controllers is often convex [4] [5], and taking the distributed
structure of a problem into account can greatly reduce the complexity of control design without sacrificing system
performance [6].

To date, most authors investigating distributed or decentralized control have focused on systems distributed over
abelian groups. Finite difference approximations of partial differential equations on Rn or many systems connected
on an integer lattice would fall into this category. However, the results do not extend to systems where the associated
symmetry group is noncommutative. For example, crystals are symmetric objects which often have noncommutative
symmetry groups. An investigation into how to exploit this symmetry in a distributed manner would open up a large
new class of control systems for design.

In this paper, we show that recently presented techniques for the control design of spatially interconnected systems
[7], [8], [9] are in fact applicable to a much larger class of interconnection topologies where the symmetry of the
interconnection may be noncommutative. We review these techniques in Section III, and in Section IV generalize
the notion of spatial interconnectivity from abelian groups to arbitrary discrete groups. In Section V we discuss a
linear matrix inequality (LMI) which can be used to analyze these more general systems and discuss how to use
such an LMI for controller synthesis. In contrast to most existing techniques, the synthesis and analysis conditions
are computationally tractable and always lead to a distributed controller implementation. Finally, in Section VI, we
discuss how to make the LMI tests less conservative by using the structure of groups on which the signals are defined.

II. NOTATION AND PRELIMINARIES

S will denote an arbitrary discrete group. Unless otherwise noted, the identity element of S will be denoted by 1
and the group operation will be written as a product. We will be dealing with signals that are a function of both time
and space. Elements of S will be used to denote the spatial index; in particular, signals are vector valued functions
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on R× S. Formally, we define l2 to be the Hilbert space of all functions x : S→ R
• such that the quantity

‖x‖2l2 :=
∑
s∈S

x(s)∗x(s) (1)

is finite. The Hilbert space L2 will denote the space of functions u : R+ → l2 such that

‖u‖2L2
:=
∫ ∞

0

‖u(t)‖2l2dt (2)

is finite.
With a slight abuse of notation, a signal u ∈ L2 can be considered a function of two independent variables u = u(t, s).

For fixed t and s, u(t) is an element of l2 and u(t, s) is a real-valued vector.

III. REVIEW OF SPATIALLY INTERCONNECTED SYSTEMS

In this section we give a brief review of the theory of spatially interconnected systems as presented in [8]. A “basic
building block” (shown in Figure 1) for a spatially interconnected system is a linear time invariant system on an
L-dimensional integer lattice defined as ẋ(t, s)

w(t, s)
z(t, s)

 =

 ATT ATS BT

AST ASS BS

CT CS D

 x(t, s)
v(t, s)
d(t, s)

 , x(t = 0) ∈ `2 (3)

where

v(t, s) =


v+1(t, s)
v−1(t, s)

...
v+L(t, s)
v−L(t, s)

 , w(t, s) =


w+1(t, s)
w−1(t, s)

...
w+L(t, s)
w−L(t, s)

 (4)

and s = (p1, . . . , pL) is a fixed L-tuple of integers used to denote the position of the subsystem on the lattice. The
vectors v+(t, s) and w+(t, s) are the same size, and v−(t, s) and w−(t, s) are the same size.

FIG. 1: A basic building block in one spatial dimension.

On an infinite extent integer lattice, the interconnection of these subsystems can be captured as follows. Define the
shift operators S1, . . . ,SL where for an arbitrary x ∈ `2,

(Skx)(s) := x(p1, . . . , pk + 1, . . . , pL) . (5)

Periodicity of order N on any axis can be imposed by defining the shift operator as follows

(Skx)(s) := x(p1, . . . , (pk + 1) mod N, . . . , pL) . (6)

We can extend these shift operators to u ∈ L2 in the following manner

(Sku)(t) := Sku(t) . (7)
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Let the dimensions of v+k and v−k be denoted by mk and m−k respectively and define the structured operator

∆m = diag(S1Im1 ,S
−1
1 Im−1 , . . . ,SLImL ,S

−1
L Im−L) . (8)

