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Abstract

The transductive SVM is a semi-supervised learning algorithm that
searches for a large margin hyperplane in feature space. By withholding
the training labels and adding a constraint that favors balanced clusters, it
can be turned into a clustering algorithm. The Normalized Cuts cluster-
ing algorithm of Shi and Malik, although originally presented as spectral
relaxation of a graph cut problem, can be interpreted as a relaxation on
clustering with transductive SVMs. Using this interpretation of Normal-
ized Cuts, we identify some of its weaknesses, and propose a correction
on it.

1 Introduction

An intuitive clustering idea is to find a hyperplane that passes through the data set with
as great a distance to the data points as possible while separating the data into two even
clusters. Support Vector Machines search for such a hyperplane when the data are labeled,
and the transductive SVM [1] search for such a hyperplane when only some of the data are
labelled. By withholding the training labels and adding a constraint that favors balanced
clusters, the transductive SVM can be turned into a clustering algorithm. The Normal-
ized Cuts clustering algorithm of Shi and Malik, although originally presented as spectral
relaxation of a graph cut problem, can be interpreted as a relaxation on clustering with
transductive SVMs. Using this interpretation of Normalized Cuts, we identify some of its
weaknesses, and propose a correction on it.

Normalized Cuts views the data set as a graph, where nodes represent data points and
edges are weighted according to the similarity, or “affinity”, between data points. This
is the starting point of many other graph-based clustering algorithms [2, 3]. The affinity
matrix used in these algorithms is a Gram matrix of a possibly infinite-dimensional lifting
of the data set. Based on this observation, we show that Normalized Cuts lifts the data set
to an infinite-dimensional feature space and cuts the data by passing a hyperplane through
a “gap” in the lifted data. It then labels points that fall on the same side of the hyperplane
as belonging to the same cluster.

This new interpretation of Normalized Cuts reveals that it maximizes a gap that weights
data points away from the mean of the data set more than those in the center of the data



set. This weighting causes Normalized Cuts to sometimes break elongated clusters and to
be sensitive to outliers. By defining a new gap that gives equal weight to all data points,
we derive a clustering algorithm (the Average Gap algorithm) that does not exhibit these
problems. Finding labels under this new gap reduces to thresholding the top eigenvec-
tor of a matrix. We also derive a relaxation of the transductive SVM clustering problem
which can be solved with semidefinite programming. This relaxation outperforms both the
Normalized Cuts algorithm and its correction in experiments.

Lifting the vertices of a graph to a feature space is common in the graph cut literature
[4, 3], though there is no search for a hyperplanar gap. Lifting appears in non-graph-based
clustering as well. For example, [5] performs approximate K-Means clustering in feature
space. Ben-Hur et. al [6] observed that when estimating the support of a lifted data set
by fitting a hypersphere around it the resulting support functions form closed contours that
can be used to label the data. By contrast to these methods, according to our interpretation,
Normalized Cuts directly searches for a hyperplanar gap in the lifted data set.

This paper only presents 2-way clustering algorithms. If more clusters are sought, each
2-way cut can be further subdivided by running the clustering procedure recursively [7].

2 The Normalized Cuts Algorithm

This section provides a brief review of the Normalized Cuts algorithm. Given a set of data
pointsx = {xi|xi ∈ Rd, i ∈ 1..N}, and an “affinity” measurek(x, y), build the affinity
matrixK with Kij = k(xi, xj). A common choice fork is the Gaussian kernelk(x, y) =

exp
(
−‖xi−yi‖2

2σ2

)
. The affinity matrixK defines the weights on a fully connected graph

where each node corresponds to a data pointxi andKij is the weight of the edge between
nodei and nodej. Assigning eachxi a labelyi ∈ {−1,+1} cuts the graph into a setA
of the vertices with label -1 and a setB of vertices with labels +1. The cost cut(A,B) is
the sum of the weight of the edges between vertices inA and vertices inB. The goal of
Normalized Cuts [7] is to find the cut that minimizes the following cost function:

cut(A,B)
(

1
Vol(A)

+
1

Vol(B)

