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Abstract

We pose transductive classification as a matrix completion problem. By assuming
the underlying matrix has a low rank, our formulation is able to handle three prob-
lems simultaneously: i) multi-label learning, where each item has more than one
label, ii) transduction, where most of these labels are unspecified, and iii) miss-
ing data, where a large number of features are missing. We obtained satisfactory
results on several real-world tasks, suggesting that the low rank assumption may
not be as restrictive as it seems. Our method allows for different loss functions to
apply on the feature and label entries of the matrix. The resulting nuclear norm
minimization problem is solved with a modified fixed-point continuation method
that is guaranteed to find the global optimum.

1 Introduction

Semi-supervised learning methods make assumptions about how unlabeled data can help in the
learning process, such as the manifold assumption (data lies on a low-dimensional manifold) and
the cluster assumption (classes are separated by low density regions) [4, 16]. In this work, we
present two transductive learning methods under the novel assumption that the feature-by-item and
label-by-item matrices arejointly low rank. This assumption effectively couples different label pre-
diction tasks, allowing us to implicitly use observed labels in one task to recover unobserved labels
in others. The same is true for imputing missing features. In fact, our methods learn in the diffi-
cult regime ofmulti-label transductive learning with missing datathat one sometimes encounters in
practice. That is, each item is associated with many class labels, many of the items’ labels may be
unobserved (some items may be completely unlabeled across all labels), and many features may also
be unobserved. Our methods build upon recent advances in matrix completion, with efficient algo-
rithms to handle matrices with mixed real-valued features and discrete labels. We obtain promising
experimental results on a range of synthetic and real-world data.

2 Problem Formulation

Let x1 . . .xn ∈ Rd be feature vectors associated withn items. LetX = [x1 . . .xn] be thed × n
feature matrix whose columns are the items. Let there bet binary classification tasks,y1 . . .yn ∈
{−1, 1}t be the label vectors, andY = [y1 . . .yn] be thet× n label matrix. Entries inX or Y can
be missing at random. LetΩX be the index set of observed features inX, such that(i, j) ∈ ΩX if
and only ifxij is observed. Similarly, letΩY be the index set of observed labels inY. Our main goal
is to predict the missing labelsyij for (i, j) /∈ ΩY. Of course, this reduces to standard transductive
learning whent = 1, |ΩX| = nd (no missing features), and1 < |ΩY| < n (some missing labels).
In our more general setting, as a side product we are also interested in imputing the missing features,
and de-noising the observed features, inX.
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume thatX andY are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from ad × n low rank “pre”-feature matrixX0, with rank(X0) � min(d, n). The
actual feature matrixX is obtained by addingiid Gaussian noise to the entries ofX0: X = X0 + ε,

whereεij ∼ N(0, σ2
ε ). Meanwhile, thet “soft” labels

(
y0
1j . . . y0

tj

)> ≡ y0
j ∈ Rt of item j are

produced byy0
j = Wx0

j + b, whereW is at × d weight matrix, andb ∈ Rt is a bias vector. Let
Y0 =

[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined(t + d)× n matrix

[
Y0;X0

]
is low

rank too:rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual labelyij ∈ {−1, 1} is generated randomly

via a sigmoid function:P (yij |y0
ij) = 1/

(
1 + exp(−yijy

0
ij)

)
. Finally, two random masksΩX,ΩY

are applied to expose only some of the entries inX andY, and we useω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified byX,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then,X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the(t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here,Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices(i, j) ∈ ΩX are with respect toX, such thati ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrixZ, we need to shift the row index byt
to skip the part forY0, and hence the constraintsz(i+t)j = xij . The above formulation assumes that
there is no noise in the generation processesX0 → X andY0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relaxrank() with the convex nuclear norm‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), whereσk ’s are the singular values ofZ. The relationship between
rank(Z) and‖Z‖∗ is analogous to that of̀0-norm and̀ 1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss functioncx(z(i+t)j , xij). We choose the squared losscx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise fromY0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss functioncy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic losscy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the biasb either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the biasb ∈ Rt in addition to
Z ∈ R(t+d)×n, hence the name. Here,Z corresponds to the stacked matrix

[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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whereµ, λ are positive trade-off weights. Notice the biasb is not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 3. Once the optimalZ,b are
found, we recover the task-i label of itemj by sign(zij + bi), and featurek of item j by z(k+t)j .