The interconnection of the subsystems is then simply defined to be w = ∆mv. We can form an interconnected system
as  ẋ(t, s)

(∆mv)(t, s)
z(t, s)

 =

 ATT ATS BT

AST ASS BS

CT CS D

 x(t, s)
v(t, s)
d(t, s)

 , x(t = 0) ∈ `2 . (9)

Examples of such interconnections in one spatial dimension are shown in Figure 2. For clarity, such pictures will be
simplified by lumping together the signals that interconnect two subsystems and by omitting the signals d and z.
This is shown in Figure 3 for an infinite, one-dimensional infinite interconnection.

FIG. 2: Periodic and infinite one-dimensional interconnections.

FIG. 3: Infinite interconnection in one spatial dimension with signals that interconnect two subsystems suppressed and the
signals d and z omitted.

There are three properties desired of such a system.

• Well-posedness: Well-posedness describes the realizability of the interconnection. An interconnected system
defined by Equation (9) is well-posed if the operator (∆m − ASS) is invertible. The reader is referred to [8]
for an in-depth discussion of well-posedness. Our definition reflects the standard notion used for feedback
interconnection; see [10], for example.

• Stability : A system is stable if, for any initial state x(t = 0), the norm of the signal x is bounded above by a
decaying exponential α exp(−βt) when the input d = 0.

• Contractiveness: A system is contractive if for any input signal d 6= 0, ‖z‖L2 < ‖d‖L2 when x(t = 0) = 0.

The authors in [8] construct an LMI test which verifies well-posedness, stability, and contractiveness, and is only
a function of the transition matrix of Equation (9). In particular, the resulting LMI is finite dimensional and fixed
in size; it does not depend on the number of subsystems that make up the interconnection. They also describe how
to use this LMI to synthesize distributed controllers. The remainder of this paper is devoted to generalizing these
results to a much richer class of interconnection topologies.

IV. GENERALIZED SPATIAL INTERCONNECTIONS

One approach to generalizing beyond the integer lattice structures considered thus far is to relax our notion of a
shift operator. If we consider the basic building block in three dimensions, we can connect this together to form a
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cubic integer lattice as in Figure 4. We can also rearrange the signals in this basic building block and connect them
as triangular lattice as in Figure 5. Similarly, we can create a hexagonal lattice as in Figure 6. In both of these new
cases, there is still a well defined notion of a spatial shift, but the interconnection variables can no longer be broken
down into L-tuples of integers. Instead, the variables will be indexed by elements of a discrete group.

FIG. 4: Cubic integer lattice. The interconnection shown is a subsection of an infinite interconnection.

FIG. 5: Triangular lattice. The interconnection shown is a subsection of an infinite interconnection.

Formally, let S be a group. The set of elements G = {s1, . . . , sL} generates S if every element of S can be written
as a product of elements from G and inverses of elements from G. The elements sk are called generators of S. If S
has a finite generating set then it is finitely generated. The integer lattices in Section III are special cases of such
finite generated groups. For example, in the case of a two-dimensional integer lattice, the group elements are given
by locations on the lattice s = (p1, p2) and the group operation is component-wise addition. The group is generated
by the two elements s1 = (1, 0) and s2 = (0, 1), and we have identities such as ss1 = (p1 + 1, p2) and s−1

1 = (−1, 0).
The cubic, triangular, and hexagonal lattices are all generated by three elements. However, the generators relate

to one another differently in each group. In the case of the cubic integer lattice, we can express the commutativity of
the shift operators as

s1s2s−1
1 s−1

2 = 1 s2s3s−1
2 s−1

3 = 1 s3s1s−1
3 s−1

1 = 1 (10)

In the case of the triangular lattice, we add the additional requirement that

s1s2s3 = s3s2s1 = 1 (11)

For the hexagonal lattice we have instead

s2
1 = s2

2 = s2
3 = (s1s2s3)2 = 1 (12)
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FIG. 6: Hexagonal lattice. The interconnection shown is a subsection of an infinite interconnection.

