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Abstract

The appearance of dynamic scenes is often largely gov-
erned by a latent low-dimensional dynamic process. We
show how to learn a mapping from video frames to this low-
dimensional representation by exploiting the temporal co-
herence between frames and supervision from a user. This
function maps the frames of the video to a low-dimensional
sequence that evolves according to Markovian dynamics.
This ensures that the recovered low-dimensional sequence
represents a physically meaningful process. We relate our
algorithm to manifold learning, semi-supervised learning,
and system identification, and demonstrate it on the tasks
of tracking 3D rigid objects, deformable bodies, and artic-
ulated bodies. We also show how to use the inverse of this
mapping to manipulate video.

1. Introduction

The change in appearance of most scenes is governed by
a low-dimensional time-varying physical process. The 3D
motion of a camera through a scene in an egomotion prob-
lem, the contraction of the muscles in a face in expression
analysis, or the motion of limbs in articulated-body track-
ing are examples of low-dimensional processes that almost
completely determine the appearance of a scene. Recover-
ing these processes is a fundamental problem in many areas
of computer vision.

Recently, manifold learning algorithms have been used
to automatically recover low-dimensional representations
of collections of images [1, 3, 4, 11, 14]. But when these
collections are video sequences, these algorithms ignore
the temporal coherence between frames, even though this
cue provides useful information about the neighborhood
structure and the local geometry of the manifold. Semi-
supervised regression that take advantage of the manifold
structure of the data set provide another framework for ad-
dressing this problem [2, 17]. These algorithms learn a
mapping between high-dimensional observations and low-

dimensional representations given a few examples of the
mapping. But they do not take advantage of the temporal
coherence between video frames either. One could use non-
linear system identification [6, 15] to model the dynamics
of low-dimensional states to simultaneously estimate these
states while learning a lifting from them to the observed
images. But current nonlinear system identification meth-
ods do not scale to image-sized observations and get stuck
in local minima.

Our main contribution is a synthesis of a semi-supervised
regression model with a model for nonlinear system identi-
fication. The result is a semi-supervised regression model
that takes advantage of the dynamics model used in system
identification to learn an appearance manifold. The algo-
rithm finds a smooth mapping represented with radial ba-
sis functions that maps images to a low-dimensional pro-
cess consistent with physical dynamics defined by a linear-
Gaussian Markov chain. The algorithm allows a user to la-
bel a few data points to specify a coordinate system and to
provide guidance to the algorithm when needed.

We demonstrate our algorithm with an interactive track-
ing system where the user specifies a desired output for a
few key frames in a video sequence. These examples, to-
gether with the unlabeled portion of the video sequence,
allow the system to compute a function that maps as-yet
unseen images to the desired representation. This func-
tion is represented using radial basis kernels centered on
the frames of the video sequence. We demonstrate our al-
gorithm on three different examples: 1) a rigid pose estima-
tion problem where the user specifies the pose of a synthetic
object for a few key frames, 2) on a lip tracking example
where the user specifies the shape of the subject’s lips, and
3) an articulated body tracking experiment where the user
specifies positions of the subject’s limbs. The algorithm op-
erates on the video frames directly and does not require any
preprocessing. Semi-supervision allows the user to spec-
ify additional examples to improve the performance of the
system where needed.

By inverting the learned mapping, we can also gener-
ate novel frames and video sequences. We demonstrate this



by manipulating low-dimensional representations to synthe-
size videos of lips and articulated limbs.

2. Related Work

Manifold learning techniques [1, 3, 4, 11, 14, 16] find a
low-dimensional representation that preserves some local
geometric attribute of the high-dimensional observations.
This requires identifying data points that lie in a local neigh-
borhood along the manifold around every high-dimensional
data point. When the manifold is sparsely sampled, these
neighboring points are difficult to identify, and the algo-
rithms can fail to recover any meaningful structure. Our
algorithm obviates the need to search for such neighbors
by utilizing the time ordering of data points instead. Jenk-
ins and Mataric [8] suggest artificially reducing the distance
between temporally adjacent points to provide an additional
hint to Isomap about the local neighborhoods of image win-
dows. We also take advantage of dynamics in the low-
dimensional space to allow our algorithm to better estimate
the distance between pairs of temporally adjacent points
along the manifold. This requires only fine enough sam-
pling over time to retain the temporal coherence between
video frames, which is much less onerous than the sam-
pling rate required to correctly estimate neighborhood rela-
tionships in traditional manifold learning algorithms. While
various semi-supervised extensions to manifold learning al-
gorithms have been proposed [7, 10], these algorithms still
do not take advantage of the temporal coherence between
adjacent samples of the input time series.

