
Sample Complexity for 1-bit Compressed Sensing
and Sparse Classification

Ankit Gupta
Samsung Telecommunications America

Richardson TX 75082
agupta2@sta.samsung.com

Robert Nowak
Electrical and Computer Engineering

University of Wisconsin-Madison
nowak@ece.wisc.edu

Benjamin Recht
Computer Sciences Department

University of Wisconsin-Madison
brecht@cs.wisc.edu

Abstract—This paper considers the problem of identifying the
support set of a high-dimensional sparse vector, from noise-
corrupted 1-bit measurements. We present passive and adaptive
algorithms for this problem, both requiring no more than
O(d log(D)) measurements to recover the unknown support. The
adaptive algorithm has the additional benefit of robustness to the
dynamic range of the unknown signal.

I. INTRODUCTION

Identifying a sparse collection of discriminative features
in high-dimensional classification problems has received con-
siderable attention from the machine learning and statistics
communities [1], [2], [3], [4]. Additionally, several authors
have considered the problem of quantized compressed sensing
[5], [6], [7] where the aim is to recover a sparse vector
from highly quantized, noisy measurements. In both of these
scenarios, standard algorithms for sparse signal recovery are
not applicable because the only available information is the
sign of a given measurement. Instead, algorithms based on
logistic regression or support vector machines are used to
identify the unknown support. The hope is that, as in the case
of compressed sensing, the number of measurements required
to successfully identify the unknown signal support scales
proportional to the signal’s sparsity.

In this paper, we show that this is intuition is indeed correct
and achievable with relatively simple algorithms. Specifically,
this paper addresses the problem of identifying the support set
of a sparse high-dimensional vector from highly quantized 1-
bit measurements. The number of measurements required will
be referred to as the sample complexity of the problem. In par-
ticular, we are interested on the dependence of the achievable
sample complexity on the dimension of the unknown vector,
D, its sparsity, d, and the signal to noise ratio.

We first present a passive algorithm that recovers the support
by thresholding a correlation function. The sample complexity
of this algorithm scales as O(d log D), but has an unfortunate
quadratic dependence on the dynamic range of the signal to be
recovered. We then describe an adaptive algorithm that elimi-
nates the dependency on dynamic range while maintaining the
O(d log D) sample complexity. Note that for both algorithms
the number of samples required to a sparse support set obeys
the same asymptotic scaling as the L1 minimization based
approaches for the canonical compressed sensing problem [8],
[9]. To the best of our knowledge, our results provide the first

bounds on the sample complexity of support recovery (i.e.,
feature selection) from binary-valued data.

II. MAIN RESULTS

The unknown sparse vector will be denoted by α. By sparse,
we mean that only d � D of the elements of α are non-zero.
We assume that we are only allowed to make measurements
of the following form:

c(x) = sgn(α1x1 + · · ·+ αDxD + n) , (1)

where x ∈ RD is a ‘sensing’ vector (which we may be able to
select or design) and n is Gaussian noise with unit variance.
In words, we observe the sign of the inner product of α and
x, possibly corrupted by Gaussian noise.

We let K denote the dynamic range of α its support set.

K =
|maxD

i=1 αi|
|mini:αi 6=0 αi|

. (2)

We also denote the signal to noise ratio by SNR and define
it to be the square of the minimum nonzero α (since noise
variance is assumed to be one).

In Section III, we present a passive algorithm such that with

m ≥ 2π2(K2d + SNR−1) log(D/δ) (3)

randomly sampled measurements, we can recover the true
signal support with probability at least 1 − δ. In Section IV
we present the adaptive procedure such that

m ≥ 1536d(
1/2−Q(

√
SNR/70)

)2 log
D

δ
(4)

sequentially selected measurements suffice to recover the
support of α, again with probability at least 1 − δ. Here
Q(x) denotes the cumulative distribution of a standard normal
random variable. Note that the number of measurements in (4)
is independent of the dynamic range K, but the measurement
vectors at each step of the algorithm have an adaptively chosen
support (rather than global support).

