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Abstract— This paper discusses distributed controller design
and analysis for distributed systems with arbitrary discrete
symmetry groups. We show how recent results for design-
ing controllers for spatially interconnected systems, based on
semidefinite programming, are applicable to a much larger class
of interconnection topologies. We also show how to exploit the
structure of the symmetry group to produce a hierarchy of
decreasingly conservative analysis and synthesis conditions.

Index Terms— Distributed control, H-infinity, interconnected
systems, linear matrix inequalities

I. I NTRODUCTION

With the advent of cheap sensors and pervasive commu-
nication and computing, there has been substantial activity
in the controls community to develop analysis and synthesis
tools for systems consisting of extremely large numbers of
interconnected subsystems. A large part of this effort has
been devoted to developing tools that scale gracefully with
the number of subsystems, which in practice can each have
local sensing, actuating, and computing elements. Clearly for
systems that are comprised of a large number of subsystems
(see [1], for example, for a description of a system which
consists of thousands of interacting elements), the structure
of these systems must be fully exploited in order to obtain
tractable analysis and control synthesis algorithms.

Recent work has made a great deal of progress in exploiting
the symmetry present in such systems. Control laws can be
distributed such that they only rely on local communication,
yet can still give rise to desired global behavior, and, in
certain settings, it has been shown that spatially distributed
controllers are optimal for the control of spatially invariant
systems [2] [3]. The synthesis of such distributed controllers
is often convex [4] [5], and taking the distributed structure of
a problem into account can greatly reduce the complexity of
control design without sacrificing system performance [6].

To date, most authors investigating distributed or decentral-
ized control have focused on systems distributed overabelian
groups. Finite difference approximations of partial differential
equations onRn or many systems connected on an integer
lattice would fall into this category. However there are many
spatially invariant configurations such as those arising from
crystalline structures which have noncommutative symmetry
groups. An investigation into how to exploit this symmetry
in a distributed manner would open up a large new class of
control systems for design.
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(NSF CCR-0122419), by ARDA grant F30602-03-2-0090, by AFOSR grant
F49620-98-1-0416, and by NSF grant ECS-9983954.

In this paper, we show that recently presented techniques
for the control design of spatially interconnected systems
[7], [8], [9] are in fact applicable to a much larger class
of interconnection topologies where the symmetry of the
interconnection may be noncommutative. We review these
techniques in Section III, and in Section IV generalize the
notion of spatial interconnectivity from abelian groups to
arbitrary discrete groups. In Section V we discuss a linear
matrix inequality (LMI) which can be used to analyze these
more general systems and discuss how to use such an LMI for
controller synthesis. In contrast to most existing techniques,
the synthesis and analysis conditions are computationally
tractable and always lead to a distributed controller imple-
mentation. Finally, in Section VI, we discuss how to make the
LMI tests less conservative by using the structure of groups
on which the signals are defined.

II. N OTATION AND PRELIMINARIES

S will denote an arbitrary discrete group. Unless otherwise
noted, the identity element ofS will be denoted by1 and
the group operation will be written as a product. We will
be dealing with signals that are a function of both time and
space. Elements ofS will be used to denote the spatial index;
in particular, signals are vector valued functions onR × S.
Formally, we definel2 to be the Hilbert space of all functions
x : S → R• such that the quantity

‖x‖2l2 :=
∑
s∈S

x(s)∗x(s) (1)

is finite. The Hilbert spaceL2 will denote the space of
functionsu : R+ → l2 such that

‖u‖2L2
:=

∫ ∞

0

‖u(t)‖2l2dt (2)

is finite.
With a slight abuse of notation, a signalu ∈ L2 can

be considered a function of two independent variablesu =
u(t, s). For fixedt ands, u(t) is an element ofl2 andu(t, s)
is a real-valued vector.

III. R EVIEW OF SPATIALLY INTERCONNECTEDSYSTEMS

In this section we give a brief review of the theory of
spatially interconnected systems as presented in [8]. A “basic
building block” (shown in Figure 1) for a spatially intercon-
nected system is a linear time invariant system on anL-
dimensional integer lattice defined as ẋ(t, s)

w(t, s)
z(t, s)

 =

 ATT ATS BT

AST ASS BS

CT CS D

 x(t, s)
v(t, s)
d(t, s)

 (3)
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wherex(t = 0) ∈ `2,

v(t, s) =


v+1(t, s)
v−1(t, s)

...
v+L(t, s)
v−L(t, s)

 , w(t, s) =


w+1(t, s)
w−1(t, s)

...
w+L(t, s)
w−L(t, s)

 , (4)

and s = (p1, . . . , pL) is a fixed L-tuple of integers used
to denote the position of the subsystem on the lattice. The
vectorsv+(t, s) andw+(t, s) are the same size, andv−(t, s)
andw−(t, s) are the same size.