The semi-supervised regression approaches of [17] and
[2] take into account the manifold structure of the data.
But they also rely on brittle estimates of the neighborhood
structure, and do not take advantage of the time ordering
of the data set. These semi-supervised regression meth-
ods are similar to our method in that they also impose a
random field on the low-dimensional representation. The
work presented here augments these techniques by intro-
ducing the temporal dependency between output samples in
the random field. It can be viewed as a special case of esti-
mating the parameters of a continuously-valued conditional
random field [9] or a manifold learning algorithm based on
function estimation [13].

Nonlinear system identification (see [6, 15] and refer-
ences within) provides another framework for introducing
dynamics into manifold learning. In this context, the frames
in the video are modeled as observations generated by a
Markov chain of low-dimensional states. Nonlinear system
identification recovers the parameters of this model, includ-
ing an observation function which maps low-dimensional
states to images. This usually requires approximate coordi-
nate ascent over a non-convex space, making the algorithms
computationally intensive and susceptible to local minima.
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Figure 1. A generative model for video sequences. The statesxt

are low-dimensional representations of the scene. The embedding
f lifts these to high-dimensional imagesyt.

Dynamic Textures [5] sidesteps these issues by performing
linear system identification instead, which limits it to lin-
ear appearance manifolds. Instead of searching for a map-
ping from states to images, as would be done in nonlinear
system identification, we search for a mapping from im-
ages to states. This results in an optimization problem that
is quadratic in the latent states and the parameters of the
projection function, making the problem computationally
tractable and not subject to local minima.

3. Model for Semi-Supervised Nonlinear Sys-
tem ID

Figure 1 depicts a plausible generative model for video.
The latent state of the scene evolves according to a Markov
chain of statesxt, t = 1 . . . T . At each time step, a nonlin-
ear functionf : Rd → RD maps ad-dimensional subset
of the statext to an image withD pixels represented as a
D-dimensional vectoryt. The Markov chain captures the
notion that the underlying process that generates the video
sequence is smooth. Effects not accounted for byf are
modeled as iid noise modifying the output off .

Learning the parameters of this generative model from
a sequence of observationsy1, . . . , yT can be computation-
ally expensive [6,15]. Instead of solving forf in this gener-
ative model, we recover a projection functiong : RD →
Rd that maps images to their low-dimensional represen-
tation in a random field. This random field consists of a
functiong that maps the sequence of observed images to a
sequence inRd that evolves in accordance with a Markov
chain. The random field mirrors the generative model of
Figure 1 by modeling the interactions between a Markov
chain, the observations, and supervised points provided by
the user. We address each interaction in turn, gradually
building up a cost functional forg.

Consider each componentgi of g = [g1(y) . . . gd(y)]
separately. If the desired output ofgi at time stepst ∈ S
were known to bezi

t, we could use Tikhonov regularization



on a Reproducing Kernel Hilbert Space (RKHS) to solve for
the best approximation ofgi:

min
gi

∑
t∈S

‖gi(yt)− zi
t‖2 + λk‖gi‖2k. (1)

The first term in this cost functional penalizes the devi-
ation from the desired outputs, and the norm in the cost
function governs the smoothness ofgi. In particular, ac-
cording to the Representer Theorem [12], when the norm
is an RKHS norm induced by a radial basis kernel, such
ask(y′, y) = exp(−‖y − y′‖2/σ2

k), any cost functional of
the form

∑
t∈S V (gi(yt)) + ‖gi‖2k will be minimized by a

weighted sum of kernels centered at eachyt:

gi(y) =
∑
t∈S

ci
tk(y, yt) , (2)

where the vectorci contains the coefficients for theith di-
mension ofg.

But in practice, only a fewzi
ts are provided by the user.