For large SNR, the denominator in (4) is approximately 1/2.
In this case the sample complexity of the adaptive algorithm
is O(d log D

δ). However, since

Q(x) ≈ 1/2− x/
√

2π

when x is small, the sample complexities of both the passive
and active algorithms scale as SNR−1 for very low SNR.

III. PASSIVE ALGORITHM

For the passive algorithm, first consider the case without
noise. Assume that we are given m noiseless random obser-
vations of the form {(x1, c(x1)), · · · , (xm, c(xm))}, where xi

are i.i.d. vectors, such that each component of xi is an i.i.d.
unit variance zero-mean Gaussian random variable.

The algorithm works as follows. For each coordinate j ∈
{1, · · · , D}, we form the empirical quantities lj :

lj =
1
m

m∑
i=1

c(xi)sgn(xi,j), (5)

where xi,j denotes the jth coordinate of the ith sample. If
|lj | > (1/K

√
dπ), we label the coordinate as being relevant

and reject it otherwise (note that the threshold of rejection
need not be known a priori, and can be obtained by visually
inspecting lj).

With this criterion, we have

Lemma 1. The probability of accepting an incorrect coordi-
nate or rejecting a correct coordinate is upper bounded by
exp(−m/2K2dπ2).

Proof: The random variables c(xi)sgn(xi,j) only take on
the values ±1. Moreover,

E[c(xi)sgn(xi,j)] =
2
π

arcsin ρj (6)

where
ρj =

αj√∑D
i=1 α2

i

. (7)

This identity for the covariance of the signs of two Gaussian
random variables is due to Grothendieck and follows from
Lemma 2.2 in [10]. Now by (2), we have |ρj | ≥ 1

K
√

d
for all j.

The Lemma now follows by applying Hoeffding’s inequality.

If we fix the error rate (false detection and false alarm) prob-
ability as equal to δ, we require 2π2K2d log(D/δ) samples to
achieve this desired error rate.

In the noisy case, c(xi) = sgn(ỹ′i), where ỹ′i , α1xi,1 +
· · ·+ αDxi,D + n, where n is unit variance Gaussian. In this
case, we can use

ρj =
αj√∑D

i=1 α2
i + 1

. (8)

in Lemma 1, and the analysis is otherwise identical, albeit
with the modification that the minimum absolute value of the
covariance between a relevant coordinate and ỹ′i is now at least
1/(

√
K2d + SNR−1). Repeating the argument after Lemma

1, we require 2π2(K2d+SNR−1) log(D/δ) measurements, to
recover the relevant coordinates with probability 1− δ.

IV. ADAPTIVE ALGORITHM

The drawback of the passive algorithm is the dependence
on the dynamic range, K. This dependence arises because

strong components can mask weaker components. The 1-bit
nature of our set-up compounds this problem. If we were
measuring direct inner products, rather than just their signs,
then conventional iterative schemes, such as orthogonal match-
ing pursuit, can discover components one by one, remove
them and focus on the residual. This is possible because of
the linear form of the measurement model in that setting. In
the 1-bit situation, however, the non-invertible nonlinearity of
the sign function makes it impossible to remove components
from the measurements themselves. The one way to eliminate
components is to, in effect, remove them before measurements
are taken by placing zeros in the corresponding coordinates
of the measurement vector. This observation is at the heart
of the adaptive algorithm, and the dependence on K may be
unavoidable without adaptation of the measurement process.

Before delving into the details of the adaptive algorithm,
we first provide a high-level description. Each step of the
algorithm involves finding one significant component. This is
accomplished using a binary search tree. The root of the tree
consists of the set of all indices under consideration and each
leaf corresponds to one of the indices. Pairs of intermediate
nodes are comprised of (roughly) even-sized, disjoint subsets
of the indices of their parent node, above. The tree is illustrated
for a set of four indices in Figure 1. The algorithm identifies
a significant component by generating a path from the root
to a leaf, such that each node along the path contains the
index of at least one significant component. Once a significant
component is found, it is removed from further consideration,
and the procedure is repeated with a new tree with a root
consisting of only the remaining components (i.e., with the
discovered component(s) removed). The key ingredient in this
process is a statistical test for significant components at each
node, which is accomplished using adaptive measurements.