Such products of elements which equal the identity are called relations. A group is finitely presented if there exist a
set of generators G and set of relations R composed from the generators such that any relation for S can be written
as a product of relations in R or their inverses.

From any finitely presented group, we can create a directed graph as follows. The elements of S are the vertices.
There is a directed edge from a to b if, for some 1 ≤ k ≤ L, either b = ask or b = as−1

k where sk is a generator. The
resulting graph is called a Cayley graph [11].

We can define a spatially invariant system over any Cayley graph. Given a generator sk ∈ G and x ∈ l2, define the
operator Sk by

(Skx)(s) := x(ssk) . (13)

Each of these shift operators on l2 can be naturally extended to an operator on L2 as described in section III. Examples
of these shift operators are shown in Figure 7. From the perspective of the Cayley graph, these operators are unitary
spatial-shifts. These shifts will play the role of the shift operators in Section III.

FIG. 7: Examples of shift operators on the triangular lattice.

To extend the results on interconnected systems to this more general setting, we will consider systems built from
the same transition matrix as in the previous section, but we will now build a shift operators from elements of G.
Specifically, if m is the vector of dimensions of the interconnection signals v in Equation (3) we can define

∆m := diag
(
S1Im1 ,S

−1
1 Im−1 , . . . ,SLImLS−1

L Im−L
)
. (14)

Now we can define the linear system over S ẋ(t, s)
(∆mv)(t, s)
z(t, s)

 =

 ATT ATS BT

AST ASS BS

CT CS D

 x(t, s)
v(t, s)
d(t, s)

 x(t = 0) ∈ `2 . (15)

Note again that the systems in Section III were the special case where the group S was a product of L groups
isomorphic to either the integers or the integers modulo N . The hexagonal mesh is an example of a noncommutative
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group. The ability to deal with spatial invariance over noncommutative symmetry groups is a new and crucial
contribution of this work. The hexagonal lattice also has the interesting property that the generators square to 1;
this relation can be used to identify the signals v+k with v−k and w+k with w−k.

Finally, note that from a practical perspective, it is likely desirable that the groups can be realized in three dimen-
sions. The lattices we have presented are examples of two-dimensional space groups studied in abstract crystallography.
The group which generates the triangular lattice is commonly called p1. The hexagonal group is called p2. There
are 17 different space groups in 2D [12], and 230 in 3D [13]. The work in the sequel applies to all of them.

V. LINEAR MATRIX INEQUALITIES FOR ANALYSIS AND CONTROLLER SYNTHESIS

In this section, we discuss how the techniques in [8] can be immediately extended to systems on arbitrary discrete
groups. We will provide a test for well-posedness, stability, and performance using only the data from equation (15).
It is worth noting that little changes in moving from systems defined over integer lattices to our more general situation.
We can partition the matrices which govern the evolution of the system to reflect the structure of ∆m:

ASS =:


ASS1,1 ASS1,−1 · · · ASS1,−L

ASS−1,1 ASS−1,−1 · · · ASS−1,−L

. . .
ASS−L,1 ASS−1,−1 · · · ASS−L,−L

 , AST =:


AST1

AST−1

...
AST−L

 , BS =:


BS1

BS−1

...
BS−L

 , (16)

ATS =:
[
ATS1 ATS−1 · · · ATS−L

]
, CS =:

[
CS1 CS−1 · · · CS−L

]
, (17)

and then define the following matrices:

A+
SS :=


ASS1,1 ASS1,−1 · · · ASS1,L ASS1,−L

0 I · · · 0 0
. . .

ASSL,1 ASSL,−1 · · · ASSL,L ASSL,−L

0 0 · · · 0 I

 , A+
ST :=


AST1

0
...

ASTL

0

 , B+
S :=


BS1

0
...

