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Abstract—This paper discusses distributed controller design  In this paper, we show that recently presented techniques
and analysis for distributed systems with arbitrary discrete for the control design of spatially interconnected systems
symmefry groups. We show how recent results for design- (71 18] [9] are in fact applicable to a much larger class
ing controllers for spatially interconnected systems, based on . . )
semidefinite programming, are applicable to a much larger class ,Of |nterconn.ect|on topologies where t.he symmetll’y of the
of interconnection topologies. We also show how to exploit the interconnection may be noncommutative. We review these
structure of the symmetry group to produce a hierarchy of techniques in Section Ill, and in Section IV generalize the
decreasingly conservative analysis and synthesis conditions.  notion of spatial interconnectivity from abelian groups to

Index Terms— Distributed control, H-infinity, interconnected ~ arbitrary discrete groups. In Section V we discuss a linear
systems, linear matrix inequalities matrix inequality (LMI) which can be used to analyze these
more general systems and discuss how to use such an LMI for
controller synthesis. In contrast to most existing techniques,
the synthesis and analysis conditions are computationally

With the advent of cheap sensors and pervasive comniggctable and always lead to a distributed controller imple-
nication and computing, there has been substantial activifientation. Finally, in Section VI, we discuss how to make the

in the controls community to develop analysis and synthesig| tests less conservative by using the structure of groups
tools for systems consisting of extremely large numbers gh which the signals are defined.

interconnected subsystems. A large part of this effort has
been devoted to developing tools that scale gracefully with [l. NOTATION AND PRELIMINARIES
the number of subsystems, which in practice can each haves will denote an arbitrary discrete group. Unless otherwise
local sensing, actuating, and computing elements. Clearly fasted, the identity element & will be denoted byl and
systems that are comprised of a large number of subsystamms group operation will be written as a product. We will
(see [1], for example, for a description of a system whicbe dealing with signals that are a function of both time and
consists of thousands of interacting elements), the structggace. Elements & will be used to denote the spatial index;
of these systems must be fully exploited in order to obtain particular, signals are vector valued functions Rnx S.
tractable analysis and control synthesis algorithms. Formally, we defind; to be the Hilbert space of all functions

Recent work has made a great deal of progress in exploiting S — R* such that the guantity
the symmetry present in such systems. Control laws can be 9 .
distriguted sgcﬁ that they only rgly on local communication, Il = Zx(s) z(s) (1)
yet can still give rise to desired global behavior, and, in . i s€s ,
certain settings, it has been shown that spatially distributit finite- The +H|Ibert spaceC; will denote the space of
controllers are optimal for the control of spatially invariantUnctionsu : R™ — I such that
systems [2] [3]. The synthesis of such distributed controllers ul%, == /OO [ (t)]|2.dt @)
is often convex [4] [5], and taking the distributed structure of 2 2
a problem into account can greatly reduce the complexity gf finite.
control design without sacrificing system performance [6].  With a slight abuse of notation, a signal € £, can

To date, most authors investigating distributed or decentriéle considered a function of two independent variables
ized control have focused on systems distributed aelian (¢, s). For fixedt ands, u(t) is an element of, andu(t,s)
groups. Finite difference approximations of partial differentias a real-valued vector.
equations onR™ or many systems connected on an integer
lattice would fall into this category. However there are many!l- REVIEW OF SPATIALLY INTERCONNECTEDSYSTEMS
spatially invariant configurations such as those arising fromIn this section we give a brief review of the theory of
crystalline structures which have noncommutative symmetgpatially interconnected systems as presented in [8]. A “basic
groups. An investigation into how to exploit this symmetrpuilding block” (shown in Figure 1) for a spatially intercon-
in a distributed manner would open up a large new class @¢cted system is a linear time invariant system onlan
control systems for design. dimensional integer lattice defined as
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I. INTRODUCTION



wherex(t = 0) € {a,

Ut1 (t’ S) W41 (t’ S)
U_l(t,S) w_l(t,s)
U(t,S) = : ’ UJ(t,S) = . ’ (4)
U+L(t s) wyr(t,s)
~r(t,s) w_r(t.s)
ands = (p1,...,pr) is a fixed L-tuple of integers used

to denote the position of the subsystem on the lattice. Tl

vectorsv, (t,s) andw, (t,s) are the same size, and (¢, s)
andw_(t,s) are the same size.
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Fig. 1. A basic building block in one spatial dimension.