3, 4

42 31

1, 2, 3, 4

1, 2

Fig. 1. Binary search tree for the adaptive algorithm for the case D = 4.

A. Adaptive Measurements

Measurements of the following form are collected at each
node encountered in the search process. Suppose the node
consists of a set S ⊂ {1, . . . , D} of indices. For a D × 1
measurement vector, x = (x1, . . . , xD), as follows.

xi
iid∼

{
N(0, 1), i ∈ S

0, i 6∈ S

Using x, collect k iid measurements, yi = sgn(〈α,x〉 + wi),
i = 1, . . . , k. Note that x is held fixed, but the noises {wi}
are independent across measurements. If the empirical mean
of the observations thus obtained is close to zero, then α and

x are probably orthogonal, and since x was chosen randomly,
this suggests that none of {αi}i∈S are significant. This is
formalized as follows.

Lemma 2. Define αmin := mini |αi| and let S ⊂ {1, . . . , D}
and

xi
iid∼

{
N(0, 1), i ∈ S

0, i 6∈ S

If mini∈S |αi| ≥ αmin > 0, then

P(|〈α,x〉| > αmin/70) > 0.8 (9)

Proof: Consider the orthonormal projection of the Gaus-
sian vector x in the subspace spanned by the common
coordinates of α and x. The magnitude of this projection
is a Gaussian variable with variance equal to the number
of common coordinates (i.e., at least 1). Further the angle
this projection makes with the projection of α is uniformly
distributed over [0, π]. The condition in (9) is satisfied if
the magnitude of the projection is greater than 1/10, and
the angle between the projection and the projection of α is
between [0, 0.45π] ∪ [0.55π, π] (because cos(0.45π) > 1/7).
The first event occurs with probability 0.92 (by using the cdf
of the normal distribution) and the second event occurs with
probability 0.9. The result follows since 0.9× 0.92 > 0.8.

B. Testing for Significant Components

Let Q denote the standard normal cumulative distribution,
Q(x) = 1√

2π

∫∞
x

e−x2/2dx, and let A denote the event on
which |〈α,x〉| > αmin/70. Then the random variables yi =
sgn(〈x, α〉+ wi), where wi

iid∼ N(0, 1), satisfy

|E[yi|A]| > 1− 2Q(αmin/70).

To show this, consider the case when 〈x, α〉 is positive;
the proof for the case case when it is negative follows by
symmetry. If 〈x, α〉 > αmin/70, then yi = −1 implies that the
magnitude of the noise must be at least αmin/70. Therefore
P(yi = −1) < Q(αmin/70), and E[yi] = 1− 2P(yi = −1) >
1 − 2Q(αmin/70), where here probabilities and expectations
are with respect to the noise wi. On the other hand, if αi = 0
for all i ∈ S, then E[yi] = 0.

Now let ȳ = k−1
∑k

i=1 yi, the empirical average of the
{yi}. The statistic ȳ concentrates about its mean, which is
the basis for detecting significant components. As discussed
above, the magnitude of the mean is either zero (in the case
when no non-zero components are present) or strictly larger
than 1−2Q(αmin/70) with probability at least 0.8 with respect
to the random draw of x. This suggests thresholding ȳ at

τ := 1/2−Q(αmin/70). (10)

The following lemmas characterize the action of the threshold.

Lemma 3. If αi = 0 for all i ∈ S, then

P(ȳ > τ) < exp(−k τ2/2), by Hoeffding’s inequality.

Lemma 4. If mini∈S |αi| ≥ αmin, then

P(ȳ < τ) < 0.2 + exp(−k τ2/2)

Proof: From Lemma 2, it follows that |〈α,x〉| is greater
than αmin/70 with probability at least 0.80. From the dis-
cussion after Lemma 2 in this case the mean of the random
variables yi is at least 1 − 2Q(αmin/70). The result follows
by Hoeffding’s inequality and the union bound.