Because we know the low-dimensional process is smooth,
we assume the missingzi

ts evolve according to second-
order Newtonian dynamics:

xt+1 = Axt + ωt, (3)

A =

 1 Av 0
0 1 Aa

0 0 1

 , (4)

zi
t = h′xt . (5)

The Gaussian random variableωt has zero-mean and a di-
agonal covariance matrixΛω. The matricesA and Λω

specify the desired dynamics, and are parameters of our
algorithm. The components ofxt have intuitive physical
analogs: the first component corresponds to a position, the
second to velocity, and the third to acceleration. The vector
h =

[
1 0 0

]′
extracts the position component ofxt.

We can compensate for the absence ofzi
t at every data

point by forcinggi(yt) to agree with the position compo-
nent of the correspondingxt using additional penalty terms:

min
gi,x

∑T
t=1 ‖gi(yt)− h′xt‖2 (6)

+λd

∑T
t=2 ‖xt −Axt−1‖2Λw

+λs

∑
t∈S ‖gi(yt)− zi

t‖2 + λk‖gi‖2k.

The first term favors functions whose outputs evolve ac-
cording to the trajectoryx. The term weighted byλd fa-
vors trajectories that are compatible with the given dynam-
ics model.

Figure 2 depicts a random field describing the factor-
ization prescribed by (6). This random field mirrors the
generative model of Figure 1. Note that according to
the Representer Theorem, the the optimalgi has the form∑T

t=1 ci
tk(y, yt), where the kernels are now placed on all

data points, not just those supervised by the user.
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Figure 2. Forcing agreement between projections of imagesyt and
a Markov chain of statesxt. z3 is a semi-supervised point pro-
vided by the user. The functiong maps observations to states.

4. Learning the Projection Function

The optimization (6) is quadratic in the quantities of in-
terest. Substituting the representer form results in a finite-
dimensional quadratic optimization problem:

arg min
ci,x

‖Kci −Hx‖2 + λdx
′Ωxx (7)

+λs‖GKci − zi‖2 + λkci′Kci.

The matrixK hask(yt, yτ ) in entry t, τ . The pathx is
a 3T -dimensional vector of states stacked on top of each
other, andH = IT ⊗h′ extracts the position components of
x. The matrixΩx is the inverse covariance of the Markov
process and is block tri-diagonal. The matrixG extracts the
rows ofK corresponding to the supervised framest ∈ S,
andzi is a column vector consisting of theith component
of all the semi-supervised points.

The minimizer can be found by setting derivatives to zero
and solving forci. After an application of the matrix inver-
sion lemma, we find

ci∗ = λsS−1G′zi (8)

S = K + λsG′GK−HR−1H′K + λkI (9)

R = λdΩx + H′H (10)

Having recovered the coefficients of the radial basis
functions,g can be applied to an as-yet unseen imageynew

by computing the vectorKnew whose tth component is
k(ynew, yt). Then, according to Equation (2),gi(ynew) =
Knewci. Unlabeled frames of the video can be labeled by
using thetth row ofK, Kt, to getgi(yt) = Ktc

i.

5. Experiments

To compare with Isomap, LLE and Laplacian Eigen-
maps, we relied on source code available from the respec-
tive authors’ web sites. We also compare against Belkin and



Nyogi’s graph Laplacian-based semi-supervised regression
algorithm [2], which we refer to as BNR in this section. We
used our own implementation of BNR.

5.1. Synthetic Results

We first demonstrate our algorithm on a synthetic 2D
manifold embedded inR3. The neighborhood structure of
this manifold is difficult to estimate from high-dimensional
data, so traditional manifold learning techniques perform
poorly on this data set. Taking into account the temporal
coherence between data points and using user supervision
alleviates these problems.

Figure 3(top-middle) shows an embedding of the 2D
Markov process shown in Figure 3(top-left) intoR3. The
semi-supervised points are marked with a large triangle.
Figure 3(top-right) shows our interpolated results for the
unlabeled points. The interpolated values are close to the
true values that generated the data set. Although the process
is smooth, it clearly does not follow the dynamics assumed
by Equation (3) because it bounces off the boundaries of
the rectangle[0, 5]× [−3, 3]. Nevertheless, the assumed dy-
namics of Equation (3) are sufficient for recovering the true
location of unlabelled points.