BSL

0

 , (18)

A−SS :=


I 0 · · · 0 0

ASS−1,1 ASS−1,−1 · · · ASS−1,L ASS−1,−L

. . .
0 0 · · · I 0

ASS−L,1 ASS−L,−1 · · · ASS−L,L ASS−L,−L

 , A−ST :=


0

AST−1

...
0

AST−L

 , B−S :=


0

BS−1

...
0

BS−L

 , (19)

A+
TS :=

[
ATS1 0 · · · ATSL 0

]
, A−TS :=

[
0 ATS−1 · · · 0 ATS−L

]
. (20)

Let m0 denote the dimension of x(t, g). Define the following sets of scaling matrices:

XT :=
{
XT ∈ Rm0×m0 : XT > 0, XT = X∗T

}
, (21)

XS :=
{
XS = diag(XS1 , XS2 , · · · , XSL) : XSi ∈ R(mi+m−i)×(mi+m−i), XSi = X∗Si

}
. (22)

The following result allows us to check the well-posedness, stability, and performance of a system via an LMI.

Theorem 1 A system defined by Equation (15) is well-posed, stable, and contractive if there exist XT in XT and XS

in XS such that J < 0, where

J :=

 I 0 0
A−ST A−SS B−S

0 0 I

∗  A∗TTXT +XTATT XTA
+
TS XTBT

(A+
TS)∗XT −XS 0
B∗TXT 0 −I

 I 0 0
A−ST A−SS B−S

0 0 I

+

 I 0 0
A+

ST A+
SS B+

S

CT CS D

∗  0 XTA
−
TS 0

(A−TS)∗XT XS 0
0 0 I

 I 0 0
A+

ST A+
SS B+

S

CT CS D

 . (23)
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The LMI can be solved efficiently using semidefinite programming [14]. The proof of this theorem can be found
in the appendix. It should be noted that this analysis condition is identical to the one presented in [8] for systems
defined over integer lattices. The LMI test is valid for both interconnections characterized by the structured operator
of Equation (8) or the more general structured operator of Equation (14).

By defining our system in this more general fashion, we extend the possibility of studying controller design on a
much larger class of distributed systems. For control design, we augment the basic building block with controller
input/output variables u and y as ẋP(t, s)

(∆mP
vP)(t, s)

z(t, s)
y(t, s)

 =


AP

TT AP
TS BP

T,d BP
T,u

AP
ST AP

SS BP
S,d BP

S,u

CP
T,z CP

S,z DP
zd DP

zu

CP
T,y CP

S,y DP
yd DP

yu


 xP(t, s)
vP(t, s)
d(t, s)
u(t, s)

 (24)

and aim to design a controller with the same structure as the plant, so we will posit the controller form of ẋK(t, s)
(∆mK

vK)(t, s)
u(t, s)

 =

 AK
TT AK

TS BK
T

AK
ST AK

SS BK
S

CK
T CK

S DK

 xK(t, s)
vK(t, s)
y(t, s)

 . (25)

Here the superscripts and subscripts “P” and “K” denote the plant and controller respectively. When we connect
the signals u and y of the controller and the plant (see Figure 8) and eliminate these variables, we obtain the closed
loop system of Equation (15). A calculation of the closed loop transition matrices is an algebraic manipulation of the
plant and controller matrices, and can be found in [8].

FIG. 8: The closed loop basic building block.

The controller synthesis problem thus consists of finding controller matrices – the matrices in Equation (25) – such
that the closed loop system is well-posed, stable, and contractive. The case where there are no signals v and w reduces
to the classic H∞ synthesis problem [15]. For the case of abelian groups, the analysis and synthesis problems have
been studied in detail in [7], [8], [16], [2], and [5].

It is sufficient that the closed loop system satisfy the LMI in Theorem 1. Since this analysis condition is identical to
what is obtained in [8] for systems on integer lattices, and the synthesis equations therein are based solely on this LMI,
controller synthesis for the more general interconnection topologies considered in this paper can be performed using
the same algorithms developed for integer lattices; the details are omitted. We note that the synthesis equations in [8],
which take the form of LMIs, do not introduce additional conservatism in design; they are necessary and sufficient
for a controller with the same structure as the plant to exist, as per Equation (25), such that the closed loop system
satisfies the analysis LMI.