Fig. 1. A basic building block in one spatial dimension.

On an infinite extent integer lattice, the interconnection of
these subsystems can be captured as follows. Define the shift
operatorsS1, . . . ,SL where for an arbitraryx ∈ `2,

(Skx)(s) := x(p1, . . . , pk + 1, . . . , pL) . (5)

Periodicity of orderN on any axis can be imposed by defining
the shift operator as follows

(Skx)(s) := x(p1, . . . , (pk + 1)mod N, . . . , pL) . (6)

We can extend these shift operators tou ∈ L2 in the following
manner

(Sku)(t) := Sku(t) . (7)

Let the dimensions ofv+k andv−k be denoted bymk and
m−k respectively and define the structured operator

∆ = diag(S1Im1 ,S
−1
1 Im−1 , . . . ,SLImL

,S−1
L Im−L

) . (8)

The interconnection of the subsystems is then simply defined
to bew = ∆v. We can form an interconnected system as ẋ(t, s)

(∆v)(t, s)
z(t, s)

 =

 ATT ATS BT

AST ASS BS

CT CS D

 x(t, s)
v(t, s)
d(t, s)

 , (9)

x(t = 0) ∈ `2. Examples of such interconnections in one
spatial dimension are shown in Figure 2. For clarity, such
pictures will be simplified by lumping together the signals
that interconnect two subsystems and by omitting the signals
d andz. as shown in Figure 3.

There are three properties desired of such a system.

• Well-posedness: Well-posedness describes the realizabil-
ity of the interconnection. An interconnected system
defined by Equation (9) is well-posed if the operator
(∆−ASS) is invertible. The reader is referred to [8] for
an in-depth discussion of well-posedness. Our definition

Fig. 2. Periodic and infinite one-dimensional interconnections.

Fig. 3. Infinite interconnection in one spatial dimension with signals that
interconnect two subsystems suppressed and the signalsd andz omitted.

reflects the standard notion used for feedback intercon-
nection; see [10], for example.

• Stability: A system is stable if, for any initial state
x(t = 0), the norm of the signalx is bounded above
by a decaying exponentialα exp(−βt) when the input
d = 0.

• Contractiveness: A system is contractive if for any input
signald 6= 0, ‖z‖L2 < ‖d‖L2 whenx(t = 0) = 0.

The authors in [8] construct an LMI test which verifies
well-posedness, stability, and contractiveness, and is only a
function of the transition matrix of Equation (9). In particular,
the resulting LMI is finite dimensional and fixed in size; it
does not depend on the number of subsystems that make up
the interconnection. The authors also describe how to use this
LMI to synthesize distributed controllers, and these analysis
and synthesis results have been extended to handle certain
types of boundary conditions in [11]. The remainder of this
paper is devoted to generalizing all of these results to a much
richer class of interconnection topologies.

IV. GENERALIZED SPATIAL INTERCONNECTIONS

One approach to generalizing beyond the integer lattice
structures considered thus far is to relax our notion of a shift
operator. If we consider the basic building block in three
dimensions, we can connect this together to form a cubic
integer lattice as in Figure 4. We can also rearrange the signals
in this basic building block and connect them as triangular
lattice as in Figure 5. Similarly, we can create a hexagonal
lattice as in Figure 6. In both of these new cases, there is still
a well defined notion of a spatial shift, but the interconnection
variables can no longer be broken down intoL-tuples of
integers. Instead, the variables will be indexed by elements
of a discrete group.

Formally, let S be a group. The set of elementsG =
{s1, . . . , sL} generatesS if every element ofS can be written
as a product of elements fromG and inverses of elements
from G. The elementssk are calledgeneratorsof S. If S has
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Fig. 4. Cubic integer lattice. The interconnection shown is a subsection of
an infinite interconnection.

