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Abstract— Rank minimization–minimizing the rank of a
matrix subject to constraints–is a challenging problem that
arises in many control applications including controller design,
realization theory and model reduction. The general formula-
tion of rank minimization subject to convex constraints is NP-
HARD, and for most practical problems there are no efficient
exact algorithms. A popular heuristic algorithm is to replace
the rank function with the sum of the singular values of the
decision variable. In this paper, we provide a necessary and
sufficient condition that quantifies when this heuristic success-
fully finds the minimum rank solution of a linear constraint
set. We further show that most of the problems of interest
in control can be formulated as rank minimization subject to
such linear constraints. We additionally provide a probability
distribution over instances of the affine rank minimization
problem such that instances sampled from this distribution
satisfy our necessary conditions for success with overwhelming
probability provided the number of constraints is appropriately
large. Finally we give empirical evidence that these probabilistic
bounds are realistic in numerical simulations.

I. INTRODUCTION

Optimization problems involving constraints on the rank
of matrices are ubiquitous in control applications, arising in
the context of low-order controller design [8], [15], mini-
mal realization theory [10], and model reduction [3]. Rank
minimization is also of interest to a broader optimization
community in a variety of applications including inference
with partial information [18] and embedding in Euclidean
spaces [13]. In certain instances with special structure, the
rank minimization problem can be solved via the singular
value decomposition or can be reduced to the solution of
a linear system [15], [16]. In general, however minimizing
the rank of a matrix subject to convex constraints is NP-
HARD. The best exact algorithms for this problem involve
quantifier elimination and such solution methods require
doubly exponential time in the dimensions of the matrix
variables.

A popular heuristic for solving rank minimization prob-
lems in the controls community is the “trace heuristic”
where one minimizes the trace of a positive semidefinite
decision variable instead of the rank (see, e.g., [3], [15]).
A generalization of this heuristic to non-symmetric matrices
introduced by Fazel in [9] minimizes the nuclear norm,
or the sum of the singular values of the matrix, over the
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constraint set. When the matrix variable is symmetric and
positive semidefinite, this heuristic is equivalent to the trace
heuristic, as the trace of a positive semidefinite matrix is
equal to the sum of its singular values. The nuclear norm
is a convex function and can be optimized efficiently via
semidefinite programming. Both the trace heuristic and the
nuclear norm generalization have been observed to produce
very low-rank solutions in practice, but until very recently,
no known conditions were available for when the heuristic
succeeded.

The the first non-trivial sufficient conditions that guaran-
teed the success of the nuclear norm heuristic were provided
in [17]. Focusing on the special case where one seeks the
lowest rank matrix in an affine subspace, the authors provide
a “restricted isometery” condition on the linear map defining
the affine subspace which guarantees the minimum nuclear
norm solution is the minimum rank solution. Moreover, they
provide several ensembles of affine constraints where this
sufficient condition holds with overwhelming probability.
This work builds on seminal developments in “compressed
sensing” that develop conditions for when minimizing the `1
norm of a vector over an affine space returns the sparsest
vector in that space (see, e.g., [5], [4], [2]). There is a
strong parallelism between the sparse approximation and
rank minimization settings. The rank of a diagonal matrix is
equal to the number of non-zeros on the diagonal. Similarly,
the sum of the singular values of a diagonal matrix is equal
to the `1 norm of the diagonal. Exploiting the parallels, the
authors in [17] were able to extend much of the analysis
developed for the `1 heuristic to provide guarantees for the
nuclear norm heuristic.

Building on a different collection of developments in
compressed sensing [6], [7], [19], in this paper we present
a necessary and sufficient condition for the solution of the
nuclear norm heuristic to coincide with the minimum rank
solution in an affine space. The condition characterizes a
particular property of the null-space of the linear map which
defines the affine space. To demonstrate why this result is
of practical use to the controls community, we also present
a reduction of the standard Linear Matrix Inequality (LMI)
constrained rank minimization problem to a rank minimiza-
tion problem with only equality constraints. Moreover, we
show that when the linear map defining the constraint set
is generated by sampling its entries independently from a
Gaussian distribution, the null-space characterization holds
with overwhelming probability provided the dimensions of
the equality constraints are of appropriate size. We provide
numerical experiments that demonstrate that even when



matrix dimensions are small, the nuclear norm heuristic does
indeed always recover the minimum rank solution when the
number of constraints is sufficiently large.