)
, (1)

where Vol is the sum of the weights in a set. This cost function is designed to penalize
cuts that are not well balanced. Finding the optimal Normalized Cut is NP hard, so the
Normalized Cuts algorithm optimizes a relaxation of the above:

v∗ = arg maxv
v>D− 1

2 KD− 1
2 v

v>v

s.t. v>D1 = 0

D is a diagonal matrix whoseiith entry is the sum of theith row ofK, and1 is the column
vector of all ones. The optimumv is the second eigenvector ofD− 1

2 KD− 1
2 (we casually

refer to thenth eigenvector of a matrix in this paper as a shorthand for the eigenvector
corresponding to thenth largest eigenvalue). The components ofv∗ are then thresholded
to yield a vector in{−1,+1}N :

ŷ = sgn(v∗). (2)

This is the labeling as reported by Normalized Cuts. We refer to this algorithm as the
Normalized Cuts algorithm (or just Normalized Cuts) and the unrelaxed cost function (1)
as the Normalized Cut cost. Other relaxations for (1) are possible [8], but we do not provide
a separating hyperplane interpretation for these relaxations here.



3 Hyperplane Cutting Methods for Clustering

In this section we formalize the notion of clustering with a hyperplane. To allow all possible
separations of the data set, we lift the data to a high-dimensional space. Once a hyperplane
is fitted, points that fall on the same side of the hyperplane will be labeled as being in the
same cluster.

Any positive definite kernelk(x, y) defines a lifting of a data pointx in a compact subset
of Rd to a possibly infinite-dimensional vectorX in “feature space” viaXj =

√
λjφj(x),

whereφj(x) are the bases of the Mercer expansionk(x, y) =
∑∞

j=1 λjφj(x)φj(y). The
inner product in feature space is defined so that< Xi, Xj >k= k(xi, xj). With a slight
abuse of notation, we will write< Xi, Xj >k= X>

i Xj . For many kernels, including the
Gaussian one,‖X‖2 = k(x, x) = 1, so the kernel maps pointsx onto a sphere. Also,
becausek(x, y) is always positive, the points in feature space must all lie in the same
orthant.

We refer to the distance measure between the hyperplane and the data points as a “gap”.
The signed distance between a pointX in feature space and a plane{X|β>X = 0} that
passes through the origin of feature space with normalβ is β>X. The label of this point is
the sign of this distance:y = sgn(β>X).

We would like to find a hyperplane in feature space, parametrized by its (possibly in-
finite dimensional) normal vectorβ, to maximize some such a measure of gapM(β).
In subsequent sections, we will provide various examples ofM(β). To ensure that the
plane passes through the data set, and that the clusters have roughly the same number of
points, we additionally require that the average signed distance to the hyperplane be zero:∑N

i=1 β>Xi = 0, or equivalently,β>X̄ = 0. The optimalβ is found by solving
β∗ = arg maxβ M(β) (3)

s.t. ‖β‖ = 1,

β>X̄ = 0 (4)
By assuming thatM(β) is only a function of the distances between the data points and the
hyperplane, we can invoke the generalized representer theorem [9], which states thatβ∗ is
a linear combination of the data:β∗ = Xc∗.

In addition to recovering the labels of the given data set, we can also find the splitting func-
tion f(x) which returns the distance between any point to the hyperplane. As a function of
an input pointx0, the signed distance between the corresponding feature pointX0 and the
hyperplane defined byβ is f(x0) = β∗>X0. Due to the representer theorem, we can write

f(x0) =
N∑

i=1

cik(x, xi). (5)

We show these separating functions in figures throughout this paper.

4 Normalized Cuts as Hyperplane Cutting

The kernel trick provides a geometric explanation forK andD as objects in a possibly
infinite-dimensional space. The affinity matrixK hask(xi, xj) as itsijth element. Since
Kij = X>

i Xj , we can writeK = X>X, with X = {Xi}.