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly withinZ. Similar to how
bias is commonly handled in linear classifiers, we append an additional feature with constant value
one to each item. The corresponding pre-feature matrix is augmented into

[
X0;1>

]
, where1 is the

all-1 vector. Under the same label assumptiony0
j = Wx0

j + b, the rows of the soft label matrix
Y0 are linear combinations of rows in

[
X0;1>

]
, i.e.,rank(

[
Y0;X0;1>

]
) = rank(

[
X0;1>

]
). We

then letZ correspond to the(t + d + 1)×n stacked matrix
[
Y0;X0;1>

]
, by forcing its last row to

be1> (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij , yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij) (3)

s.t. z(t+d+1)· = 1>.

This is a constrained convex optimization problem. Once the optimalZ is found, we recover the
task-i label of itemj by sign(zij), and featurek of item j by z(k+t)j .

MC-b and MC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear norm.
Despite the generative story, we do not explicitly recover the weight matrixW in these formulations.
Other formulations are certainly possible. One way is to letZ correspond to

[
Y0;X0

]
directly,

without introducing biasb or the all-1 row, and hope nuclear norm minimization will prevail. This
is inferior in our preliminary experiments, and we do not explore it further in this paper.

3 Optimization Techniques

We solve MC-b and MC-1 using modifications of the Fixed Point Continuation (FPC) method of Ma,
Goldfarb, and Chen [10].1 While nuclear norm minimization can be converted into a semidefinite
programming (SDP) problem [2], current SDP solvers are severely limited in the size of problems
they can solve. Instead, the basic fixed point approach is a computationally efficient alternative,
which provably converges to the globally optimal solution and has been shown to outperform SDP
solvers in terms of matrix recoverability.

3.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from [10] in the extra bias variables
and multiple loss functions. Our fixed point iterative algorithm to solve the unconstrained problem
of (2) consists of two alternating steps for each iterationk:

1. (gradient step)bk+1 = bk − τbg(bk), Ak = Zk − τZg(Zk)
2. (shrinkage step)Zk+1 = SτZµ(Ak).

In the gradient step,τb andτZ are step sizes whose choice will be discussed next. Overloading
notation a bit,g(bk) is the vector gradient, andg(Zk) is the matrix gradient, respectively, of the two
loss terms in (2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(4)

g(zij) =


λ

|ΩY|
−yij

1+exp(yij(zij+bi))
, i ≤ t and(i, j) ∈ ΩY

1
|ΩX| (zij − x(i−t)j), i > t and(i− t, j) ∈ ΩX

0, otherwise
(5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index byt in order to map the
element inZ back to the itemx(i−t)j .

1While the primary method of [10] is Fixed Point Continuation with Approximate Singular Value Decom-
position (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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Input : Initial matrix Z0, biasb0,
parametersµ, λ, Step sizesτb, τZ

Determineµ1 > µ2 > · · · > µL = µ > 0.
SetZ = Z0,b = b0.
foreachµ = µ1, µ2, . . . , µL do

while Not convergeddo
Computeb = b− τbg(b), A = Z− τZg(Z)
Compute SVD ofA = UΛV>

ComputeZ = Umax(Λ − τZµ, 0)V>

end
end
Output : Recovered matrixZ, biasb

Algorithm 1 : FPC algorithm for MC-b.