II. NOTATION AND PRELIMINARIES
For a rectangular matrix X ∈ Rn1×n2 , X∗ denotes the

transpose of X . vec(X) denotes the vector in Rn1n2 with the
columns of X stacked on top of one and other, and mat(v)
for v ∈ Rn1n2 denotes the inverse of vec.

σi(X) denotes the i-th largest singular value of X and
is equal to the square-root of the i-th largest eigenvalue
of XX∗. The rank of X will usually be denoted by r,
and is equal to the number of nonzero singular values. For
matrices X and Y of the same dimensions, we define the
inner product in Rn1×n2 as 〈X, Y 〉 := trace(X∗Y ) =∑n1

i=1

∑n2
j=1 XijYij . The norm associated with this inner

product is called the Frobenius (or Hilbert-Schmidt) norm
|| · ||F . The Frobenius norm is also equal to the Euclidean,
or `2, norm of the vector of singular values, i.e.,

‖X‖F :=

(
r∑

i=1

σ2
i

) 1
2

=
√
〈X, X〉 =

 n1∑
i=1

n2∑
j=1

X2
ij

 1
2

The operator norm (or induced 2-norm) of a matrix is equal
to its largest singular value (i.e., the `∞ norm of the singular
values):

‖X‖ := σ1(X).

The nuclear norm of a matrix is equal to the sum of its
singular values, i.e.,

‖X‖∗ :=
r∑

i=1

σi(X) ,

and is alternatively known by several other names including
the Schatten 1-norm, the Ky Fan r-norm, and the trace
class norm. These three norms are related by the following
inequalities which hold for any matrix X of rank at most r:

||X|| ≤ ||X||F ≤ ||X||∗ ≤
√

r||X||F ≤ r||X||. (1)

We also state the following easily verified fact that will be
used extensively throughout.

Lemma 2.1: Suppose X and Y are n1×n2 matrices such
that X∗Y = 0 and XY ∗ = 0. Then ‖X + Y ‖∗ = ‖X‖∗ +
‖Y ‖∗.

Indeed, if X∗Y = 0 and XY ∗ = 0, we can find a
coordinate system in which

X =
∥∥∥∥[ A 0

0 0

]∥∥∥∥
∗

and Y =
∥∥∥∥[ 0 0

0 B

]∥∥∥∥
∗

from which the lemma trivially follows.

III. MAIN RESULTS
Let X be an n1 × n2 matrix decision variable. Without

loss of generality, we will assume throughout that n1 ≤ n2.
Let A : Rn1×n2 → Rm be a linear map, and let b ∈ Rm.
The main optimization problem under study is

minimize rank(X)
subject to A(X) = b,

(2)

As described in the introduction, our main concern is
when the optimal solution of (2) coincides with the optimal
solution of

minimize ‖X‖∗
subject to A(X) = b,

(3)

Whenever m < n1n2, the null space of A, that is the set of
Y such that A(Y ) = 0, is not empty. The following theorem
finds a critical property of this null space that guarantees
when the nuclear norm heuristic succeeds. Our main result
is the following

Theorem 3.1: Let X0 be the optimal solution of (2) and
X∗ as the optimal solution of (3). Assume that X0 has rank
r < n1/2. Then

1) If for every Y in the null space of A and for every
decomposition

Y = Y1 + Y2,

where Y1 has rank r and Y2 has rank greater than r,
it holds that

‖Y1‖∗ < ‖Y2‖∗,

then X∗ = X0.
2) Conversely, if the condition of part 1 is not true, then

there exists a vector b ∈ Rm and a rank r X0 such
that X∗ 6= X0.

This result is of interest for multiple reasons. First, as
shown in Section V, many of the rank minimization problems
of interest to the controls community can be written in the
form of (2). To be precise, we have the following

Theorem 3.2: Let M be a linear map of a×b matrices into
Rc and C maps a×b matrices into symmetric d×d matrices.
Then the LMI constrained rank minimization problem

minimize rank(X)
subject to M(X) = b

C(X) � 0

can be equivalently formulated as

minimize rank(X) + λ rank(Z)
subject to A(X) = b

Z =
[

Id B
B∗ C(X)

]
for any λ > a. Note that in this is a formulation with a
(a + 2d) × (b + 2d) dimensional decision variable and a
linear map into c + 2d(a + b) + d2 − d

2 dimensions.
Secondly, in Section VI we present a distribution over

instances of (2) where the conditions of Theorem 3.1 hold
with overwhelming probability. Note that for a linear map
A : Rn1×n2 → Rm, we can always find an m×n1n2 matrix
A such that

A(X) = A vec X . (4)

In the case where A has entries sampled independently
from a zero-mean, unit variance Gaussian distribution, then
the null space characterization of theorem 3.1 holds with
overwhelming probability provided m is large enough. The
particular details describing the relationship between the
dimensions of the decision variable, the rank of the optimal



solution, and the number of equations are described in detail
in Section VI.