VI. USING RELATIONS TO GENERATE LESS CONSERVATIVE LINEAR MATRIX INEQUALITIES

The analysis results obtained by considering only the basic building block are inherently conservative as they do
not fully exploit the structure of the symmetry group of the interconnection. We will now explore how to create
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LMI tests which are less conservative by collecting building blocks into subsystems and exploiting the Cayley graph
structure to generate new conditions.

In order to simplify the presentation, some of the terminology we use is not standard. We will restrict our attention
to a particular class of of subgroups of S.

Definition 1 We say that a subset H of S is a central subgroup if

• H is a group under the group operation of S.

• H is finitely presented.

• sh = hs for all s ∈ S and h ∈ H.

• Under the identification a ∼ b (that is, a is equivalent to b) if a = bh for some h ∈ H, there are finitely many
equivalence classes.

Denote the set of equivalence classes under H by S/H and the map from S to S/H by η. S/H inherits a group
structure from S by imposing the relations hk = 1 for each generator of H. Since the generators for S/H and S are
the same, S/H has a Cayley graph generated by the generators of S. That is, the spatial-shift operators of the group
S map to spatial-shift operators on S/H.

Definition 2 A transversal is a set T = (V,E) of vertices V and edges E in the Cayley graph such that

• The map η is a bijection when restricted to V .

• E is the set of all edges beginning at a vertex in T .

• The identity element of S is contained in V .

• T is a connected subgraph.

Transversals are liftings from the Cayley graph of S/H back to the Cayley graph of S via the inverse of η [17]. To
make these definitions clear, consider again the two-dimensional integer lattice group and the subgroup H generated
by even powers of s1 and s2. The quotient group S/H is obtained by imposing the relations s2

1 = 1 and s2
2 = 1.

It is then readily seen that S/H is isomorphic to the finite group which is the product of two groups of each with
two elements. We can lift this group back to the transversal T . V consists of the elements 1, s1, s2, and s1s2. The
transversal is graphically depicted in Figure 9.

1

s1

s2

s1s2

FIG. 9: An example of a transversal and its associated central subgroup. The transversal consists of four nodes. Translating
the transversal by the subgroup generates the entire Cayley graph. The interconnection shown is a subsection of an infinite
interconnection.

We can generate the entire Cayley graph using translations only contained in H and the transversal T . Let Th
denote the translation of the edges and vertices in the transversal by the element h ∈ H. Each node in the Cayley
graph is contained in a unique translation, since if s is a node in V , then sh = sh′ if and only if h = h′. Now suppose
there is an edge from a to b in the Cayley graph of S. Then b = ask for one of the generators of S. Since H is central,
it follows that for every h ∈ H, bh = askh = ahsk and hence there is an edge from ah to bh in the Cayley graph.
Therefore, any nodes which are connected to each other in the transversal are also connected in any translation of
the transversal, and hence the entire graph can be constructed by translating the transversal by elements of H. From
this perspective, H serves to group nodes of the Cayley graph of S into clusters with the clusters forming a Cayley
graph for H. Given an interconnected system defined by Equation (15), the signals associated with T form a basic
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building block for an interconnection given by H, and we can construct new conditions for well-posedness, stability,
and contractiveness.

To make the clustering explicit, take the set of edges which connect nodes in the transversal to be interior edges.
The set of all edges beginning at nodes in the transversal which are not interior edges are called exterior edges. Now
consider the interconnected system defined by Equation (15). For each h ∈ H we can stack all of the signals involving
vertices in Th as follows. Stack the set of internal state variables in a vector

x(t,h) = [x(t,h), x(t,g1h), . . . x(t,gMh)] , gk ∈ V, h ∈ H (26)

and the disturbance and output signals can be stacked accordingly. Stack the interconnection signals corresponding to
interior edges as vI(t,h) and wI(t,h) and those corresponding to exterior edges as vE(t,h) and wE(t,h). Each signal
w±k(t, sh) in wI(t,h) corresponds to a signal v∓k(t, ss∓1

k h) in vI(t,h). Similarly, each signal w±k(t, sh) in wE(t,h)
corresponds to a signal v∓k(t, ss∓1

k h) in vE(t,h). Thus, there exists two structured operators Π and Θ, similar to
those in Equation (14), such that the system ẋ(t,h)