To assess the quality of the learned functiong on as-
yet unseen points, we evenly sampled the 2D rectangle
[0, 5]× [−3, 3] and lifted the samples toR3 using the same
mapping used to generate the training sequence. See Fig-
ure 3(bottom-left and bottom-right). Each sample inR3 is
passed throughg to obtain the 2D representation shown in
Figure 3(bottom-right). The projections fall close to the true
2D location of these samples.

We applied LLE, Laplacian Eigenmaps, and Isomap to
the data set of Figure 3(top-middle). Isomap produced the
result shown in Figure 4(left). It is difficult to estimate the
neighborhood structure near the neck, where the manifold
comes close to intersecting itself, so Isomap creates folds in
the projection.

Figure 4(right) shows the result of BNR. Compared to
our result in Figure 3(top-right), the interpolated results are
incorrect for most points. Since BNR does not attempt
to enforce any geometric invariance in the projection, it is
fairly robust to the neighborhood estimation problem.

For this and subsequent data sets, neither LLE nor Lapla-
cian Eigenmaps produced sensible results. This may be due
to the low rate at which the manifold is sampled.

5.2. Synthetic Images

We quantitatively gauged the performance of our algo-
rithm on images by running on a synthetic image sequence.
Figure 5 shows frames in a synthetically generated sequence

Figure 5. (top) A few frames of a synthetically generated 1500
frame sequence of a rotating cube. (bottom) The 6 semi-
supervised frames. The rotation for each frame in the sequence
was recovered with an average deviation of 4◦ from ground truth.

of 50× 50 pixel images of a rigidly rotating object. Six im-
ages were chosen for semi-supervision by providing their
true elevation and azimuth to the algorithm.

The azimuth and elevation of the filled-in frames devi-
ated from ground truth by only an average of 3.5◦. We
evaluated BNR on the same data set, with the same semi-
supervised points, and obtained average errors of 17◦ in
elevation and 7◦ in azimuth. To test the learned function
g, we generated a video sequence that swept through the
range of azimuths and elevations in 4◦ increments. These
images were passed throughg to estimate their azimuth and
elevation. The mean squared error was about 4◦ in each
direction.

5.3. Interactive Tracking

Our algorithm is not limited to rigid body tracking. We
applied it to a lip tracking experiment exhibiting deformable
motion, and to an upper-body tracking experiment exhibit-
ing articulated motion. In these experiments, we restricted
ourselves to recovering the missing labels of the training
data and labeling frames acquired under the same setting
from which the training data was gathered. Our algorithm
operates on the entire frames, as shown in the figures. Im-
ages were not in any way preprocessed before applying our
algorithm, though to apply the learned mapping to different
settings, more taylored representations or kernels could be
employed. We tuned the parameters of our algorithm (Av,
Aa, the diagonal entries ofΛω, and the weightsλd, λs, and
λk) by minimizing the leave-one-out cross validation error
on the semi-supervised points using the simplex method.

Figure 6 shows frames in a 2000 frame sequence of a
subject articulating his lips. The top row shows the frames
that were manually annotated with a bounding box around
the lips. The bottom row shows the bounding boxes re-
turned byg on some typical frames in the sequence. Only
five labeled frames were necessary to obtain good lip track-
ing performance. The tracker is robust to natural changes in
lighting, blinking, facial expressions, small movements of
the head, and the appearance and disappearance of teeth.
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Figure 3. (top-left) The true 2D parameter trajectory. Semi-supervised points are marked with big black triangles. The trajectory is sampled
at 1500 points (small markers). Points are colored according to their y-coordinate on the manifold. (top-middle) Embedding of a path via
the lifting F (x, y) = (x, |y|, sin(πy)(y2 + 1)−2 + 0.3y). (top-right) Recovered low-dimensional representation using our algorithm. The
original data in (top-left) is correctly recovered. (bottom-left) Even sampling of the rectangle[0, 5]× [−3, 3]. (bottom-middle) Lifting of
this rectangle viaF . (bottom-right) Projection of (bottom-middle) via the learned functiong. g has correctly learned the mapping from 3D
to 2D. These figures are best viewed in color.
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Figure 4. (left) Isomap’s projection intoR2 of the data set of Figure 3(top-middle). Errors in estimating the neighborhood relations at the
neck of the manifold cause the projection to fold over itself. (right) Projection with BNR, a semi-supervised regression algorithm. There is
no folding, but the projections are not close to the ground truth shown in Figure 3(top-left).