IV. NECESSARY AND SUFFICIENT CONDITIONS
We first prove our necessary and sufficient condition

for success of the nuclear norm heuristic. We will need
the following technical lemma which allows us to exploit
Lemma 2.1 in our proof.

Lemma 4.1: Let X be an n1×n2 with rank rank r < n1
2

and Y be an arbitrary n1 × n2 matrix. Let P c
X and P r

X be
the matrices that project onto the column and row spaces of
X respectively. Then if P r

XY P c
X has full rank, Y can be

decomposed as
Y = Y1 + Y2, (5)

where Y1 has rank r, and

‖X + Y2‖∗ = ‖X‖∗ + ‖Y2‖∗. (6)
Proof: Without loss of generality, we can write X as

X =
[

X11 0
0 0

]
,

where X11 is r × r and full rank. Accordingly, Y becomes

Y =
[

Y11 Y12

Y21 Y22

]
,

where Y11 is full rank since P r
XY P c

X is. The decomposition
is now clearly

Y =
[

Y11 Y12

Y21 Y21Y
−1
11 Y12

]
︸ ︷︷ ︸

Y1

+
[

0 0
0 Y22 − Y21Y

−1
11 Y12

]
︸ ︷︷ ︸

Y2

.

That Y1 has rank r follows from the fact that the rank of a
block matrix is equal to the rank of a diagonal block plus
the rank of its Schur complement (see, e.g., [11, §2.2]). That
‖X1 + Y2‖∗ = ‖X1‖∗+ ‖Y2‖∗ follows from Lemma 2.1.

We can now provide a proof of Theorem 3.1.
Proof: We begin by proving the converse. Assume the

condition of part 1 is violated, i.e., there exists some Y , such
that A(Y ) = 0, Y = Y1 + Y2, rank(Y2) > rank(Y1) = r,
yet ‖Y1‖∗ > ‖Y2‖∗. Now take X0 = Y1 and b = A(X0).
Clearly, A(−Y2) = b (since Y is in the null space) and so
we have found a matrix of higher rank, but lower nuclear
norm.

For the other direction, assume the condition of part 1
holds. Now use Lemma 4.1 with X = X0 and Y = X∗−X0.
That is, let P c

X and P r
X be the matrices that project onto the

column and row spaces of X0 respectively and assume that
P r

X0
(X∗−X0)P c

X0
has full rank. Write X∗−X0 = Y1 +Y2

where Y1 has rank r and ‖X0 + Y2‖∗ = ‖X0‖∗ + ‖Y2‖∗.
Assume further that Y2 has rank larger than r (recall r <
n/2). We will consider the case where P r

X0
(X∗ −X0)P c

X0

does not have full rank and/or Y2 has rank less than or equal
to r in the appendix. We now have:

‖X∗‖∗ = ‖X0 + X∗ −X0‖∗
= ‖X0 + Y1 + Y2‖∗
≥ ‖X0 + Y2‖∗ − ‖Y1‖∗
= ‖X0‖∗ + ‖Y2‖∗ − ‖Y1‖∗ by Lemma 4.1

But A(Y1 + Y2) = 0, so ‖Y2‖∗ − ‖Y1‖∗ non-negative and
therefore ‖X∗‖∗ ≥ ‖X0‖∗. Since X∗ is the minimum nuclear
norm solution, implies that X0 = X∗.

For the interested reader, the argument for the case where
P r

X0
(X∗ −X0)P c

X0
does not have full rank or Y2 has rank

less than or equal to r can be found in the appendix.