TheD matrix of Normalized Cuts is diagonal with

Dii =
N∑

j=1

k(xi, xj) = X>
i

N∑
j=1

Xj .



Defining X̄ =
∑N

j=1 Xj , these entries areDii = X>
i X̄ = ‖X̄‖ cos θi, whereθi is the

angle in feature space between the vectorXi and the mean data vector̄X/N . Because
points in feature space lie in a sphere, we think ofDii as a distance betweenXi and the
average point.

Theorem 4.1. Normalized Cuts finds a hyperplane that maximizes (3) withM(β) =
MNCUT (β) :=

∑N
i=1

1
cos θi

(
β>Xi

)2
, and assigns labels according toyi = sgn(β>Xi).

Proof. By the above discussion, we have
∑N

i=1
1

cos θi

(
β>Xi

)2 = ‖β>XD− 1
2 ‖2. With

some algebra, it can be seen thatβ∗ = XD− 1
2 v2, wherev2 is the second largest eigenvector

of D− 1
2 KD− 1

2 [10]. Fromv2, we can directly compute the signed distance between each
pointxi and the hyperplane, without computingβ∗, because:

ŷ = sgn
(
β∗>X

)
= sgn

(
β∗>XD− 1

2

)
= sgn

(
v>2 D− 1

2 X>XD− 1
2

)
= sgn

(
v>2 λ2

)
= sgn

(
v>2

)
,

whereλ2 is the second largest eigenvalue ofD− 1
2 KD− 1

2 andv2 is its corresponding eigen-
vector. This is identical to the Normalized Cuts labeling obtained from (2).

The particular choice of the weight factor1/ cos θi in MNCUT is an implicit design choice
in the Normalized Cuts algorithm. It gives greater weight to points away from the lifted
mean (remember that the lifted pointsXi lie on a unit sphere, so that angles between vectors
are a good measure of distance). This weighting appears to make Normalized Cuts sensitive
to outliers, which is undesirable. The only benefit we see in this weighting is that finding
a solution to equation (3) is simplified, because the second eigenvector ofXD−1X> auto-
matically satisfies the balancing constraint of equation (4). Other weightings are possible
and will be explored in later sections.

Sinceβ∗ = XD− 1
2 v2, c in Equation (5) isD− 1

2 v2 Figure 4(left) demonstrates Normal-
ized Cuts’ sensitivity to an outlier. By sliding one outlier along the x-axis, the clustering
boundary can be arbitrarily shifted to the left or to the right. Figure 4(right) shows that
Normalized Cuts will split elongated structures, because according to its weighting, it is
favorable to have points on opposite ends of an elongated structure land on opposite sides
of the separating plane.

5 Average Gap Algorithm

If equal weight is given to every point, the outlier and splitting problems are attenuated.
Consider the new gap measure

Mavg(β) =
1
N

N∑
i=1

(
β>Xi

)2
=

1
N

β>XX>β.

The optimizer ofMavg subject to the balancing and norm constraints is the top eigenvalue
of a related matrix. See [10] for a proof of the following theorem.

Theorem 5.1. The label assignments from (3) withM(β) = Mavg(β) are sgn(v) wherev

is the largest eigenvector ofK− K11>K
1>K1

.

Section 7 shows that this new hyperplane algorithm works as well as Normalized Cuts, and
is less susceptible to outliers. We will refer to it as the Average Gap algorithm. Compare
Figure 5 with Figure 4. The outlier does not affect the clustering boundary, no matter how
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Figure 1: Left: In Normalized Cuts, an outlier can dwarf the influence of other points,
because points away from the mean are heavily weighted. Sliding the outlier (indicated by
the arrow) along the x-axis can shift the clustering boundary arbitrarily to the left or the
right. Without the outlier, Normalized Cuts places the boundary between the two clusters.
Right: Because Normalized Cuts puts more weight on points away from the mean, it
prefers to have the ends of the elongated vertical cluster on opposite sides of the separating
hyperplane.

far it is from the main body. Adding several outliers eventually does move the boundary
(not shown). The elongated cluster is not split up. No stretching of the elongated cluster
causes it to be split.