Input : Initial matrix Z0,
parametersµ, λ, Step sizesτZ

Determineµ1 > µ2 > · · · > µL = µ > 0.
SetZ = Z0.
foreachµ = µ1, µ2, . . . , µL do

while Not convergeddo
ComputeA = Z− τZg(Z)
Compute SVD ofA = UΛV>

ComputeZ = Umax(Λ − τZµ, 0)V>

ProjectZ to feasible regionz(t+d+1)· = 1>

end
end
Output : Recovered matrixZ

Algorithm 2 : FPC algorithm for MC-1.

In the shrinkage step,SτZµ(·) is a matrix shrinkage operator. LetAk = UΛV> be the SVD of
Ak. ThenSτZµ(Ak) = Umax(Λ− τZµ, 0)V>, wheremax is elementwise. That is, the shrinkage
operator shifts the singular values down, and truncates any negative values to zero. This step reduces
the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow [10] and use a con-
tinuation or homotopy method to improve the speed. This involves beginning with a large value
µ1 > µ and solving a sequence of subproblems, each with a decreasing value and using the pre-
vious solution as its initial point. The sequence of values is determined by a decay parameterηµ:
µk+1 = max{µkηµ, µ}, k = 1, . . . , L− 1, whereµ is the final value to use, andL is the number
of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 1.

A minor modification of the argument in [10] reveals that as long as we choose non-negative step
sizes satisfyingτb < 4|ΩY|/(λn) andτZ < min {4|ΩY|/λ, |ΩX|}, the algorithms MC-b will be
guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we only need that
the gradient step isnon-expansivein the sense that

‖b1−τbg(b1)−b2+τbg(b2)‖2+‖Z1−τZg(Z1)−Z2+τZg(Z2)‖2
F ≤ ‖b1−b2‖2+‖Z1−Z2‖2

F

for all b1, b2, Z1, andZ2. Our choice ofτb andτZ guarantee such non-expansiveness. Once this
non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in [10].

3.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no bias
variableb. Second, the shrinkage step will in general not satisfy the all-1-row constraints in (3).
Thus, we add a third projection step at the end of each iteration to projectZk+1 back to the feasible
region, by simply setting its last row to all 1’s. The complete algorithm for MC-1 is given in Algo-
rithm 2. We were unable to prove convergence for this gradient + shrinkage + projection algorithm.
Nonetheless, in our empirical experiments, Algorithm 2 always converges and tends to outperform
MC-b. The two algorithms have about the same convergence speed.

4 Experiments

We now empirically study the ability of matrix completion to perform multi-class transductive clas-
sification when there is missing data. We first present a family of 24 experiments on a synthetic
task by systematically varying different aspects of the task, including the rank of the problem, noise
level, number of items, and observed label and feature percentage. We then present experiments on
two real-world datasets: music emotions and yeast microarray. In each experiments, we compare
MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently
outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parametersµ andλ,
we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly
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divide ΩX andΩY into five disjoint subsets each. We then run our matrix completion algorithms
using 4

5 of the observed entries, measure its performance on the remaining1
5 , and average over

the five folds. Since our main goal is to predict unobserved labels, we use label error as the CV
performance criterion to select parameters. Note that tuningµ is quite efficient since all values
under consideration can be evaluated in one run of the continuation method. We setηµ = 0.25 and,
as in [10], considerµ values starting atσ1ηµ, whereσ1 is the largest singular value of the matrix
of observed entries in[Y;X] (with the unobserved entries set to 0), and decreaseµ until 10−5.
The range ofλ values considered was{10−3, 10−2, 10−1, 1}. We initializedb0 to be all zero and
Z0 to be the rank-1 approximation of the matrix of observed entries in[Y;X] (with unobserved
entries set to 0) obtained by performing an SVD and reconstructing the matrix using only the largest
singular value and corresponding left and right singular vectors. The step sizes were set as follows:
τZ = min( 3.8|ΩY|

λ , |ΩX|), τb = 3.8|ΩY|
λn . Convergence was defined as relative change in objective

functions (2)(3) smaller than10−5.