Note that if k ≥ 6
τ2 , then exp(−k τ2/2) ≤ 0.05. Let us

assume that k satisifies this condition, and define the indicator
variable 1ȳ>τ , which takes the value 1 if ȳ exceeds the
threshold and 0 otherwise. If mini∈S |αi| ≥ αmin, then this
indicator is probably 1 (i.e., with probability at least 0.75). On
the other hand, if αi = 0 for all i ∈ S, then the indicator is
probably 0 (i.e., with probability at least 0.95).

We can boost these probabilities by repeating the procedure
m times. That is, generate m independent random x according
to the specificiations of Lemma 2, and for each such x average
k repeated measurements of the sgn(〈x, α〉+wi) and construct
the indicator variable described above. Finally, the resulting
indicator variables can be averaged and tested to see if the
average is above or below 1/2. We can then apply Chernoff’s
bound to obtain a decision about whether mini∈S |αi| ≥ αmin

or maxi∈S |αi| = 0 that is correct with probability at least
1− δ, for any δ > 0 we desire, by choosing m = O(log 1/δ).
Thus, we have a test for significant components at a given
node of the tree that is incorrect with probability at most δ.

C. Top-Down Tree Search Algorithm

Now we can build a path from the root to a leaf, as discussed
above, and by the union bound the overall probability of error
is at most O(δ log D) since the depth of the tree is log D. The
procedure is summarized in Figure 2. If we carryout this entire
process to d times in order to recover the d non-zero compo-
nents of α, then the total probability of error is O(δd log D),
which follows from another application of the union bound.
By a simple recalibration, we see that the total probability
of error can be controlled to be at most δ, for any δ > 0,
using a total of O(d log D log(d log D/δ)) measurements. The
constant suppressed by the big-O notation depends only on
αmin, not on K, as desired. However, this algorithm incurs an
extra logarithmic factor (e.g., log(d log D)). This factor can
be removed using a more sophisticated tree search based on a
random walk on the tree, similar to the so-called comparison
tree algorithm proposed in [11].

D. Random Walk Tree Search Algorithm

The random walk algorithm operates as follows. First, form
a binary tree such that the root of the tree consists of all the D
coordinates and the left (right) child node contains the lower
(upper) half of the (lexicographically ordered) coordinates in
their parent node (cf. Figure 1). The tree is constructed so that
the leaves contain exactly one coordinate. We next extend each
leaf to infinity, and the root node upwards to infinity, so that
each leaf has infinite (grand)children with the same coordinate
as itself, and the root has infinite (grand)parents, each with all

Top-Down Search Tree Algorithm
initialize: set of discovered components A = ∅ and
set of components to be tested S = {1, . . . , D}\A.

while test(S) = 1
— while |S| > 1
—— split S into two (near)
—— equisized subsets, S1 and S2.
—— if test(S1) = 1, then set S = S1

——– elseif test(S2) = 1, then set S = S2

——– else S = ∅.
— A = A

⋃
S.

— S = {1, . . . , D}\A.

subroutine test
— generate m random x with support on S
— for each x
—— collect k measurements and form 1ȳ>τ

— if average(1ȳ>τ) ≥ 1/2, then test(S) = 1
— else test(S) = 0

Fig. 2. Top-Down Search Tree algorithm

the coordinates. The random walk algorithm proceeds in a
fashion similar to the top-down algorithm above, except that
it moves down (or up) according to the value of 1ȳ for a
single measurement vector x, rather than average(1ȳ>τ) which
requires m random measurement vectors. This eliminates an
extra log(d log D) factor from the sample complexity.

As above, let A denote the set of discovered components,
and initialize A = ∅. Denote the components to be tested
as S = {1, . . . , D}\A. Beginning at the root node consising
of all components in S, and moving toward the leaves, we
test for non-zero support at each node as follows. At a
given node, for each of the two children generate a random
measurement vector x with non-zero support only on the
subset of coordinates associated with that child. The values
of the non-zero coordinates are i.i.d. realizations of a unit
variance Gaussian. We then collect k measurements using x
and compute the average ȳ. We move down to a child if ȳ > τ
(or choose one out of the two randomly if both satisfy this
property). If there is neither child satisfies this condition, then
we backtrack to the parent. After M such steps (where M
is specified below in Lemma 6), if we are at a node with
a single coordinate, then we add it to the list of discovered
coordinates A. Then run the decision tree again with the new
set of coordinates S = {1, . . . , D}\A. If instead, after M
steps, we are at the root, or one of its infinite (grand)parent(s),
then we terminate the algorithm and report the set A.