(ΠvI)(t,h)
(ΘvE)(t,h)
z(t,h)

 =

 ATT ATI ATE BT

AIT AII AIE BI

AET AEI AEE BE

CT CI CE D


 x(t,h)
vI(t,h)
vE(t,h)
d(t,h)

 , h ∈ H . (27)

is identical to the system in Equation (15). Under this new identification, note that the operator Π only permutes
the elements of vI(t,h). Π does not couple the newly grouped subsystems. Hence, it can be treated as a permutation
matrix of size compatible with the vector vI(t, h). The following proposition gives a quick way to test the well-posedness
of an interconnected system if some information about the subgroup structure of S is known.

Proposition 1 If the matrix (Π−AII) is not invertible, then the system is not well-posed.

Proof of Proposition 1: It is clear that if we replace the shifted signal (ΘvE)(t,h) in Equation (27) with a signal
of compatible size wE, then if the system with the variable wE is not well-posed, the interconnected system is also not
well-posed. For a fixed h, this system is a finite dimensional linear time-invariant system, and is well-posed if and
only if (Π−AII) is invertible (c.f. [10]).

If (Π−AII) is invertible, we can proceed to generate an LMI for analysis by defining the matrices ÃTT ÃTS B̃T

ÃST ÃSS B̃S

C̃T C̃S D̃

 =

 ATT ATE BT

AET AEE BE

CT CE D

+

 ATI

AEI

CI

 (Π−AII)
−1 [ AIT AIE BI

]
(28)

and eliminating the variables vI. This yields the equivalent formulation ẋ(t,h)
(ΘvE)(t,h)
z(t,h)

 =

 ÃTT ÃTS B̃T

ÃST ÃSS B̃S

C̃T C̃S D̃

 x(t,h)
vE(t,h)
d(t,h)

 . (29)

This new realization of our system can now be fed into the LMI tests of the previous section and new, potentially less
conservative bounds on performance can be obtained.

The process of collecting nodes by normal subgroups may be repeated an arbitrary number of times when the group
in question has infinite order. Once the subsystems are collected, normal subgroups of the new group structure can
be used to repeat this analysis yielding a hierarchy of less conservative LMIs.

VII. CONCLUSIONS

There are many interesting directions for further investigation. The grouping process of Section VI produces state-
space matrices of increasingly larger size, and determining the trade-off between conservatism and LMI complexity
is an important consideration for analysis. Furthermore, we can use the results of Section V to generate hierarchical
controllers connected to all sub-units which are clustered together. Examining how to scale this hierarchy is an
interesting thread for future inquiry.

Other directions for future work include a careful analysis of how combining the same building block in different
configurations affects stability and performance. It would also be interesting to find tests which explicitly exploit the
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group structure using noncommutative harmonic analysis in a manner similar to how the Locally Compact Abelian
structure is exploited in [2] to produce necessary and sufficient frequency domain conditions. In this case, we might be
able to extend our results to systems over continuous non-abelian groups such as Lie Groups. Finally, recent results
in minimal realization theory for linear fractional transformations [18] show that LMI conditions for minimality are
both necessary and sufficient when the operators describing the transformations are noncommutative. It would be
very interesting to produce similar necessary conditions for the LMIs studied here by studying the noncommutative
structure of group operators.
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VIII. APPENDIX

Proof of Theorem 1: This proof is identical to the one in [8] for systems over integer lattices. We will prove the
result in three steps:
1. Show that the system is well-posed; we will do this by explicitly constructing (∆m −ASS)−1.
2. Once it has been shown that the system is well-posed, we will show that exp(At) is exponentially stable, where

exp(At) is the semigroup associated with the non-forced system.
3. Once it has been shown that the system is well-posed and exponentially stable, we may express the system

equations such that all signals are in L2; we will then show that ‖z‖2L2
≤ (1− β)‖d‖2L2

for all d ∈ L2, where β is
some strictly positive constant.