Fig. 5. Triangular lattice. The interconnection shown is a subsection of an
infinite interconnection.

a finite generating set then it isfinitely generated. The integer
lattices in Section III are special cases of such finite generated
groups. For example, in the case of a two-dimensional integer
lattice, the group elements are given by locations on the
lattice s = (p1, p2) and the group operation is component-
wise addition. The group is generated by the two elements
s1 = (1, 0) and s2 = (0, 1), and we have identities such as
ss1 = (p1 + 1, p2) ands−1

1 = (−1, 0).
The cubic, triangular, and hexagonal lattices are all gener-

ated by three elements. However, the generators relate to one
another differently in each group. In the case of the cubic
integer lattice, we can express the commutativity of the shift
operators as

s1s2s−1
1 s−1

2 = 1 s2s3s−1
2 s−1

3 = 1 s3s1s−1
3 s−1

1 = 1 (10)

In the case of the triangular lattice, we add the additional
requirement that

s1s2s3 = s3s2s1 = 1 (11)

For the hexagonal lattice we have instead

s2
1 = s2

2 = s2
3 = (s1s2s3)2 = 1 (12)

Such products of elements which equal the identity are called
relations. A group is finitely presentedif there exist a set
of generatorsG and set of relationsR composed from the
generators such that any relation forS can be written as a
product of relations inR or their inverses.

From any finitely presented group, we can create a directed
graph as follows. The elements ofS are the vertices. There is

Fig. 6. Hexagonal lattice. The interconnection shown is a subsection of an
infinite interconnection.

a directed edge froma to b if, for some1 ≤ k ≤ L, either
b = ask or b = as−1

k wheresk is a generator. The resulting
graph is called aCayley graph[12].

We can define a spatially invariant system over any Cayley
graph. Given a generatorsk ∈ G and x ∈ l2, define the
operatorSk by

(Skx)(s) := x(ssk) . (13)

Each of these shift operators onl2 can be naturally extended
to an operator onL2 as described in Section III. Examples
of these shift operators are shown in Figure 7. From the
perspective of the Cayley graph, these operators are unitary
spatial-shifts. Accordingly, these shifts will play the role of
the shift operators in Section III.

Fig. 7. Examples of shift operators on the triangular lattice.

To extend the results on interconnected systems to this more
general setting, we will consider systems built from the same
transition matrix as in the previous section, but we will now
build shift operators from elements ofG. Specifically, ifm is
the vector of dimensions of the interconnection signalsv in
Equations (3) and (4), we can define a shift operator

∆ := diag
(
S1Im1 ,S

−1
1 Im−1 , . . . ,SLImL

S−1
L Im−L

)
. (14)

Now we can define the linear system overS ẋ(t, s)
(∆v)(t, s)

z(t, s)

 =

 ATT ATS BT

AST ASS BS

CT CS D

 x(t, s)
v(t, s)
d(t, s)

 , (15)

x(t = 0) ∈ `2.
Note again that the systems in Section III were the special

case where the groupS was a product ofL groups isomorphic
to either the integers or the integers moduloN . The hexagonal
lattice is an example of anoncommutative group. The ability
to deal with spatial invariance over noncommutative symmetry
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groups is a new and crucial contribution of this work. The
hexagonal lattice also has the interesting property that the
generators square to1; this relation can be used to identify
the signalsv+k with v−k andw+k with w−k. The lattices we
have presented are examples of two-dimensional space groups
studied in abstract crystallography. The group which generates
the triangular lattice is commonly calledp1. The hexagonal
group is calledp2. There are 17 different space groups in
2D [13], and 230 in 3D [14]. The work in the sequel applies
to all of them.

V. L INEAR MATRIX INEQUALITIES FORANALYSIS AND

CONTROLLER SYNTHESIS

In this section, we discuss how the techniques in [8] can
be immediately extended to systems on arbitrary discrete
groups. We will provide a test for well-posedness, stability,
and performance using only the data from Equation (15). It
is worth noting that little changes in moving from systems
defined over integer lattices to our more general situation. We
can partition the matrices which govern the evolution of the
system to reflect the structure of∆:

ASS =:


ASS1,1 ASS1,−1 · · · ASS1,−L

ASS−1,1 ASS−1,−1 · · · ASS−1,−L

...
ASS−L,1 ASS−1,−1 · · · ASS−L,−L

 , (16)

AST =:


AST1

AST−1

...
AST−L

 , BS =:


BS1

BS−1

...
BS−L

 , (17)

ATS =:
[

ATS1 ATS−1 · · · ATS−L

]
, (18)

CS =:
[

CS1 CS−1 · · · CS−L

]
, (19)

and then define the following matrices:

A+
SS :=


ASS1,1 ASS1,−1 · · · ASS1,L

ASS1,−L

0 I · · · 0 0
...

ASSL,1 ASSL,−1 · · · ASSL,L
ASSL,−L

0 0 · · · 0 I

 , (20)

A+
ST :=


AST1

0
...