On an infinite extent integer lattice, the interconnection of

(’U+, w*)

(’U_, w—l—)

Fig. 3. Infinite interconnection in one spatial dimension with signals that
interconnect two subsystems suppressed and the sidraaisl z omitted.

reflects the standard notion used for feedback intercon-
nection; see [10], for example.

o Stability A system is stable if, for any initial state
z(t = 0), the norm of the signak is bounded above

these subsystems can be captured as follows. Define the shift by a decaying exponential exp(—3t) when the input

operatorsS,, ..., Sy, where for an arbitrary: € /5,

(Skz)(s) ==z(p1,---spx +1,...,pL). )

d=0.
« ContractivenessA system is contractive if for any input
signald # 0, ||2]lz, < ||d||z, whenz(t = 0) = 0.

Periodicity of orderV on any axis can be imposed by defining The authors in [8] construct an LMI test which verifies

the shift operator as follows

(Skz)(s) := z(p1, - - (6)

We can extend these shift operatorsite £, in the following
manner

(pe +1)mod N,... ,pL).

(Sru)(t) := Sku(t). @)

Let the dimensions of,; andv_; be denoted byn, and
m_y, respectively and define the structured operator

A = diag(Si1m,» ST 1y »SLLiy S ). (8)

The interconnection of the subsystems is then simply defined

to bew = Av. We can form an interconnected system as

x(t,s) A A Br x(t,s)
(Av)(t,s) | = | Ass Ass Bs v(t,s) |, (9)
z(t,s) c; Cs D d(t,s)

well-posedness, stability, and contractiveness, and is only a
function of the transition matrix of Equation (9). In particular,
the resulting LMI is finite dimensional and fixed in size; it
does not depend on the number of subsystems that make up
the interconnection. The authors also describe how to use this
LMI to synthesize distributed controllers, and these analysis
and synthesis results have been extended to handle certain
types of boundary conditions in [11]. The remainder of this
paper is devoted to generalizing all of these results to a much
richer class of interconnection topologies.

IV. GENERALIZED SPATIAL INTERCONNECTIONS

One approach to generalizing beyond the integer lattice
structures considered thus far is to relax our notion of a shift
operator. If we consider the basic building block in three
dimensions, we can connect this together to form a cubic
integer lattice as in Figure 4. We can also rearrange the signals

z(t = 0) € {». Examples of such interconnections in ong, this basic building block and connect them as triangular

spatial dimension are shown in Figure 2. For clarity, sughttice as in Figure 5. Similarly, we can create a hexagonal
pictures will be simplified by lumping together the signalfattice as in Figure 6. In both of these new cases, there is still
that interconnect two subsystems and by omitting the signalsyell defined notion of a spatial shift, but the interconnection
d andz. as shown in Figure 3. variables can no longer be broken down inketuples of
There are three properties desired of such a system.  integers. Instead, the variables will be indexed by elements
« Well-posednesdNell-posedness describes the realizabibf a discrete group.
ity of the interconnection. An interconnected system Formally, letS be a group. The set of elemenfs =
defined by Equation (9) is well-posed if the operatofs,...,s.} generatesS if every element ofS can be written
(A — Ag) is invertible. The reader is referred to [8] foras a product of elements fro@ and inverses of elements
an in-depth discussion of well-posedness. Our definitidrom G. The elements;, are calledgeneratorsof S. If S has



(v43,w-3)  (v_3,wy3)

(v-3,wy3)
(v42,0-2) (vg1,w-1)
(v_1,w41) (v_2,wq2) (-1, w41)

(v41,w-1)
(v_2,wy2)
(v42,w-_2)
(v43,w-3) Fig. 6. Hexagonal lattice. The interconnection shown is a subsection of an

infinite interconnection.