Baselines:We compare to the following baselines, each consisting of some missing feature impu-
tation step onX first, then using a standard SVM to predict the labels:[FPC+SVM] Matrix com-
pletion onX alone using FPC [10].[EM( k)+SVM] Expectation Maximization algorithm to impute
missingX entries using a mixture ofk Gaussian components. As in [9], missing features, mixing
component parameters, and the assignments of items to components are treated as hidden variables,
which are estimated in an iterative manner to maximize the likelihood of the data.[Mean+SVM]
Impute each missing feature by the mean of the observed entries for that feature.[Zero+SVM]
Impute missing features by filling in zeros.

After imputation, an SVM is trained using the available (noisy) labels inΩY for that task, and
predictions are made for the rest of the labels. All SVMs are linear, trained using SVMlin2, and the
regularization parameter is tuned using 5-fold cross validation separately for each task. The range
of parameter values considered was{10−8, 10−7, . . . , 107, 108}.
Evaluation Method: To evaluate performance, we consider two measures:transductive label error,
i.e., the percentage of unobserved labels predicted incorrectly; andrelative feature imputation error(∑

ij /∈ΩX
(xij − x̂ij)2

)
/
∑

ij /∈ΩX
x2

ij , wherex̂ is the predicted feature value. In the tables below,

for each parameter setting, we report the mean performance (and standard deviation in parenthesis)
of different algorithms over 10 random trials. The best algorithm within each parameter setting,
as well as any statistically indistinguishable algorithms via a two-tailed pairedt-test at significance
levelα = 0.05, are marked in bold.

4.1 Synthetic Data Experiments

Synthetic Data Generation: We generate a family of synthetic datasets to systematically explore
the performance of the algorithms. We first create a rank-r matrix X0 = LR>, whereL ∈ Rd×r

andR ∈ Rn×r with entries drawniid from N (0, 1). We then normalizeX0 such that its entries
have variance 1. Next, we create a weight matrixW ∈ Rt×d and bias vectorb ∈ Rt, with all entries
drawniid fromN (0, 10). We then produceX,Y0,Y according to section 2.1. Finally, we produce
the randomΩX,ΩY masks withω percent observed entries.

Using the above procedure, we varyω = 10%, 20%, 40%, n = 100, 400, r = 2, 4, andσ2
ε =

0.01, 0.1, while fixing t = 10, d = 20, to produce 24 different parameter settings. For each setting,
we generate 10 trials, where the randomness is in the data and mask.

Synthetic experiment results:Table 1 shows the transductive label errors, and Table 2 shows the
relative feature imputation errors, on the synthetic datasets. We make several observations.

Observation 1: MC-b and MC-1 are the best for feature imputation, as Table 2 shows. However,
the imputations are not perfect, because in these particular parameter settings the ratio between the
number of observed entries over the degrees of freedom needed to describe the feature matrix (i.e.,
r(d + n− r)) is below the necessary condition for perfect matrix completion [2], and because there
is some feature noise. Furthermore, our CV tuning procedure selects parametersµ, λ to optimize
label error, which often leads to suboptimal imputation performance. In a separate experiment (not
reported here) when we made the ratio sufficiently large and without noise, and specifically tuned for

2http://vikas.sindhwani.org/svmlin.html
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Table 1: Transductive label error of six algorithms on the 24 synthetic datasets. The varying pa-
rameters are feature noiseσ2

ε , rank(X0) = r, number of itemsn, and observed label and feature
percentageω. Each row is for a unique parameter combination. Each cell shows the mean(standard
deviation) of transductive label error (in percentage) over 10 random trials. The “meta-average” row
is the simple average over all parameter settings and all trials.