ASTL

0

 , B+
S :=


BS1

0
...

BSL

0

 , (21)

A−SS :=


I 0 · · · 0 0

ASS−1,1 ASS−1,−1 · · · ASS−1,L
ASS−1,−L

...
0 0 · · · I 0

ASS−L,1 ASS−L,−1 · · · ASS−L,L
ASS−L,−L

 ,

(22)

A−ST :=


0

AST−1

...
0

AST−L

 , B−
S :=


0

BS−1

...
0

BS−L

 , (23)

A+
TS :=

[
ATS1 0 · · · ATSL

0
]

, (24)

A−TS :=
[

0 ATS−1 · · · 0 ATS−L

]
. (25)

Let m0 denote the dimension ofx(t, s). Define the follow-
ing sets of scaling matrices:

XT :=
{
XT ∈ Rm0×m0 : XT > 0, XT = X∗

T

}
, (26)

XS := {XS = diag(XS1 ,· · ·, XSL
) :

XSi ∈ R(mi+m−i)×(mi+m−i), XSi = X∗
Si

}
.

(27)

The following result allows us to check the well-posedness,
stability, and performance of the system defined by Equation
(15) via an LMI which can be solved efficiently using semidef-
inite programming (see, for example [15]).

Theorem 1:A system defined by Equation (15) is well-
posed, stable, and contractive if there existXT in XT andXS

in XS such thatJ < 0, where

J :=

 I 0 0
A−ST A−SS B−

S

0 0 I

∗

×

 A∗TTXT + XTATT XTA
+
TS XTBT

(A+
TS)
∗XT −XS 0

B∗
T XT 0 −I


×

 I 0 0
A−ST A−SS B−

S

0 0 I


+

 I 0 0
A+

ST A+
SS B+

S

CT CS D

∗

×

 0 XTA
−
TS 0

(A−TS)
∗XT XS 0

0 0 I


×

 I 0 0
A+

ST A+
SS B+

S

CT CS D

 .

(28)

This analysis condition isidentical to the one presented in
[8] for systems defined over integer lattices. The LMI test is
valid for both interconnections characterized by the structured
operator of Equation (8) or the more general structured opera-
tor of Equation (14). Indeed, it is a sufficient condition for any
interconnection withL generators. The proof for the general
interconnected system is also identical to the proof over integer
lattices, so we refer the reader to [8] for the details. The
essential ingredients for this LMI to be sufficient is for the
operator∆ to be unitary and commute with the transition
matrices. This remains true in our more general setting, and
hence the analysis condition still holds.

By defining our system in this more general fashion, we
extend the possibility of studying controller design on a much
larger class of distributed systems. For control design, we
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augment the basic building block with controller input/output
variablesu andy as

ẋP(t, s)
(∆vP)(t, s)

z(t, s)
y(t, s)

=


AP

TT AP
TS BP

T,d BP
T,u

AP
ST AP

SS BP
S,d BP

S,u

CP
T,z CP

S,z DP
zd DP

zu

CP
T,y CP

S,y DP
yd DP

yu




xP(t, s)
vP(t, s)
d(t, s)
u(t, s)

 (29)

and aim to design a controller with the same structure as the
plant, so we will posit the controller form of ẋK(t, s)

(∆vK)(t, s)
u(t, s)

=

AK
TT AK

TS BK
T

AK
ST AK

SS BK
S

CK
T CK

S DK

xK(t, s)
vK(t, s)
y(t, s)

 . (30)

Here the superscripts and subscripts “P” and “K” denote
the plant and controller respectively. When we connect the
signalsu andy of the controller and the plant (see Figure 8)
and eliminate these variables, we obtain the closed loop
system of Equation (15). A calculation of the closed loop
transition matrices is an algebraic manipulation of the plant
and controller matrices, and can be found in [8].

Fig. 8. The closed loop basic building block. The interconnection variables
vP
±, wpmP , vK

± , and wK
± are compressed into one dimension for visual

clarity.