Fig. 4. Cubic integer lattice. The interconnection shown is a subsection of

an infinite interconnection. a directed edge from to b if, for somel < k < L, either
b=as, orb= as,;1 wheresy, is a generator. The resulting
(v-2,w+2) (v+1,0-1) graph is called &Cayley graph[12].

We can define a spatially invariant system over any Cayley
graph. Given a generatar, € G andz € [, define the
operatorS;, by

(4 ws) (Ska)(s) = w(ssp) (13)
Each of these shift operators éncan be naturally extended
to an operator orC, as described in Section Ill. Examples
of these shift operators are shown in Figure 7. From the
perspective of the Cayley graph, these operators are unitary
spatial-shifts. Accordingly, these shifts will play the role of

Fig. 5. Triangular lattice. The interconnection shown is a subsection of 1€ Shift operators in Section IIl.
infinite interconnection.

(v_3,w43)

(v_1,w41) (v42,w_2)

a finite generating set then it feitely generatedThe integer
lattices in Section Il are special cases of such finite generated
groups. For example, in the case of a two-dimensional integer
lattice, the group elements are given by locations on the
lattice s = (p1,p2) and the group operation is component-
wise addition. The group is generated by the two elements
s1 = (1,0) andsy = (0,1), and we have identities such as
SS| = (p1 + l,pg) andsl_l = (—1,0).

The cubic, triangular, and hexagonal lattices are all gener-
ated by three elements. However, the generators relate to 6ige7. Examples of shift operators on the triangular lattice.
another differently in each group. In the case of the cubic

integer lattice, we can express the commutativity of the shift To extend the results on interconnected systems to this more
operators as general setting, we will consider systems built from the same

N 1 1 transition matrix as in the previous section, but we will now
sis281 S; =1 sosgsy sy =1 sgsysy s; =1 (10)  puild shift operators from elements 6f Specifically, ifm is

In the case of the triangular lattice, we add the additiongle vector of dimensions of the Interconnection signals
requirement that quations (3) and (4), we can define a shift operator

NPT -1 -1
61525 — 35051 — 1 y A= diag (S1Lmy S on sy Seln, Sp ) - (14)

) ) Now we can define the linear system oger
For the hexagonal lattice we have instead

) ) ) ) x(t,s) A A By x(t,s)
s =s; =s3 = (s18283)" =1 (12) (Av)(t,s) | = | Ast Ass Bs v(t,s) |, (15)
2(t,s) C; Cs D d(t,s)

Such products of elements which equal the identity are called

relations A group is finitely presentedf there exist a set z(t =0) € ¢5.

of generatorsG and set of relationd? composed from the Note again that the systems in Section Il were the special

generators such that any relation fdrcan be written as a case where the grodpwas a product of. groups isomorphic

product of relations inR or their inverses. to either the integers or the integers modioThe hexagonal
From any finitely presented group, we can create a directiadtice is an example of aoncommutative grouprhe ability

graph as follows. The elements ®fare the vertices. There isto deal with spatial invariance over noncommutative symmetry



groups is a new and crucial contribution of this work. The 0 0

hexagonal lattice also has the interesting property that the Asr_, Bs
generators square tb; this relation can be used to identify A = : , By = : , (23)
the signalsv; with v_; andw_, with w_g. The lattices we 0 0
have presented are examples of two-dimensional space groups Asr | Bs ,
studied in abstract crystallography. The group which generates - -
the triangular lattice is commonly callgoll. The hexagonal A=Ay, 0 - Ay, 0], (24)
group is calledp2. There are 17 different space groups in A-—=T0 A .0 A o5
2D [13], and 230 in 3D [14]. The work in the sequel applies = | o1 e ] (25)
to all of them. Let mqo denote the dimension af(¢, s). Define the follow-
ing sets of scaling matrices:
V. LINEAR MATRIX INEQUALITIES FORANALYSIS AND X, = {XT cR™MOXmo . X5 0, X, = XT*}7 (26)
CONTROLLER SYNTHESIS
In this section, we discuss how the techniques in [8] cari®® {Xs = diag(Xs, -+, X, ) - @

be immediately extended to systems on arbitrary discrete X, € Rmatm-a)x(mitm—) x X;“}
groups. We will provide a test for well-posedness, stability, ]

and performance using only the data from Equation (15). ItTh? following result allows us to check the_well-posednegs,
is worth noting that little changes in moving from systemgt@bility, and performance of the system defined by Equation
defined over integer lattices to our more general situation. \{&°) Via an LMl which can be solved efficiently using semide-

can partition the matrices which govern the evolution of tH8it€ programming (see, for example [15]). .
system to reflect the structure &: Theorem 1:A system defined by Equation (15) is well-

posed, stable, and contractive if there exigtin X; and X
in X5 such thatJ < 0, where