V. REDUCTION TO THE AFFINE CASE

The preceding result only analyzes the affine rank mini-
mization problem and do not extend to the case of arbitrary
convex constraints. However, the affine case is far more
general than it appears at first glance. For example, we can
again use the fact that the rank of a block symmetric matrix
is equal to the rank of a diagonal block plus the rank of its
Schur complement to cast any LMI in X as a rank constraint.
Indeed, given C(X) ∈ Sd×d, its positive semidefiniteness can
be equivalently expressed through a rank constraint, since
C(X) � 0 if and only if

rank
([

Id B
B∗ C(X)

])
= d

for some B ∈ Rd×d. That is, if there exist matrices X and
B satisfying the equality above, then f(X) = B∗B � 0.
We can also impose the rank constraint rank(C(X)) ≤ r by
choosing B to be of size r × d and having Ir in the (1, 1)
block. Certainly, this is not an efficient way to solve standard
LMIs for which polynomial time algorithms already exist,
but this example allows us to reformulate rank constrained
LMIs as linearly constrained LMIs and may allow us to
characterize for which LMIs the nuclear norm heuristic
succeeds.

Consider the LMI constrained rank minimization problem

minimize rank(X)
subject to A(X) = b

C(X) � 0
(7)

where X , the decision variable is an a × b matrix (without
loss of generality, a ≤ b), A is some linear map of a × b
matrices into Rc and C maps a× b matrices into symmetric
d× d matrices. We can reformulate this problem into affine
form by noting that is equivalent to

minimize rank(X) + λ rank(Z)
subject to A(X) = b

Z =
[

Id B
B∗ C(X)

] (8)

for any λ > a. Note that by dimension counting, the block
diagonal decision variable in (8) is (a + 2d) × (b + 2d).
Also, by constraint counting, we see that there are a total
of c + 2d(a + b) + d2 − d

2 equations needed to both specify
A(X) = b and to define Z.

The equivalence can be seen as follows. Let p∗1 denote the
optimum of (7) and p∗2 denote the optimum of (8). Certainly,
for any optimal solution X of (7), we can factor C(X) =
B∗B to construct a Z with rank d, implying p∗1 + λd ≥ p∗2.



Conversely, let X0 be an optimal solution for (7). Then
there exists a B ∈ Rd×d such that

Z0 :=
[

Id B0

B∗
0 C(X0)

]
� 0 .

That is, the pair (X0, Z0) is feasible for (8). Let X1 and Z1

be feasible for (8) and suppose rank(Z1) > d. Then

rank(X1) + λ rank(Z1) ≥ (rank(X1) + λ) + λ rank(Z0)
≥ rank(X0) + λ rank(Z0)
= p∗1 + λd .

(9)

Now, if (X2, Z2) were feasible for (8) and rank(Z2) = d,
then X2 would be feasible for (7) and would have rank at
most p∗1. Therefore (X0, Z0) is an optimal solution for (8).
Note that if we have an upper bound on the rank of the
optimal X for (7), then the same argument reveals that any
λ greater than that a priori rank bound will also suffice to
guarantee that (7) and (8) have the same optimal solutions.

Using this equivalence, we may apply the analysis tools
developed here to determine if the minimum rank solution
is found when using nuclear norm heuristic.

VI. PROBABILISTIC GENERATION OF
CONSTRAINTS SATISFYING NULL-SPACE

CHARACTERIZATION

We now present a family of random equality constraints
under which the nuclear norm heuristic succeeds with over-
whelming probability. For simplicity of notation in the
proofs, we consider the case of square matrices. These results
can be then translated into rectangular matrices by padding
with rows/columns of zeros to make the matrix square.

Theorem 6.1: Let X be an arbitrary real n×n matrix with
rank r < n/2 and suppose A is defined as

A(X) = A vec X , (10)

where A is a m × n2 matrix with entries independently
chosen from a Gaussian with zero-mean and unit variance.
Let b = A vec X and let X∗ denote the solution to the
nuclear norm minimization problem, i.e.,

X∗ = arg min
A(X̂)=b

‖X̂‖∗.