Without loss of generality, assume that XS is invertible; if XS is not invertible, it can always be perturbed to be made
invertible and still result in J < 0.

WELL-POSEDNESS:
We will show this via two propositions. Define ∆̃ as follows:

∆̃ := diag(S−1
1 Im1+m−1 , · · · ,S−1

L ImL+m−L). (30)

Proposition 2 If J < 0, then (A−SS − ∆̃A+
SS) is invertible on `2.

Proof of Proposition 2: Define

N := (A+
SS)∗XSA

+
SS − (A−SS)∗XSA

−
SS. (31)

The (2,2) block of matrix J is simply N + C∗SCS; it thus follows that N < 0 if J < 0. Matrix XS can be factored
as XS = T ∗Q∗RQT , where R = diag(I,−I), T is invertible and commutes with ∆̃, and Q is a permutation matrix
which reorders the columns of R. Define

Â =
[
Â1

Â2

]
:= QTA+

SS(QT )−1, Ê =
[
Ê1

Ê2

]
:= QTA−SS(QT )−1. (32)

The condition N < 0 is thus equivalent to[
Â1

Ê2

]∗ [
Â1

Ê2

]
−
[
Ê1

Â2

]∗ [
Ê1

Â2

]
< 0, (33)

or equivalently,

σ̄

([
Â1

Ê2

] [
Ê1

Â2

]−1
)
< 1. (34)

Now

QT∆̃(QT )−1 = Q∆̃Q−1 =:
[

∆1 0
0 ∆2

]
, (35)
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where ∆1 and ∆2 are diagonal operators, whose elements consist of the operators a−1
i ; it thus follows that ∆−1

2

exists, and that ‖∆1‖`2 = ‖∆−1
2 ‖`2 = 1. We have the following set of equalities

A−SS − ∆̃A+
SS = (QT )−1

(
Ê −

[
∆1 0
0 ∆2

]
Â

)
QT = (36)

(QT )−1

[
I 0
0 −∆2

](
I −

[
∆1 0
0 ∆−1

2

] [
Â1

Ê2

] [
Ê1

Â2

]−1
)[

Ê1

Â2

]
QT. (37)

Since ∆1 and ∆−1
2 are unitary operators, by the inequality in (34), we may express

(
A−SS − ∆̃A+

SS

)−1

as the following
bounded operator (see [19], page 169, for example)

([
Ê1

Â2

]
QT

)−1
 ∞∑
j=0

([
∆1 0
0 ∆−1

2

] [
Â1

Ê2

] [
Ê1

Â2

]−1
)j[ I 0

0 −∆−1
2

]
QT, (38)

as required.

Proposition 3 If (A−SS − ∆̃A+
SS) is invertible on `2, then (∆m −ASS) is invertible on `2.

Proof of Proposition 3: Define ∆− = diag(Im1 ,−a−1
1 Im−1 , · · · ,−a−1

L Im−L). Since ∆m, ∆−1
m , ∆−, ∆−1

− , and ∆̃
are bounded operators on `2, the result follows from

∆m −ASS = ∆m∆−1
− (∆− −∆−∆−1

m ASS) = ∆m∆−1
− (A−SS − ∆̃A+

SS). (39)

STABILITY:
Now that we have shown that the system is well posed, we can expand our the basic building block form into an
infinite dimensional linear system

ẋ(t) = Ax(t) + Bd(t)
z(t) = Cx(t) + Dd(t)

(40)

where [
A B
C D

]
:=
[
ATT BT

CT D

]
+
[
ATS

CS

]
(∆m −ASS)−1

[
AST BS

]
. (41)

The semigroup exp(At) now well defined, and we can use a Lyapunov type result to prove that it is stable.