σ2
ε r n ω MC-b MC-1 FPC+SVM EM1+SVM Mean+SVM Zero+SVM

0.01 2 100 10% 37.8(4.0) 31.8(4.3) 34.8(7.0) 34.6(3.9) 40.5(5.7) 40.5(5.1)
20% 23.5(2.9) 17.0(2.2) 17.6(2.1) 19.7(2.4) 28.7(4.1) 27.4(4.4)
40% 15.1(3.1) 10.8(1.8) 9.6(1.5) 10.4(1.0) 16.5(2.5) 15.4(2.3)

400 10% 26.5(2.0) 19.9(1.7) 23.7(1.7) 24.2(1.9) 32.4(2.9) 31.5(2.7)
20% 15.9(2.5) 11.7(1.9) 12.6(2.2) 12.0(1.9) 20.0(1.9) 19.7(1.7)
40% 11.7(2.0) 8.0(1.6) 7.2(1.8) 7.3(1.4) 12.2(1.8) 12.1(2.0)

4 100 10% 42.5(4.0) 40.8(4.4) 41.5(2.6) 43.2(2.2) 43.5(2.9) 42.9(2.9)
20% 33.2(2.3) 26.2(2.8) 26.7(1.7) 30.8(2.7) 35.5(1.4) 33.9(1.5)
40% 19.6(3.1) 14.3(2.7) 13.6(2.6) 14.1(2.4) 22.5(2.0) 21.7(2.3)

400 10% 35.3(3.1) 32.1(1.6) 33.4(1.6) 34.2(1.8) 37.7(1.2) 38.2(1.4)
20% 24.4(2.3) 19.1(1.3) 20.5(1.4) 19.8(1.1) 26.9(1.5) 26.9(1.3)
40% 14.6(1.8) 9.5(0.5) 9.2(0.9) 8.6(1.1) 16.4(1.2) 16.5(1.3)

0.1 2 100 10% 39.6(5.5) 34.6(3.5) 37.3(6.4) 40.2(5.3) 41.5(6.0) 41.0(5.7)
20% 25.2(2.6) 20.1(1.7) 21.6(2.6) 26.8(3.7) 31.8(4.7) 29.9(4.0)
40% 15.7(3.1) 12.6(1.4) 13.2(2.0) 15.1(2.4) 18.5(2.7) 17.2(2.4)

400 10% 27.6(2.1) 22.6(1.9) 27.6(2.4) 28.8(2.6) 34.5(3.3) 33.6(2.8)
20% 18.0(2.2) 15.2(1.7) 16.8(2.3) 18.4(2.5) 22.6(2.4) 21.8(2.5)
40% 12.0(2.1) 10.1(1.3) 10.4(2.1) 11.1(1.9) 14.1(2.0) 14.0(2.4)

4 100 10% 42.5(4.3) 41.5(2.5) 42.3(2.0) 45.6(1.9) 44.6(2.9) 43.6(2.3)
20% 33.3(1.9) 29.0(2.2) 30.9(3.1) 34.9(3.0) 36.2(2.3) 35.4(1.6)
40% 21.4(2.7) 18.4(3.1) 18.7(2.4) 21.6(2.4) 23.9(2.0) 23.3(2.5)

400 10% 36.3(2.7) 34.0(1.7) 35.1(1.2) 36.3(1.4) 38.7(1.3) 39.1(1.2)
20% 25.5(2.0) 21.8(1.0) 23.8(1.5) 25.1(1.4) 28.4(1.7) 28.4(1.8)
40% 16.0(1.8) 12.8(0.8) 13.9(1.2) 14.7(1.3) 18.3(1.2) 18.2(1.2)

meta-average 25.6 21.4 22.6 24.1 28.6 28.0

imputation error, both MC-b and MC-1 did achieve perfect feature imputation. Also, FPC+SVM is
slightly worse in feature imputation. This may seem curious as FPC focuses exclusively on imputing
X. We believe the fact that MC-b and MC-1 can use information inY to enhance feature imputation
in X made them better than FPC+SVM.