Assl,l Assl,,l e Assl,,L *
SS_1,1 As&l -1 77 As&l -L 1 0 U
Ags =t ' ' ’ . (16) J:=| A; Ay Bg
0 0 I
Aons Asa 0 Ao ALY+ XAy AL X.B,
Agr, B, X (AL)* X —Xs 0
Asr, Bs | i B X; 0 —I
Agr =: . , Bs=: : ) (17) [T 0 0 ]
ASTfL Bst X AST ASS BS
0 0 I
- T (28)
Ars =: [ ATsl ATS_1 ce ATS_L ] , (18) 1 0 0
+| AT Af BF
Cs=[Cy Cs, - Cs,], (19) c D |
and then define the following matrices: i 0 XA O
Assl_i Assl,_l e ASS1,L ASSl,—L - (ATS(% XT )és (I)
0 I 0 0 - 7 0 0
AL = , (20) x | AL AL BF
AssL,l ASSL,,l U AssL7L AssL7,L CT CS D
0 0 0 1 This analysis condition iglentical to the one presented in
[8] for systems defined over integer lattices. The LMI test is
Asr, B, valid for both interconnections characterized by the structured
0 0 operator of Equation (8) or the more general structured opera-
AL = : , B = : ; (21) tor of Equation (14). Indeed, it is a sufficient condition for any
Aqr, B, interconnection withZ generators. The proof for the general
0 0 interconnected system is also identical to the proof over integer
lattices, so we refer the reader to [8] for the details. The
essential ingredients for this LMI to be sufficient is for the
I 0 0 0 operator A to be unitary and commute with the transition
Assry Ay o Asy sy matrices. This remains true in our more general setting, and
Agi= 5 hence the analysis condition still holds.
0 0 I 0 By defining our system in this more general fashion, we
Ass 1y Assp oy o Assp, Ass . extend the possibility of studying controller design on a much

" (22) larger class of distributed systems. For control design, we



augment the basic building block with controller input/outpuVIl. USING RELATIONS TO GENERATE LESS CONSERVATIVE

variablesu andy as LINEAR MATRIX INEQUALITIES
Tp(t,s) [ AP AP Br . Bi.||ze(t,s) Since the analysis LMI we have presented verifies well-
(Ave)(t,s) | _ | A5 AL B, Bg, || ve(t,s) (29) posedness, stability, and contractiveness for all interconnected
z(t,s) | |Cr, CZ, DL D || d(ts) systems with the same number of generators, we might expect

y(t,s) Cr, C¢, D Dj || ults) such a condition to be conservative. We will now explore how

and aim to design a controller with the same structure as t%?e.f(;?atebll‘MLtestf Wh'%h arte less cgnserﬁa_tlye bg;] cogectlmg
plant, so we will posit the controller form of uliding blocks Into subsystems and exploting the tayley
graph structure to generate new conditions.

i(t,s) | [As AN Bf|[a(ts) In order to simplify the presentation, some of the terminol-
(Av)(t,s)|=| A AS Bs || w(t,s) | - (30) ogy we use is not standard. We will restrict our attention to a
u(t,s) | [ CF G5 D*]| y(ts) particular class of of subgroups 8f

Here the superscripts and subscripts “P” and “K” denote Definition 1: We say that a subsetl of S is a central
the plant and controller respectively. When we connect tigélbgroupif

signalsu andy of the controller and the plant (see Figure 8) « H is a group under the group operationSf

and eliminate these variables, we obtain the closed loop. H is finitely presented.

system of Equation (15). A calculation of the closed loop « sh=hs foralls €S andh € H.