Fix β = r
n ≤ 1

2 and µ = m
n2 . Then, X∗ coincides with X ,

for all X of rank r with probability exceeding

1− 12n2(1− µ) exp
(
−n2 [h(β, µ)− (1− µ) log(n)]

)
where

h(β, µ) = sup
ε1,ε2

 (1− β)2f2(1− β)

2(1 + 2
1−2ε1

√
β

1−β )2
g2(ε1, ε2, β)

− β(2β − 1) log
(

cS

ε1

)
−(1− µ) log

(
3
√

1−µ
ε2

)}
,

g(ε1, ε2, β) =
1− ε2
1 + ε2

− β√
1− β

·
f( β

1−β )

f(1− β)

− 1 + 2ε1
1− 2ε1

· β3/2f(1)
1− βf(1− β)

,

and

f(γ) =
1

2πγ

∫ s2

s1

√
(z − s1)(s2 − z)

z
dz

s1 = (1−√
γ)2

s2 = (1 +
√

γ)2

and where cS is the covering constant of the Stiefel manifold
of r dimensional projections in n dimensional space.

As one can deduce from the complicated formulae in the
statement of this theorem, the proof of this result is rather
technical. However, the argument is straightforward. We note
that if A is Gaussian, then its null-space can be assumed to
be Gaussian. Using this observation, we show that for a fixed
element of the null-space and a fixed low-rank matrix, the
probability that the null-space characterization fails to hold
is exponentially small in n. We then union bound over a
covering of all rank r matrices and all parameterizations of
the null space to provide the desired result. A full outline is
provided in the appendix, but some details had to be omitted
for space constraints.

There are several consequences we would like to note
about this somewhat intricate probability estimate. First, note
that as n goes to infinity, as long as h(β, µ) is positive, then
the heuristic succeeds with overwhelming probability. For
large n, the conditions for success are for the most part only
a function of the parameters β and µ as n only enters as
logarithmic factors. As we will show in section VII, this
independence of n appears to hold for very small n, and
our asymptotic estimates are somewhat conservative. Also,
looking at the constraint set for ε1 and ε2 gives us a region
for β that can be recovered by nuclear norm relaxation.

Corollary 6.2: Nuclear norm relaxation can, with over-
whelming probability over A(·), recover any X of rank r,
when n is large, provided

1− β√
1− β

·
f( β

1−β )

f(1− β)
− β3/2f(1)

1− βf(1− β)
> 0.

VII. NUMERICAL EXPERIMENTS

To demonstrate that the nuclear heuristic succeeds in non-
asymptotic scenarios, we conducted a series of experiments
for a variety of the matrix sizes n, ranks r, and numbers of
measurements m. As in the previous section, we let β = r

n
and µ = m

n2 . For a fixed n, we constructed random recovery
scenarios for low-rank n × n matrices. For each n, we
varied µ between 0 and 1 where the matrix is completely
determined. For a fixed n and µ, we generated all possible
ranks such that β(2−β) ≤ µ. This cutoff was chosen because
beyond that point there would be an infinite set of matrices
of rank r satisfying the m equations.

For each (n, µ, β) triple, we repeated the following proce-
dure 10 times. A matrix of rank r was generated by choosing



two random n × r factors YL and YR with i.i.d. random
entries and setting Y0 = YLY ∗R . A matrix A was sampled
from the Gaussian ensemble with m rows and n2 columns.
Then the nuclear norm minimization

minimize ‖X‖∗
subject to A vec X = A vec Y0

(11)

was solved using the freely available software SeDuMi [20].
On a 2.0 GHz Laptop, each semidefinite program could be
solved in less than two minutes for 40× 40 dimensional X .
We declared Y0 to be recovered if ‖X − Y0‖F /‖Y0‖F <
10−3. Figure 1 shows the results of these experiments for
n = 30 and 40. The color of the cell in the figures reflects
the empirical recovery rate of the 10 runs (scaled between
0 and 1). White denotes perfect recovery in all experiments,
and black denotes failure for all experiments. It is remarkable
to note the similarity between the experiments for n = 30
and n = 40. There is a strong indication that the recovery
conditions are only a function of β and µ as n grows.

VIII. CONCLUSIONS AND FUTURE WORKS

We have presented a necessary and sufficient condition for
the nuclear norm heuristic (and hence also the trace heuristic)
to find the lowest rank solution of an affine set, and also
shown how to reformulate LMI constrained rank minimiza-
tion problems in the affine form. It would be interesting to
directly formulate necessary and sufficient conditions for the
LMI constrained rank minimization problem (7) that do not
require such an affine reformulation. Along the same lines,
it would be interesting to provide random instances of LMI
constrained rank minimization problems that satisfy such
necessary and sufficient conditions with high probability.