Proposition 4 Let x ∈ `2, and let p = Ax. If J < 0, then

〈p, x〉`2 + 〈x, p〉`2 ≤ −β‖x‖2`2 (42)

for some positive constant β.

Proof of Proposition 4: Define v = (∆m − ASS)−1ASTx, and w = ∆mv = ASTx + ASSv. Since J is strictly
negative definite,

〈(x, v, 0), J(x, v, 0)〉`2 ≤ −β(‖x‖2`2 + ‖v‖2`2) ≤ −β‖x‖2`2 (43)

for some strictly positive constant β. Define q+ and q− in `2 as

q+ :=
[
A+

ST A+
SS

]
(x, v) = (w1, v−1, w2, v−2, · · · , v−L), (44)

q− :=
[
A−ST A−SS

]
(x, v) = (v1, w−1, v2, w−2, · · · , w−L). (45)
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It can readily be verified by direct substitution that

〈(x, v, 0), J(x, v, 0)〉`2 = 〈p,XTx〉`2 + 〈XTx, p〉`2 + 〈q+, XSq+〉`2 − 〈q−, XSq−〉`2 . (46)

Recall that m±k denotes the dimension of v±k and w±k and that m0 denotes the dimension of x. Note that

q+ = diag(S1Im1 , Im−1 ,S2Im2 , Im−2 , · · · , Im−L)v ,

q− = diag(Im1 ,S
−1
1 Im−1 , Im2 ,S

−1
2 Im−2 , · · · ,S−1

L Im−L)v .
(47)

Thus q+ = ∆m̂q−, where m̂ = (m0,m1 + m−1, 0, · · · ,mL + m−L, 0). Also note that ∆m̂ commutes with XS, and
that ∆∗m̂∆m̂ = I. Thus

〈q+, XSq+〉`2 = 〈q−,∆∗m̂XS∆m̂q−〉`2 = 〈q−, XSq−〉`2 . (48)

This completes the proof.

The proof that exp(At) is exponentially stable now follows directly from the Lyapunov Theorem 5.1.3 in [20].

PERFORMANCE:
Since the system is well-posed and stable, for any d in L2 there exist x, v, and z in L2 which satisfy Equation (40),
where x(t = 0) = 0. Since J is strictly negative,

〈(x, v, d), J(x, v, d)〉L2 ≤ −β‖d‖2L2
(49)

for some strictly positive constant β. Let w = ∆mv. Define q+ and q− in L2 as

q+ :=
[
A+

ST A+
SS B+

S

]
(x, v, d) = (w1, v−1, w2, v−2, · · · , v−L), (50)

q− :=
[
A−ST A−SS B−S

]
(x, v, d) = (v1, w−1, v2, w−2, · · · , w−L). (51)

It can readily be verified by expanding the inner product in (49) that

〈ẋ,XTx〉L2 + 〈XTx, ẋ〉L2 + 〈q+, XSq+〉L2 − 〈q−, XSq−〉L2 + ‖z‖2L2
≤ (1− β)‖d‖2L2

. (52)

As in the proof of stability, it can be shown that 〈q+(t), XSq+(t)〉`2 = 〈q−(t), XSq−(t)〉`2 for all t, and thus
〈q+, XSq+〉L2 − 〈q−, XSq−〉L2 = 0. We will next show that 〈ẋ,XTx〉L2 + 〈XTx, ẋ〉L2 = 0, which will complete the
proof:

〈ẋ,XTx〉L2 + 〈XTx, ẋ〉L2 =
∫ ∞

0

(〈ẋ(t), XTx(t)〉`2 + 〈XTx, ẋ(t)〉`2) dt (53)

=
∫ ∞

0

d

dt
〈x(t), XTx(t)〉`2dt (54)

= 〈x(∞), XTx(∞)〉`2 − 〈x(0), XTx(0)〉`2 = 0 (55)

as required.
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