To quantify the sample complexity of this the algorithm we
will keep a running counter. The counter is initialized at zero
and is incremented by one for correct moves and decremented
by one for incorrect moves. More precisely, add +1 to the
counter if we move down to a node that has at least one
relevant coordinate or if we move back to the parent of a

node with no relevant coordinates. Otherwise, add −1 to the
counter.

Now assume that k ≥ 6/δ2 and define p := 0.2 +
exp(−k τ2/2) < 0.25. Recall that p is the probability of an
incorrect decision at a given node. Denote ∆i as the random
change in the counter at the ith step. The following result can
be shown for ∆i.

Case III Case I Case II

i, i + 1, · · · , ui, i + 1, · · · , u i, i + 1, · · · , u

Fig. 3. Three cases for Lemma 5

Lemma 5. The random variables ∆i, i = {1, 2, · · · , }, are
independent and for each i

P[∆i = 1] ≥ (1− p)2. (11)

Proof: We can have three possible cases at each node
of the tree as shown in Figure 3, where the arrows indicate
the (correct) paths along which ∆i increases by 1. We now
analyze each of these cases.
Case I: In this case P[∆i = −1] is given as p2, that is both
tests (for both children) give the wrong answer, thus

P[∆i = 1] = 1− p2. (12)

Case II: In this case P[∆i = −1] is given as p2 (when both
tests give wrong answers, and we go down the left child) plus
p(1 − p) (when the left test gives the right answer and the
right test gives the wrong answer and we backtrack), plus
p(1 − p)/2, when the left child gives the wrong answer and
we choose it instead of the right child. Thus

P[∆i = 1] = 1− p2 − 3
2
p(1− p) = (1− p)

(
1− p

2

)
. (13)

Case III: In this case P[∆i = −1] is given as 2p − p2, i.e.
when either test fails, thus

P[∆i = 1] = (1− p)2 (14)

Combining the three cases we find that the minimum value of
P[∆i = 1] is given as (1− p)2.

Since we assumed that p ≤ 0.25, this implies that P[∆i =
1] > 1/2. Next we calculate the number of trials required to
achieve a desired error probability for the tree algorithm. Let
Li ∈ {−1, 1} be i.i.d. random variables such that P [Li = 1] =
(1− p)2. It is obvious that P [

∑m
i=1 ∆i > `] ≥ P [

∑m
i=1 Li >

`], for any ` and m. Thus if chose M sufficiently large so
that P[

∑M
i=1 Li > log D] > 1 − δ′, then because the depth

(from root to leafs) is bounded by log D, repeating M steps
of the random walk guarantees that we will reach a relevant

coordinate with probability greater than 1 − δ′, or if there
is no such coordinate we are guaranteed to be at one of the
grandparents of the root node with probability greater than
1− δ′. The following lemma provides an upper bound on M .

Lemma 6. If

M > (4/(2(1− p)2 − 1)2) log(D/δ′), (15)

then

P

 M∑
j=1

Lj > log D

 > 1− δ′. (16)

Proof: We have E[Li] = 2(1−p)2−1, using Hoeffding’s
inequality

P

[
M∑
i=1

Li < `

]
< exp(−M(`/M − E[Li])2). (17)

Thus by setting −M(`/M −E[Li])2 < log δ′, and solving for
M , we get

M >
2`E[Li] + log(1/δ′)

E2[Li]

+

√
2`E[Li] + log 1/δ′ − 4`2E2[Li]

E2[Li]
. (18)

Setting ` = log D we get

P

[
M∑
i=1

Li > log D

]
> 1− δ, (19)

For M greater than the value specified in (18).
If we substitute E[Li] by one in (18), multiply log(1/δ′)

by two in the numerator, and disregard the negative sign term
in the square root, we get an upper bound on the right hand
side of the inequality in (18). This upper bound is equal to
(4/(2(1−p)2−1)2) log(D/δ′). Thus the desired condition in
(16) is satisfied for M greater than the value in (15).