Future work should also investigate if the probabilistic
analysis that provides the bounds in Theorem 6.1 can be
tightened at all. This could be achieved via a direct Chernoff
bound rather than the union bound applied in the proof that
we sketch in the appendix. In particular, in the related work
in compressed sensing [19], the authors provide conditions
for the success of the `1 heuristic in cardinality minimization
that are independent of the dimension of the vector. Finding
such dimension-free guarantees for rank minimization is an
intriguing open problem.
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APPENDIX

A. Rank-deficient case of Theorem 3.1

As promised above, here is the completion of the proof of
Theorem 3.1 Proof: In an appropriate basis, we may
write

X0 =
[

X11 0
0 0

]
and X∗ −X0 = Y =

[
Y11 Y12

Y21 Y22

]
If Y11 and Y22 − Y21Y

−1
11 Y12 have full rank, then all our

previous arguments apply. Thus, assume that at least one of
them is not full rank. Nonetheless, it is always possible to
find an arbitrarily small ε > 0 such that

Y11 + εI and
[

Y11 + εI Y12

Y21 Y22 + εI

]
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Fig. 1. For each (n, µ, β) triple, we repeated the following procedure ten times. A matrix of rank r = βn was generated by choosing
two random n× r factors YL and YR with i.i.d. random entries and set Y0 = YLY ∗

R . We select a matrix A from the Gaussian ensemble
with m = µn2 rows and n2 columns. Then we solve the nuclear norm minimization subject to A vec X = A vec Y0 We declare Y0 to
be recovered if ‖X − Y0‖F /‖Y0‖F < 10−3. The results are shown for (a) n = 30 and (b) n = 40. The color of each cell reflects the
empirical recovery rate (scaled between 0 and 1). White denotes perfect recovery in all experiments, and black denotes failure for all
experiments.

are full rank. This, of course, is equivalent to having Y22 +
εI − Y21(Y11 + εI)−1Y12 full rank. We can write

‖X∗‖∗ = ‖X0 + X∗ −X0‖∗

=






�

X11 0
0 0

�
+

�
Y11 Y12

Y21 Y22

�




∗

≥





�

X11 − εI 0
0 Y22 − Y21(Y11 + εI)−1Y12

�




∗

−





�

Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

�




∗

= ‖X11 − εI‖∗

+






�

0 0
0 Y22 − Y21(Y11 + εI)−1Y12

�




∗

−





�

Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

�




∗

≥ ‖X0‖∗ − rε

+






�

εI − εI 0
0 Y22 − Y21(Y11 + εI)−1Y12

�




∗

−





�

Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

�




∗

≥ ‖X0‖∗ − 2rε

+






�
−εI 0
0 Y22 − Y21(Y11 + εI)−1Y12

�




∗

−





�

Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

�




∗

≥ ‖X0‖∗ − 2rε,

where the last inequality follows from the condition of part
1 and noting that

X0 −X∗ =
[
−εI 0
0 Y22 − Y21(Y11 + εI)−1Y12

]
+
[

Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

]
,

lies in the null space of A(·) and the first matrix above has
rank more than r. But, since ε can be arbitrarily small, this

implies that X0 = X∗.

B. Probabilistic analysis of null-space characterization

Proof: [Outline of Proof of Theorem 6.1]
1) We first note that the distribution of the nullspace of

A, whose entries are iid, zero-mean, unit variance,
Gaussian, is given by n× n matrices Ω, such that

vec(Ω) = Zv,

where Z is a n2 × (n2 −m) matrix with iid N (0, 1)
entries and v is a unit (Euclidean) norm vector, ‖v‖ =
1. Let G(i) denote mat applied to the ith column of
Z. Throughout we will let M := n2 −m

2) Using our if and only if condition for the recovery
of any X of rank r, the probability that a randomly
chosen A does not satisfy this condition is given by

Pf = Pr (∃Pu, Pv, ‖v‖ = 1
s.t. ‖PuΩPv‖∗ > ‖Ω− PuΩPv‖∗,
vec(Ω) = Zv)

where Pu and Pv are r × n and n × r projection
matrices, respectively, and v ∈ RM .