Observation 2: MC-1 is the best for multi-label transductive classification, as suggested by Table 1.
Surprisingly, the feature imputation advantage of MC-b did not translate into classification, and
FPC+SVM took second place.

Observation 3: The same factors that affect standard matrix completion also affect classification
performance of MC-b and MC-1. As the tables show, everything else being equal, less feature noise
(smallerσ2

ε ), lower rankr, more items, or more observed features and labels, reduce label error.
Beneficial combination of these factors (the6th row) produces the lowest label errors.

Matrix completion benefits from more tasks. We performed one additional synthetic data exper-
iment examining the effect oft (the number of tasks) on MC-b and MC-1, with the remaining data
parameters fixed atω = 10%, n = 400, r = 2, d = 20, andσ2

ε = 0.01. Table 3 reveals that both
MC methods achieve statistically significantly better label prediction and imputation performance
with t = 10 than with onlyt = 2 (as determined by two-samplet-tests at significance level 0.05).

4.2 Music Emotions Data Experiments

In this task introduced by Trohidiset al.[14], the goal is to predict which of several types of emotion
are present in a piece of music. The data3 consists ofn = 593 songs of a variety of musical genres,
each labeled with one or more oft = 6 emotions (i.e., amazed-surprised, happy-pleased, relaxing-
calm, quiet-still, sad-lonely, and angry-fearful). Each song is represented byd = 72 features (8
rhythmic, 64 timbre-based) automatically extracted from a 30-second sound clip.

3Available at http://mulan.sourceforge.net/datasets.html
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Table 2: Relative feature imputation error on the synthetic datasets. The algorithm Zero+SVM is
not shown because it by definition has relative feature imputation error 1.

σ2
ε r n ω MC-b MC-1 FPC+SVM EM1+SVM Mean+SVM

0.01 2 100 10% 0.84(0.04) 0.87(0.06) 0.88(0.06) 1.01(0.12) 1.06(0.02)
20% 0.54(0.08) 0.57(0.06) 0.57(0.07) 0.67(0.13) 1.03(0.02)
40% 0.29(0.06) 0.27(0.06) 0.27(0.06) 0.34(0.03) 1.01(0.01)

400 10% 0.73(0.03) 0.72(0.04) 0.76(0.03) 0.79(0.07) 1.02(0.01)
20% 0.43(0.04) 0.46(0.05) 0.50(0.04) 0.45(0.04) 1.01(0.00)
40% 0.30(0.10) 0.22(0.04) 0.24(0.05) 0.21(0.04) 1.00(0.00)

4 100 10% 0.99(0.04) 0.96(0.03) 0.96(0.03) 1.22(0.11) 1.05(0.01)
20% 0.77(0.05) 0.78(0.05) 0.77(0.04) 0.92(0.07) 1.02(0.01)
40% 0.42(0.07) 0.40(0.03) 0.42(0.04) 0.49(0.04) 1.01(0.01)

400 10% 0.87(0.04) 0.88(0.03) 0.89(0.01) 1.00(0.08) 1.01(0.00)
20% 0.69(0.07) 0.67(0.04) 0.69(0.03) 0.66(0.03) 1.01(0.00)
40% 0.34(0.05) 0.34(0.03) 0.38(0.03) 0.29(0.02) 1.00(0.00)

0.1 2 100 10% 0.92(0.05) 0.93(0.04) 0.93(0.05) 1.18(0.10) 1.06(0.02)
20% 0.69(0.07) 0.72(0.06) 0.74(0.06) 0.94(0.07) 1.03(0.02)
40% 0.51(0.05) 0.52(0.05) 0.53(0.05) 0.67(0.08) 1.02(0.01)

400 10% 0.79(0.03) 0.80(0.03) 0.84(0.03) 0.96(0.07) 1.02(0.01)
20% 0.64(0.06) 0.64(0.06) 0.67(0.04) 0.73(0.07) 1.01(0.00)
40% 0.48(0.04) 0.45(0.05) 0.49(0.05) 0.57(0.07) 1.00(0.00)