transition matrices is an algebraic manipulation of the plante. Under the identificatiom ~ b (that is,a is equivalent to

and controller matrices, and can be found in [8]. b) if a = bh for someh € H, there are finitely many
equivalence classes.
d =z Denote the set of equivalence classes uriidry S/H and
the map fromS to S/H by n. S/H inherits a group structure
oP from S by imposing the relationt, = 1 for each generator
+ of H. Since the generators f&/H andS are the sameS/H
wP has a ngley _graph generated by the generatofs 6_hat |s
- the spatial-shift operators of the groSpmap to spatial-shift
operators orS/H.
Definition 2: A transversalis a setT' = (V, E) of vertices
v_[if V and edged’ in the Cayley graph such that
« The mapn is a bijection when restricted to.
w{< o F is the set of all edges beginning at a vertexZin

« The identity element of is contained inV.
o T is a connected subgraph.
Fig. 8. The closed loop basic building block. The interconnection variabl Transversals are liftings from the Cayley grapfS;ﬁH back
vf,l u;pmp, v¥, and w% are comprgssed into one dimension for visua‘f8 the CaY'?Y graph of via th_e inverse ofy [18]. TO_ maket
clarity. these definitions clear, consider again the two-dimensional
integer lattice group and the subgrolipgenerated by even
The controller synthesis problem thus consists of findirgpwers ofs; ands,. The quotient grouf$/H is obtained by
controller matrices — the matrices in Equation (30) — such thatposing the relations? = 1 ands2 = 1. It is then readily
the closed loop system is well-posed, stable, and contractiseen thaS/H is isomorphic to the finite group which is the
The case where there are no interconnection variablasd product of two groups of each with two elements. We can lift
w reduces to the classifl, synthesis problem [16]. For thethis group back to the transverdal V' consists of the elements
case of abelian groups, the analysis and synthesis problelms;,s2, ands;s,. The transversal is graphically depicted in
have been studied in detail in [7], [8], [17], [2], and [5]. Figure 9.
It is sufficient that the closed loop system satisfy the We can generate the entire Cayley graph using translations
LMI in Theorem 1. Since this analysis condition is identicabnly contained irH and the transversdl. Let Th denote the
to what is obtained in [8] for systems on integer latticesranslation of the edges and vertices in the transversal by the
and the synthesis equations therein are based solely on #lamenth € H. Each node in the Cayley graph is contained
LMI, controller synthesis for the more general interconnectian a unique translation, since #f is a node inV, thensh =
topologies considered in this paper can be performed using #i¢ if and only if h = h’. Now suppose there is an edge
same algorithms developed for integer lattices; the details drem a to b in the Cayley graph of. Thenb = as; for
omitted. We note that the synthesis equations in [8], which takee of the generators & SinceH is central, it follows that
the form of LMIs, do not introduce additional conservatism ifor everyh € H, bh = as;h = ahs; and hence there is
design; they are necessary and sufficient for a controller wiiim edge fromah to bh in the Cayley graph. Therefore, any
the same structure as the plant to exist, as per Equation (3@)des which are connected to each other in the transversal
such that the closed loop system satisfies the analysis LMlare also connected in any translation of the transversal, and
Theorem 1. hence the entire graph can be constructed by translating the
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Fig. 9. An example of a transversal and its associated central subgroup. The transversal consists of four nodes. Translating the transversal by the subgroug
generates the entire Cayley graph. The interconnection shown is a subsection of an infinite interconnection.

transversal by elements &f. From this perspectivé] serves is not well-posed, the interconnected system is also not well-
to group nodes of the Cayley graph 8finto clusters that posed. For a fixedh, this system is a finite dimensional linear
form a Cayley graph fofl. Given an interconnected systentime-invariant system, and is well-posed if and onlylif— 4, )
defined by Equation (15), the signals associated Wittorm is invertible (c.f. [10]). ]

a basic building block for an interconnection givenly and If (Il — A,) is invertible, we can proceed to generate an
we can construct new conditions for well-posedness, stabilityyll for analysis by defining the matrices

and contractiveness.