3) Using the fact that

‖PuΩPv‖∗ ≤ ‖Pu′ΩPv′‖∗ + ‖Pu − Pu′‖ · ‖Ω‖∗
+ ‖Pv − Pv′‖ · ‖Ω‖∗,

we can cover the two Stiefel mainfolds with balls of
radius ε1 (in the operator norm) to obtain

Pf ≤ Nε1Pr (∃v, ‖v‖ = 1

s.t. 1+2ε1
1−2ε1

∥∥∥∥( Ω11 0
0 0

)∥∥∥∥
∗

>

∥∥∥∥( 0 Ω12

Ω21 Ω22

)∥∥∥∥
∗

vec(Ω) = Zv)

where Nε1 = (cS/ε1)2r(2n−r−1)/2 =
(cS/ε1)r(2n−r−1), since the Stiefel manifolds are



each of dimension r(2n − r − 1)/2, and where
cS is the corresponding covering constant (see,
e.g., [21], [22]). Note also that the partition is
such that ‖Ω11‖ ∈ Rr×r, ‖Ω12‖ ∈ Rr×(n−r),
‖Ω21‖ ∈ R(n−r)×r and ‖Ω22‖ ∈ R(n−r)×(n−r)

4) Now note that

‖
∑

i

viG
(i)‖∗ ≤ ‖

∑
i

v′iG
(i)‖∗

+ ‖v − v′‖1 max
1≤i≤M

‖G(i)‖∗

≤ ‖
∑

i

v′G(i)‖∗

+
√

M‖v − v′‖ max
1≤i≤M

‖G(i)‖∗ ,

where ‖v‖1 denotes the `1 norm of v, i.e., the sum of
the absolute values of the entries of v. We can cover
the M -dimensional unit sphere with balls of radius ε2
to obtain

Pf ≤ Nε1Nε2×

Pr
(

1+2ε1
1−2ε1

‖Ω11‖∗ >

∥∥∥∥( 0 Ω12

Ω21 Ω22

)∥∥∥∥
∗

− ε2
1+2ε1
1−2ε1

max
1≤i≤M

∥∥∥G(i)
11

∥∥∥
∗

−ε2 max
1≤i≤M

∥∥∥∥∥
(

0 G
(i)
12

G
(i)
21 G

(i)
22

)∥∥∥∥∥
∗

)
,

where Nε2 = ( 3
√

M
ε2

)M . This latter can be further
bounded as

Pf ≤ Nε1Nε2Pr
�

1 + 2ε1
1− 2ε1

‖Ω11‖∗ + ‖Ω21‖∗ (12)

+ ε2
1 + 2ε1
1− 2ε1

max
1≤i≤M

‖G(i)
11 ‖∗

+ ε2 max
1≤i≤M

‖G(i)
21 ‖∗

ε2 max
1≤i≤M







 

G
(i)
12

G
(i)
22

!





∗

>






�

Ω12

Ω22

�




∗

!
.

5) To bound the above probability, we use two facts.

a) For any constant thresholds η, η1, η2, η3, and η4,
we have

Pr(a1 + a2 + max
1≤i≤M

a
(i)
3 (13)

+ max
1≤i≤M

a
(i)
4 + max

1≤i≤M
a
(i)
5 > b)

≤MPr(a5 > η4) + MPr(a4 > η3 − η4)
+ MPr(a3 > η2 − η3) + Pr(a2 > η1 − η2)
+ Pr(a1 > η − η1) + Pr(b < η).

We will apply the above formula to (12) with

a1 = 1+2ε1
1−2ε1

‖Ω11‖∗
a2 = ‖Ω21‖∗

a
(i)
3 = ε2

1+2ε1
1−2ε1

‖G(i)
11 ‖∗

a
(i)
4 = ε2‖G(i)

21 ‖∗

a
(i)
5 = ε2

∥∥∥∥∥
(

G
(i)
12

G
(i)
22

)∥∥∥∥∥
∗

b =
∥∥∥∥( Ω12

Ω22

)∥∥∥∥
∗

b) The second fact is the concentration of measure
for Gaussian random variables (see, e.g. [12])
which states that if F is a function of Gaussian
variables with Lipshitz constant cLip then for
δ > 0

Pr(|F − E[F ]| > δ) ≤ 2 exp

(
− δ2

2c2
Lip

)
.