The controller synthesis problem thus consists of finding
controller matrices – the matrices in Equation (30) – such that
the closed loop system is well-posed, stable, and contractive.
The case where there are no interconnection variablesv and
w reduces to the classicH∞ synthesis problem [16]. For the
case of abelian groups, the analysis and synthesis problems
have been studied in detail in [7], [8], [17], [2], and [5].

It is sufficient that the closed loop system satisfy the
LMI in Theorem 1. Since this analysis condition is identical
to what is obtained in [8] for systems on integer lattices,
and the synthesis equations therein are based solely on this
LMI, controller synthesis for the more general interconnection
topologies considered in this paper can be performed using the
same algorithms developed for integer lattices; the details are
omitted. We note that the synthesis equations in [8], which take
the form of LMIs, do not introduce additional conservatism in
design; they are necessary and sufficient for a controller with
the same structure as the plant to exist, as per Equation (30),
such that the closed loop system satisfies the analysis LMI of
Theorem 1.

VI. U SING RELATIONS TO GENERATE LESS CONSERVATIVE

LINEAR MATRIX INEQUALITIES

Since the analysis LMI we have presented verifies well-
posedness, stability, and contractiveness for all interconnected
systems with the same number of generators, we might expect
such a condition to be conservative. We will now explore how
to create LMI tests which are less conservative by collecting
building blocks into subsystems and exploiting the Cayley
graph structure to generate new conditions.

In order to simplify the presentation, some of the terminol-
ogy we use is not standard. We will restrict our attention to a
particular class of of subgroups ofS.

Definition 1: We say that a subsetH of S is a central
subgroupif

• H is a group under the group operation ofS.
• H is finitely presented.
• sh = hs for all s ∈ S andh ∈ H.
• Under the identificationa ∼ b (that is,a is equivalent to

b) if a = bh for someh ∈ H, there are finitely many
equivalence classes.

Denote the set of equivalence classes underH by S/H and
the map fromS to S/H by η. S/H inherits a group structure
from S by imposing the relationshk = 1 for each generator
of H. Since the generators forS/H andS are the same,S/H
has a Cayley graph generated by the generators ofS. That is,
the spatial-shift operators of the groupS map to spatial-shift
operators onS/H.

Definition 2: A transversalis a setT = (V,E) of vertices
V and edgesE in the Cayley graph such that

• The mapη is a bijection when restricted toV .
• E is the set of all edges beginning at a vertex inT .
• The identity element ofS is contained inV .
• T is a connected subgraph.
Transversals are liftings from the Cayley graph ofS/H back

to the Cayley graph ofS via the inverse ofη [18]. To make
these definitions clear, consider again the two-dimensional
integer lattice group and the subgroupH generated by even
powers ofs1 ands2. The quotient groupS/H is obtained by
imposing the relationss2

1 = 1 and s2
2 = 1. It is then readily

seen thatS/H is isomorphic to the finite group which is the
product of two groups of each with two elements. We can lift
this group back to the transversalT . V consists of the elements
1, s1, s2, ands1s2. The transversal is graphically depicted in
Figure 9.

We can generate the entire Cayley graph using translations
only contained inH and the transversalT . Let Th denote the
translation of the edges and vertices in the transversal by the
elementh ∈ H. Each node in the Cayley graph is contained
in a unique translation, since ifs is a node inV , thensh =
sh′ if and only if h = h′. Now suppose there is an edge
from a to b in the Cayley graph ofS. Then b = ask for
one of the generators ofS. SinceH is central, it follows that
for every h ∈ H, bh = askh = ahsk and hence there is
an edge fromah to bh in the Cayley graph. Therefore, any
nodes which are connected to each other in the transversal
are also connected in any translation of the transversal, and
hence the entire graph can be constructed by translating the
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1

s1

s2

s1s2

Fig. 9. An example of a transversal and its associated central subgroup. The transversal consists of four nodes. Translating the transversal by the subgroup
generates the entire Cayley graph. The interconnection shown is a subsection of an infinite interconnection.

transversal by elements ofH. From this perspective,H serves
to group nodes of the Cayley graph ofS into clusters that
form a Cayley graph forH. Given an interconnected system
defined by Equation (15), the signals associated withT form
a basic building block for an interconnection given byH, and
we can construct new conditions for well-posedness, stability,
and contractiveness.