Figure 8 shows 12 labeled images in a 2300 frame se-
quence of a subject moving his arms. These frames were
manually labeled with line segments denoting the upper
and lower arms. Figure 9 shows the recovered limb posi-
tions for unlabeled samples, some of which were not in the
training sequence. Because the raw pixel representation is
used, there are very few visual ambiguities between appear-
ance and pose, and occlusions due to crossing arms do not
present a problem.

The utility of dynamics is most apparent in articulated
tracking. Settingλd to zero makes our algorithm ignore
dynamics, forcing it to regress on the semi-supervised ex-
amples only. The resulting function produced the limb loca-
tions shown in black in Figure 9. Using dynamics allows the
system to take advantage of the unsupervised points, pro-
ducing better estimates of limb position.

5.4. Resynthesizing Video

Wheng is one-to-one, it can be inverted. This inverse
function maps the intrinsic representation to images, allow-
ing us to easily create new video sequences by controlling
the intrinsic representation. We have explored two different
approaches for computing pseudo-inverses ofg that do not
requireg to be exactly one-to-one.

In Figure 7, where we animate the mouth by manipulat-
ing its bounding box, the inverse simply returns the training
image whose estimated parameter is closest to the desired
intrinsic parameter. In Figure 10, where we manipulate limb
locations to generate new images, we computed the inverse
by fitting a function using Tikhonov regularization to a data
set consisting of the training images and their estimated la-
bels. This representation can automatically interpolate be-
tween images, allowing us to generate images that do not
appear in the training sequence.

6. Conclusion

We have presented a semi-supervised regression algo-
rithm for learning the appearance manifold of a scene from
a video sequence. By taking advantage of the dynamics
in video sequences, our algorithm learns a function that
projects images to a low-dimensional space with semanti-
cally meaningful coordinate axes. The pseudo-inverse of
this mapping can also be used to generate images from these
low-dimensional representations.

We demonstrated our algorithm on lip tracking and ar-
ticulated body tracking, two domains where the appearance
manifold is nonlinear. With very few labeled frames and no
preprocessing of the images, we were able to recover poses
for the frames in the training sequences as well as outside
the training sequences.
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Figure 6. The bounding box of the mouth was annotated for 5 frames of a 2000 frame video. The labeled points (shown in the top row) and
first 1500 frames were used to train our algorithm. The images were not altered in any way before computing the kernel. The parameters
of the model were fit using leave-one-out cross validation on the labeled data points. Plotted in the second row are the recovered bounding
boxes of the mouth for various frames. The first three examples correspond to unlabeled points in the training set. The tracker is robust to
natural changes in lighting, blinking, facial expressions, small movements of the head, and the appearance and disappearance of teeth.

Figure 7. Resynthesized trajectories using radial basis interpolation. The two rows show a uniform walk along two of the coordinate axes
of the low-dimensional space. The appearance and disappearance of the tongue is a nonlinearity that is well captured with our model.

Figure 8. The twelve supervised points in the training set for articulated hand tracking (see Figure 9).



Figure 9. The hand and elbow positions were annotated for 12 frames of a 2300 frame video. The labeled points (shown in Figure 8) and
the first 1500 frames were used to train our algorithm. The images were not preprocessed in any way. Plotted in white are the recovered
positions of the hands and elbows. Plotted in black are the recovered positions when the algorithm is trained without taking advantage of
dynamics. Using dynamics improves tracking significantly. The first two rows correspond to unlabeled points in the training set. The last
row correspond to frames in the last 800 frames of the video, which was held out during training.

Figure 10. Resynthesized trajectories using nearest neighbors. Top row: The left hand moving straight up while keeping the right hand
fixed. Middle row: The same trajectory with the hands switched. Bottom row: Both arms moving in opposite directions at the same time.