4 100 10% 1.01(0.04) 0.97(0.03) 0.97(0.03) 1.25(0.05) 1.05(0.02)
20% 0.84(0.03) 0.85(0.03) 0.85(0.03) 1.07(0.06) 1.02(0.01)
40% 0.59(0.03) 0.61(0.04) 0.63(0.04) 0.80(0.09) 1.01(0.01)

400 10% 0.90(0.02) 0.92(0.02) 0.92(0.01) 1.08(0.07) 1.01(0.01)
20% 0.75(0.04) 0.77(0.02) 0.79(0.03) 0.86(0.05) 1.01(0.00)
40% 0.56(0.03) 0.55(0.04) 0.59(0.04) 0.66(0.06) 1.00(0.00)

meta-average 0.66 0.66 0.68 0.78 1.02

Table 3: More tasks help matrix completion (ω = 10%, n = 400, r = 2, d = 20, σ2
ε = 0.01).

t MC-b MC-1 FPC+SVM MC-b MC-1 FPC+SVM

2 30.1(2.8) 22.9(2.2) 20.5(2.5) 0.78(0.07) 0.78(0.04) 0.76(0.03)
10 26.5(2.0) 19.9(1.7) 23.7(1.7) 0.73(0.03) 0.72(0.04) 0.76(0.03)

transductive label error relative feature imputation error

Table 4: Performance on the music emotions data.
ω =40% 60% 80% Algorithm ω =40% 60% 80%
28.0(1.2) 25.2(1.0) 22.2(1.6) MC-b 0.69(0.05) 0.54(0.10) 0.41(0.02)
27.4(0.8) 23.7(1.6) 19.8(2.4) MC-1 0.60(0.05) 0.46(0.12) 0.25(0.03)
26.9(0.7) 25.2(1.6) 24.4(2.0) FPC+SVM 0.64(0.01) 0.46(0.02) 0.31(0.03)
26.0(1.1) 23.6(1.1) 21.2(2.3) EM1+SVM 0.46(0.09) 0.23(0.04) 0.13(0.01)
26.2(0.9) 23.1(1.2) 21.6(1.6) EM4+SVM 0.49(0.10) 0.27(0.04) 0.15(0.02)
26.3(0.8) 24.2(1.0) 22.6(1.3) Mean+SVM 0.18(0.00) 0.19(0.00) 0.20(0.01)
30.3(0.6) 28.9(1.1) 25.7(1.4) Zero+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)

transductive label error relative feature imputation error

We vary the percentage of observed entriesω = 40%, 60%, 80%. For eachω, we run 10 random
trials with different masksΩX,ΩY. For this dataset, we tuned onlyµ with CV, and setλ = 1.

The results are in Table 4. Most importantly, these results show that MC-1 is useful for this real-
world multi-label classification problem, leading to the best (or statistically indistinguishable from
the best) transductive error performance with 60% and 80% of the data available, and close to the
best with only 40%.

We also compared these algorithms against an “oracle baseline” (not shown in the table). In this
baseline, we give 100% features (i.e., no indices are missing fromΩX) and the training labels
in ΩY to a standard SVM, and let it predict the unspecified labels. On the same random tri-
als, for observed percentageω = 40%, 60%, 80%, the oracle baseline achieved label error rate
22.1(0.8), 21.3(0.8), 20.5(1.8) respectively. Interestingly, MC-1 withω = 80% (19.8) is statisti-
cally indistinguishable from the oracle baseline.
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4.3 Yeast Microarray Data Experiments

This dataset comes from a biological domain and involves the problem of Yeast gene functional
classification. We use the data studied by Elisseeff and Weston [5], which containsn = 2417
examples (Yeast genes) withd = 103 input features (results from microarray experiments).4 We
follow the approach of [5] and predict each gene’s membership int = 14 functional classes. For
this larger dataset, we omitted the computationally expensive EM4+SVM methods, and tuned only
µ for matrix completion while fixingλ = 1.