6 Relation to Transductive SVM

The transductive SVM [1] is a semi-supervised learning algorithm, but by withholding
training labels and adding a constraint that favors balanced clusters, it provides a clustering
criterion which we call the “clustering SVM”. The transductive SVM problem is noto-
riously difficult to solve [11, 12, 13], as is the clustering SVM problem. We show that
Normalized Cuts is a relaxation of the clustering SVM problem. However, solving the dual
program for clustering SVM provides an even better relaxation.

The transductive SVM maximizes the distance to the point closest to the hyperplane, so its
gap measure isMCSV M (β) = mini βT Xi. Substituting this gap into (3) yields the clus-
tering SVM problem. Through the representer theorem we haveβ = Xc, β>X = c>K,
and‖β‖ = c>Kc. With a standard manipulation, we obtain an equivalent formulation of
the clustering SVM in terms ofc:

minc c>Kc (6)

s.t. (c>Ki)2 ≥ 1, c>K1 = 0
This program is non-convex and is in general hard to solve exactly.
Proposition 6.1. Normalized Cuts and the Average Gap algorithms are relaxations for the
clustering SVM(6)

Proof. The program (3) with the Normalized Cut gapMNCUT and Average gapMavg can
be recast in a similar form similar to (6):

minc c>Kc (7)

s.t.
1∑
i wi

N∑
i=1

(c>Ki)2wi ≥ 1, c>K1 = 0
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Figure 2:Left: The data set of Figure 4(left) is correctly segmented by weighting all points
equally. The outlier point doesn’t shift the clustering boundary significantly.Right: The
data set of Figure 4(right) is correctly segmented by weighting all points equally.

wherewi = 1 for the Average Gap andwi = 1/ cos θi for Normalized Cut gap. Since the
constraints in (6) imply those of (7), algorithms that solve (7) are relaxations of (6).

An alternative relaxation strategy is to solve the dual of (6), which is a semidefinite pro-
gram. A priori it is not clear whether this dual strategy should provide a better relaxation
for (6) than Normalized Cuts. The following theorem provides the necessary justification.

Theorem 6.1. The dual of (6) achieves a higher cost than the relaxation (7).

Proof. Since (6) is a non-convex quadratically constrained quadratic program its dual is a
semidefinite program [14]:

maxα≥0

N∑
i=1

αi (8)

s.t. c>(K−Kdiag (α)K) c ≥ 0, ∀1>Kc = 0

The dual of (7) is:

maxλ>0 λ (9)

s.t. c>(K−Kλdiag ({wi})K) c ≥ 0 ∀1>Kc = 0

There is no duality between (7) and this dual (9). The dual (8) optimizes over an arbitrary
diagonal matrix, whereas the dual (9) optimizes over a more constrained diagonal matrix.
Therefore (7) is a lower bound on the dual (8) of the clustering SVM problem. Since both
of these are lower bounds on the primal clustering SVM problem (6), solving (8) yields a
value closer to the optimum of (6) than does solving (7).

c can be extracted in the dual from the null-space ofK−Kdiag(α∗)K [4, 14]. The labeling
becomessgn(Kc). The theorem implies that extractingc from (8) is better than extracting
c from Normalized Cuts or the Average Gap algorithms.

7 Numerical Experiments

We compared Normalized Cuts, the Average Gap algorithm, and the dual relaxation of
clustering SVM on datasets from the UCI repository. The Wisconsin breast cancer data set



100 102
0

0.2

0.4

kernel variance

er
ro

r

100 101 102 103
0

0.2

0.4

kernel variance

er
ro

r

102 103 104 105
0

0.2

0.4

kernel variance

er
ro

r

Figure 3: A plot of error as measured against given labels against the log of the variance
of the gaussian kernel used for clustering.� represent the Normalized Cuts algorithm,O
represent the Average Gap algorithm, and◦ represent the clustering SVM. Figure (left) is
thewine data set, (middle) is thecancer1 data set and (right) is thecancer2 dataset.

dataset n σ2 CSVM NCUT AVG
wine 130 4.90e3 0.939 0.931 0.931

cancer1 683 1.20e5 0.962 0.973 0.973
cancer2 569 4.16e6 0.907 N/A 0.907

ionosphere 351 2.49e2 0.692 0.704 0.704
MNIST 1000 4.82e9 0.854 0.748 0.748

Table 1: Clustering performance.