To make the clustering explicit, take the set of edges which ;41“ gTS gT B i” iTE gT
connect nodes in the transversal toibterior edges. The set SToAss TS T TR TE
of all edges beginning at nodes in the transversal which are ~7 Cs D ¢ G D
not interior edges are callezkterior edges. Now consider the Aq
interconnected system defined by Equation (15). For &aeh + | Aq | (M- A) [Ar Ae B
H we can stack all of the signals involving verticesTih as G
follows. Stack the set of internal state variables in a vector (33)

z(t,h) = [z(t,h), z(t,gh),...z(t, gyh)], 31) and eliminating the variables,. This yields the equivalent
formulation
gr €V, hel
_ _ i(t, h) Ay A B[ z(t,h)

and the disturbance and output signals can be stacked accord- Ouw)(t,h) |=| Ae A B ve(t,h) | . (34)
. . . . . . E I ST SS S E\"
ingly. Stack the interconnection signals corresponding to inte- 2(t,h) ¢ ¢, D d(t, h)

rior edges a%, (¢, h) andw,(¢,h) and those corresponding to
exterior edges as: (¢, h) andwe (¢, h). Each signatvL(¢,sh) This new realization of our system can now be fed into the
in w, (¢, h) corresponds to a signa&k(t,ssjlh) in v(¢t,h). LMI tests of the previous section and new, potentially less
Similarly, each signatvy(t,sh) in we(¢,h) corresponds to conservative bounds on performance can be obtained.
a signal vﬁ(t,ssjlh) in ve(t,h). Thus, there exists two The process of collecting nodes by normal subgroups may
structured operatorsl and ©, similar to those in Equation be repeated an arbitrary number of times when the group in
(14), such that the system question has infinite order. Once the subsystems are collected,
normal subgroups of the new group structure can be used to
repeat this analysis yielding a hierarchy of less conservative
(32) LMiIs.

i(ta h) An Ay Ax B :L‘(t, h)
(Mu)(t,h) | _|Ar A A B || u(th)
(@UE)(t7 h) Ae A e De UE(t, h)

z(t,h) C; C C. D||dth)

N

VII. CONCLUSIONS

with h € H is identical to the system in Equation (15). Under There are many interesting directions for further investiga-
this new identification, note that the operatdonly permutes tion. The grouping process of Section VI produces state-space
the elements of (¢, h). IT does not couple the newly groupedmatrices of increasingly larger size, and determining the trade-
subsystems. Hence, it can be treated as a permutation magfietween conservatism and LMI complexity is an important
of size compatible with the vector,(t,h). The following consideration for analysis. Furthermore, we can use the results
proposition gives a quick way to test the well-posedness of afiSection V to generate hierarchical controllers connected to
interconnected system if some information about the subgroalp sub-units which are clustered together. Examining how to

structure ofS is known. scale this hierarchy is an interesting thread for future inquiry.
Proposition 1: If the matrix (IT— A4, ) is not invertible, then  Other directions for future work include a careful analy-
the system is not well-posed. sis of how combining the same building block in different

Proof: of Proposition 1 It is clear that if we replace theconfigurations affects stability and performance. It would also
shifted signal(©wve)(t,h) in Equation (32) with a signal of be interesting to find tests which explicitly exploit the group
compatible sizewg, then if the system with the variable.  structure using noncommutative harmonic analysis in a manner



similar to how the Locally Compact Abelian structure is
exploited in [2] to produce necessary and sufficient frequen
domain conditions. In this case, we might be able to extel
our results to systems over continuous non-abelian groups s
as Lie Groups. Finally, recent results in minimal realizatio
theory for linear fractional transformations [19] show that LM
conditions for minimality are both necessary and sufficie
when the operators describing the transformations are ndi His electronic artwork has been exhibited at the
. It Id be verv interesting to produce simil ARCO festival in Madrid, Spain, the Museum of
commutative. Y\(OU very | ! .g p u ! 'l%ontemporary Art in Barcelona, Spain and the ARS Electronica Center in
necessary conditions for the LMIs studied here by studyingnz, Austria and received 3rd prize at the VIDA 6.0 Art and Atrtificial Life
the noncommutative structure of group operators. Competition in 2003.
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