To make the clustering explicit, take the set of edges which
connect nodes in the transversal to beinterior edges. The set
of all edges beginning at nodes in the transversal which are
not interior edges are calledexterior edges. Now consider the
interconnected system defined by Equation (15). For eachh ∈
H we can stack all of the signals involving vertices inTh as
follows. Stack the set of internal state variables in a vector

x(t,h) = [x(t,h), x(t,g1h), . . . x(t,gMh)] ,
gk ∈ V, h ∈ H

(31)

and the disturbance and output signals can be stacked accord-
ingly. Stack the interconnection signals corresponding to inte-
rior edges asvI(t,h) andwI(t,h) and those corresponding to
exterior edges asvE(t,h) andwE(t,h). Each signalw±k(t, sh)
in wI(t,h) corresponds to a signalv∓k(t, ss∓1

k h) in vI(t,h).
Similarly, each signalw±k(t, sh) in wE(t,h) corresponds to
a signal v∓k(t, ss∓1

k h) in vE(t,h). Thus, there exists two
structured operatorsΠ and Θ, similar to those in Equation
(14), such that the system

ẋ(t,h)
(ΠvI)(t,h)
(ΘvE)(t,h)

z(t,h)

=


ATT ATI ATE BT

AIT AII AIE BI

AET AEI AEE BE

CT CI CE D




x(t,h)
vI(t,h)
vE(t,h)
d(t,h)

 (32)

with h ∈ H is identical to the system in Equation (15). Under
this new identification, note that the operatorΠ only permutes
the elements ofvI(t,h). Π does not couple the newly grouped
subsystems. Hence, it can be treated as a permutation matrix
of size compatible with the vectorvI(t, h). The following
proposition gives a quick way to test the well-posedness of an
interconnected system if some information about the subgroup
structure ofS is known.

Proposition 1: If the matrix(Π−AII ) is not invertible, then
the system is not well-posed.

Proof: of Proposition 1 It is clear that if we replace the
shifted signal(ΘvE)(t,h) in Equation (32) with a signal of
compatible sizewE, then if the system with the variablewE

is not well-posed, the interconnected system is also not well-
posed. For a fixedh, this system is a finite dimensional linear
time-invariant system, and is well-posed if and only if(Π−AII )
is invertible (c.f. [10]).

If (Π − AII ) is invertible, we can proceed to generate an
LMI for analysis by defining the matrices ÃTT ÃTS B̃T

ÃST ÃSS B̃S

C̃T C̃S D̃

 =

ATT ATE BT

AET AEE BE

CT CE D


+

ATI

AEI

CI

 (Π−AII )
−1 [

AIT AIE BI

]
(33)

and eliminating the variablesvI . This yields the equivalent
formulation ẋ(t,h)

(ΘvE)(t,h)
z(t,h)

=

 ÃTT ÃTS B̃T

ÃST ÃSS B̃S

C̃T C̃S D̃

 x(t,h)
vE(t,h)
d(t,h)

 . (34)

This new realization of our system can now be fed into the
LMI tests of the previous section and new, potentially less
conservative bounds on performance can be obtained.

The process of collecting nodes by normal subgroups may
be repeated an arbitrary number of times when the group in
question has infinite order. Once the subsystems are collected,
normal subgroups of the new group structure can be used to
repeat this analysis yielding a hierarchy of less conservative
LMIs.

VII. C ONCLUSIONS

There are many interesting directions for further investiga-
tion. The grouping process of Section VI produces state-space
matrices of increasingly larger size, and determining the trade-
off between conservatism and LMI complexity is an important
consideration for analysis. Furthermore, we can use the results
of Section V to generate hierarchical controllers connected to
all sub-units which are clustered together. Examining how to
scale this hierarchy is an interesting thread for future inquiry.

Other directions for future work include a careful analy-
sis of how combining the same building block in different
configurations affects stability and performance. It would also
be interesting to find tests which explicitly exploit the group
structure using noncommutative harmonic analysis in a manner
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similar to how the Locally Compact Abelian structure is
exploited in [2] to produce necessary and sufficient frequency
domain conditions. In this case, we might be able to extend
our results to systems over continuous non-abelian groups such
as Lie Groups. Finally, recent results in minimal realization
theory for linear fractional transformations [19] show that LMI
conditions for minimality are both necessary and sufficient
when the operators describing the transformations are non-
commutative. It would be very interesting to produce similar
necessary conditions for the LMIs studied here by studying
the noncommutative structure of group operators.
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