(cancer1 ) and the new diagnostic dataset (cancer2 ) were originally obtained from the
University of Wisconsin Hospitals, Madison. We also used the first two classes in the wine
recognition dataset (wine ) and the ionosphere dataset (ionosphere ). We retain the first
100 instances for each of the 10 classes in theMNIST data set.

In all of data sets, except forMNIST, clustering performance is the number of correctly
assigned labels to each class. In theMNIST experiment, we evaluate the performance of
the clustering algorithms by how much they split clusters. We count the percentage of
disagreeing label assignments for each of the 10 classes, and averaged this number over
the 10 classes. Because of the balancing constraint (4), none of the algorithms assigned the
same label to the entire data set.

The semidefinite program for the clustering SVM was solved using the SeDuMi solver [15]
and the YALMIP parser [16]. We were able to run sets of one hundred points in a few
seconds and sets of one thousand points in about an hour on a dual Xeon 2.8 GHZ machine.

The clustering algorithms were all compared using a gaussian kernel. Figure 3 plots clus-
tering performance against various choices ofσ2.

All three algorithms are sensitive to the choice of the kernel variance over a wide range.
The semidefinite relaxation of the clustering SVM performs better over a wider range of
σ2. Furthermore, we note that the Normalized Cuts algorithm oscillates wildly for some
datasets asσ2 is varied. The labeling produced by Normalized Cuts in high error regions
appeared erratic. High error rates were never due to separating outliers from the dataset.
The clustering SVM and the Average Gap algorithm do not exhibit this problem.

Table 7 reports the performance of the algorithms forσ2 in regions where the output of
the algorithms did not change when changingσ2. We found no such region forcancer2
using Normalized Cuts.



8 Conclusion

We have provided a new interpretation for the Normalized Cuts relaxation of Shi and Malik
and showed that it can be thought of as searching for a maximum gap hyperplane in a data
set. In fitting this hyperplane, Normalized Cuts pays more attention to outliers, and so
fails to recover sensible clusters in some cases. We showed how to avoid this pitfall by
weighting all data points equally. In experiments, the correction of Normalized Cuts is
more robust to changes in the kernel variance.

We showed that Normalized Cuts and the proposed correction are relaxations of a clustering
version of the transductive SVM. We derived a semidefinite relaxation of this so-called
clustering SVM and found that it slightly outperforms the spectral methods.

Our interpretation of Normalized Cuts can also be used to justify semi-supervised versions
of it as well, although we did not explore this possibility in this paper.

References

[1] V. Vapnik. Statistical learning theory. Wiley, 1998.

[2] D. Verma and M. Meila. A comparison of spectral clustering algorithms. In
http://www.cs.washington.edu/research/spectral, 2003.

[3] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings, and graph partition-
ings. InACM Symposium on Theory of Computing, 2004.

[4] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming.Journal of the ACM, (42):1115–
1145, 1995.

[5] M. Girolani. Mercer kernel based clustering in feature space.IEEE Transactions on Neural
Networks, 13(3):780–784, May 2002.

[6] A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support vector clustering.Journal of
Machine Learning Research, 2:125–137, 2001.

[7] J. Shi and J. Malik. Normalized cuts and image segmentation.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

[8] E.P. Xing and M.I. Jordan. On semidefinite relaxation for normalized k-cut and connections to
spectral clustering. Technical Report CSD-03-1265, Division of Computer Science, University
of California, Berkeley, 2003.
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