We apply this with f being the nuclear norm.
Note that for an arbitrary n1 × n2 (n1 ≤ n2)
matrices W1 and W2,

‖W1‖∗ − ‖W2‖∗ ≤ ‖W1 −W2‖∗
≤
√

n1‖W1 −W2‖F

and hence the Lipshitz constant of the nuclear
norm is given by

√
n1. Now suppose H is a

n1 × n2 matrix with zero-mean iid entries with
variance 1

n2
. Denote the singular values of H by

σi, i = 1, . . . , n1. Then

Pr
(
|‖H‖∗ − n1E[σi]| ≥ (n1 + n2)3/2δ

)
≤2e−

1+n2/n1
2 (n1+n2)

2δ2
. (14)

6) To apply the above formula to the ai’s and b defined
earlier, we need to know the asymptotic mean of the
nuclear norm. Let H be as above. We will define

νn1,n2 = n1Eσi = n1
√

n2f(γ) + lower order terms,

where γ = n1
n2

and f(·) is found by integrating√
λ against the Marčenko-Pastur distribution (see,

e.g., [14], [1]:

f(γ) =
1

2πγ

∫ s2

s1

√
(z − s1)(s2 − z)

z
dz

s1 = (1−√
γ)2

s2 = (1 +
√

γ)2.

Note further that

νn1,n2 = n
3/2
2 γf(γ) + lower order terms, (15)

which is what we shall henceforth use.
7) We can now go about bounding all the probabilities

in (13). We need to take the thresholds proportion to
n3/2 and so we will define ηi = n3/2δi. Recalling that



Pr(a5 > η4) ≤ 2 exp

�
−n2 ·

(δ4 − ε2(1− β)f(1− β))2

2(1− β)ε22

�
(16)

Pr(a4 > η3 − η4) ≤ 2 exp

�
−n2 ·

(δ3 − δ4 − ε2β
√

1− βf(β/(1− β)))2

2βε22

�
(17)

Pr(a3 > η2 − η3) ≤ 2 exp

0
B@−n2 ·

(δ2 − δ3 − ε2
1+2ε1
1−2ε1

β3/2f(1))2

2βε22

�
1+2ε1
1−2ε1

�2

1
CA (18)

Pr(a2 > η1 − η2) ≤ 2 exp

�
−n2 ·

(δ1 − δ2 − β
√

1− βf(β/(1− β)))2

2β

�
(19)

Pr(a1 > η − η1) ≤ 2 exp

0
B@−n2 ·

(δ − δ1 − 1+2ε1
1−2ε1

β3/2f(1))2

2β
�

1+2ε1
1−2ε1

�2

1
CA (20)

Pr(b < η) ≤ 2 exp

�
−n2 ·

((1− β)f(1− β)− δ)2

2(1− β)

�
(21)

TABLE I
PROBABILISTIC BOUNDS BASED ON CONCENTRATION OF MEASURE AND THE MARCHENKO-PASTUR DISTRIBUTION.

we have set β = r
n , some simple calculations give the

bounds listed in Table 7.
8) To get the tightest bound possible in (13) we must

equate the six exponents in Table 7. We have five
degrees of freedom in the δ, δ1, δ2, δ3 and δ4, and
so this can always be done by solving a system of
linear equations. Note that the exponents above have
been written in such a way that the arguments inside
the “squares” must be positive.
Doing this, for example, yields

δ =
1

1 + 2
1−2ε1

√
β

1−β

×

[√
β

1− β
(1− β)f(1− β)

+ 2ε2
1+ε2

(1− β)f(1− β) + β
√

1− βf(
β

1− β
)

+ 1+2ε1
1−2ε1

(
β3/2f(1) +

√
β(1− β)f(1− β)

)]
.

Of course, this solution only makes sense if (1 −
β)f(1− β)− δ > 0. Simplifying this yields

1−ε2
1+ε2

− β√
1−β

· f( β
1−β )

f(1−β) −
1+2ε1
1−2ε1

· β3/2f(1)
1−βf(1−β) > 0,

which is the constraint on g(·, ·, ·) in Theorem (6.1).
Plugging the solution for the δ’s shows that the optimal
exponent is

−n2 (1− β)2f2(1− β)

2(1 + 2
1−2ε1

√
β

1−β )2
g2(ε1, ε2, β).

We thus, using our definition m = µn2,have

Pf ≤ 12n2(1− µ)
(

cS

ε1

)β(2β−1)n2 (
3n
√

1−µ
ε2

)(1−µ)n2

× exp

−n2 (1− β)2f2(1− β)

2(1 + 2
1−2ε1

√
β

1−β )2
g2(ε1, ε2, β)

 .

This is essentially the statement of our thoerem. Note
that Pf → 0 if the coefficient of n2 in the exponent is
negative.