Table 5 reveals that MC-b leads to statistically significantly lower transductive label error for this bi-
ological dataset. Although not highlighted in the table, MC-1 is also statistically better than the SVM
methods in label error. In terms of feature imputation performance, the MC methods are weaker than
FPC+SVM. However, it seems simultaneously predicting the missing labels and features appears to
provide a large advantage to the MC methods. It should be pointed out that all algorithms except
Zero+SVM in fact have small but non-zero standard deviation on imputation error, despite what the
fixed-point formatting in the table suggests. For instance, withω = 40%, the standard deviation is
0.0009 for MC-1, 0.0011 for FPC+SVM, and 0.0001 for Mean+SVM.

Again, we compared these algorithms to an oracle SVM baseline with 100% observed entries inΩX.
The oracle SVM approach achieves label error of 20.9(0.1), 20.4(0.2), and 20.1(0.3) forω =40%,
60%, and 80% observed labels, respectively. Both MC-b and MC-1 significantly outperform this
oracle under pairedt-tests at significance level 0.05. We attribute this advantage to a combination
of multi-label learning and transduction that is intrinsic to our matrix completion methods.

Table 5: Performance on the yeast data.
ω =40% 60% 80% Algorithm ω =40% 60% 80%
16.1(0.3) 12.2(0.3) 8.7(0.4) MC-b 0.83(0.02) 0.76(0.00) 0.73(0.02)
16.7(0.3) 13.0(0.2) 8.5(0.4) MC-1 0.86(0.00) 0.92(0.00) 0.74(0.00)
21.5(0.3) 20.8(0.3) 20.3(0.3) FPC+SVM 0.81(0.00) 0.76(0.00) 0.72(0.00)
22.0(0.2) 21.2(0.2) 20.4(0.2) EM1+SVM 1.15(0.02) 1.04(0.02) 0.77(0.01)
21.7(0.2) 21.1(0.2) 20.5(0.4) Mean+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)
21.6(0.2) 21.1(0.2) 20.5(0.4) Zero+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)

transductive label error relative feature imputation error

5 Discussions and Future Work

We have introduced two matrix completion methods for multi-label transductive learning with miss-
ing features, which outperformed several baselines. In terms of problem formulation, our methods
differ considerably from sparse multi-task learning [11, 1, 13] in that we regularize the feature and
label matrix directly, without ever learning explicit weight vectors. Our methods also differ from
multi-label prediction via reduction to binary classification or ranking [15], and via compressed
sensing [7], which assumes sparsity in that each item has a small number of positive labels, rather
than the low-rank nature of feature matrices. These methods do not naturally allow for missing fea-
tures. Yet other multi-label methods identify a subspace of highly predictive features across tasks in
a first stage, and learn in this subspace in a second stage [8, 12]. Our methods do not require separate
stages. Learning in the presence of missing data typically involves imputation followed by learning
with completed data [9]. Our methods perform imputation plus learning in one step, similar to EM
on missing labels and features [6], but the underlying model assumption is quite different.

A drawback of our methods is their restriction to linear classifiers only. One future extension is to
explicitly map the partial feature matrix to a partially observed polynomial (or other) kernel Gram
matrix, and apply our methods there. Though such mapping proliferates the missing entries, we
hope that the low-rank structure in the kernel matrix will allow us to recover labels that are nonlinear
functions of the original features.

Acknowledgements:This work is supported in part by NSF IIS-0916038, NSF IIS-0953219, AFOSR FA9550-
09-1-0313, and AFOSR A9550-09-1-0423. We also wish to thank Brian Eriksson for useful discussions and
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4Available at http://mulan.sourceforge.net/datasets.html
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