To achieve reliability greater than 1− δ, we set δ = δ′/D,
in the above result. The average number of false positives is
upper bounded by δ. Thus the algorithm runs at most d + δ
times on an average, and the average sample complexity is no
worse than

4dk(1 + δ/d)
(2(1− p)2 − 1)2

log
D

δ
. (20)

which by substituting for k and p can be upper bounded by

1536d

τ2
log

D

δ
(21)

Recall that τ = 1/2−Q(αmin/70) and we have set SNR :=
α2

min. Note that the sample complexity of the random walk
algorithm does not include the extra log factor and it is
independent of dynamic range K.

V. DISCUSSION

In sharp contrast to the results obtained in [12], our adaptive
algorithm can at best provide a constant gain in the number
of samples required over passive learning. In [12] the gain is

unbounded at low SNR. This discrepancy can be explained as
a consequence of the different measurement models. In [12]
it was assumed that we have a constant energy per sensing
vector x, and thus the SNR grows as we focus on the relevant
coordinates. In our active algorithm, we assume that we always
probe with a vector that has unit variance in each nonzero
component. If we were to change the SNR at each node in
the tree such that for nodes with fewer coordinates we focus
the sensing energy, the adaptive algorithm would require far
fewer samples, and there could potentially be an unbounded
gain over the passive case for low SNR.

The passive algorithm is similar to the back-projection algo-
rithm used in compressed sensing, and we suspect that this is
the reason that it is dependent on the dynamic range, a behav-
ior that is also observed in its compressed sensing counterpart
[13]. Perhaps, the algorithms based on L1 minimization, such
as the one in [5] may yield a passive algorithm that does
not depend on the dynamic range of the signal. However, the
analysis of such heuristics is quite challenging, mainly because
the geometrical analysis of compressed sensing does not carry
over to the quantized case. It is an interesting future problem
to devise a passive algorithm whose sample complexity scales
as O(d log D) yet is independent of dynamic range.

ACKNOWLEDGMENTS

This work partially supported by AFOSR grant FA9550-09-1-0140.

REFERENCES

[1] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[2] D. Donoho and J. Jin, “Higher criticism thresholding: Optimal feature
selection when useful features are rare and weak,” Proceedings of the
National Academy of Sciences, vol. 105, no. 39, p. 14790, 2008.

[3] Y. Ingster, C. Pouet, and A. Tsybakov, “Classification of sparse high-
dimensional vectors,” Philosophical Transactions A, vol. 367, no. 1906,
p. 4427, 2009.

[4] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, “Learning
sparse Bayesian classifiers: multi-class formulation, fast algorithms,
and generalization bounds,” IEEE Trans. Pattern Anal. Machine Intell,
vol. 27, pp. 957–968, 2005.

[5] P. Boufounos and R. Baraniuk, “1-bit compressive sensing,” in Conf. on
Info. Science and Systems (CISS), Princeton, New Jersey, 2008.

[6] J. Sun and V. Goyal, “Optimal Quantization of Random Measurements in
Compressed Sensing,” in IEEE International Symposium on Information
Theory, 2009. ISIT 2009, 2009, pp. 6–10.

[7] W. Dai, H. Pham, and O. Milenkovic, “A Comparative Study of
Quantized Compressive Sensing Schemes,” in Proc. Int. Symp. Inform.
Theory, 2009, pp. 6–10.

[8] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Info. Th., vol. 52, no. 2, pp. 489–509, 2006.

[9] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[10] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the ACM, vol. 42, pp. 1115–1145, 1995.

[11] U. Feige, P. Raghavan, D. Peleg, and E. Upfal, “Computing with noisy
information,” SIAM Journal on Computing, vol. 23, no. 5, pp. 1001–
1018, 1994.

[12] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak, “Compressive Distilled
Sensing: Sparse Recovery Using Adaptivity in Compressive Measure-
ments,” in Proceedings of the Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, Nov. 2009.

[13] A. Fletcher, S. Rangan, and V. Goyal, “Necessary and sufficient condi-
tions on sparsity pattern recovery,” arXiv, vol. 804.

