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Abstract. In this paper we consider sparsity on a tensor level, as given by
the n-rank of a tensor. In the important sparse-vector approximation problem
(compressed sensing) and the low-rank matrix recovery problem, using a convex
relaxation technique proved to be a valuable solution strategy. Here, we will adapt
these techniques to the tensor setting. We use the n-rank of a tensor as sparsity
measure and consider the low-n-rank tensor recovery problem, i.e., the problem of
finding the tensor of lowest n-rank that fulfills some linear constraints. We intro-
duce a tractable convex relaxation of the n-rank and propose efficient algorithms
to solve the low-n-rank tensor recovery problem numerically. The algorithms are
based on the Douglas-Rachford splitting technique and its dual variant, the alter-
nating direction method of multipliers (ADM).

Keywords: tensor completion, n-rank, nuclear norm, sparsity, Douglas-Rachford
splitting, alternating direction method of multipliers (ADM)
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1. Introduction

Tensors are the higher-order generalization of vectors and matrices. They have many
applications in the physical, imaging and information sciences, and an in depth
survey can be found in [1]. Tensor decompositions give a concise representation
of the underlying structure of the tensor, revealing when the tensor-data can be
modeled as lying close to a low-dimensional subspace. Tensor decompositions serve as
useful tools for data summarization in numerous applications, including chemometrics,
psychometrics and higher order statistics.

In this work we do not focus on finding the decomposition of a given tensor. We
will try to recover a tensor by assuming that it is ‘sparse’ in some sense and minimize
a sparsity-measure over all tensors that fit the given data. As sparsity-measure we
consider the n-rank of the tensor, i.e., the ranks of the unfoldings of the tensor. The
unfoldings of the tensor are conversions of the tensor into a matrix. The information
we have about the tensor is modeled as the image of the underlying tensor under a
known linear mapping. One example of such a map is the sampling of a subset of
the entries of the tensor. This problem is called the tensor completion problem; it is
a missing value estimation problem. In computer graphics missing value estimations
problem are known as in-painting problems and appear for images, videos, etc.

The approaches for completing the tensor can coarsely be divided into local and
global approaches. A local approach looks at neighboring pixels or voxels of a missing
element and locally estimate the unknown values on basis of some difference measure
between the adjacent entries. In contrast, a global approach takes advantage of a
global property of the data, and is the path that we are going to take here.

For matrix-valued data, the rank of a matrix is a good notion of sparsity. As it
is a non-convex function, matrix rank is difficult to minimize in general. Recently,
the nuclear norm was advocated to be used as convex surrogate function for the rank
function [2, 3, 4, 5]. Generalizing this program, we will study a convex surrogate for
the tensor rank applied to the unfoldings of the unknown tensor. A related approach,
which penalizes the unfoldings of the solution tensor to have low nuclear norm, was
already presented in [6] for the special case of tensor completion. In this paper, we
consider the more general low-n-rank tensor recovery setting and explicitly derive
convergence guarantees for our proposed algorithms.

The paper is organized as follows. We will first fix our notation and state some
basic properties of tensors in section 2. Then we will formally introduce the problem
of recovering a low-n-rank tensor from partial information together with its convex
relaxation. In the subsequent sections, we will derive algorithms for the tensor recovery
problem. Section 4 introduces an algorithm based on the Douglas-Rachford splitting
technique, whereas section 5 focuses on the application of the classical alternating
direction method of multipliers (ADM), the dual version of the Douglas-Rachford
algorithm. We will demonstrate the effectiveness of the algorithms in section 6. We
will test the algorithms on different settings, varying from randomly generated problem
instances to applications to medical images and hyperspectral data.

2. Notations & Basics on tensors

We adopt the nomenclature of Kolda and Bader’s review on tensor decompositions [1].
A tensor is the generalization of a matrix to higher dimensions, i.e., X ∈

R
n1×...×nN . Let us denote the vector space of these tensors by T , i.e., T := R

n1×...×nN .
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The order N of a tensor is the number of dimensions, also known as ways or modes.
A second-order tensor is a matrix and a first-order tensor is a vector. We will denote
higher-order tensors by boldface letters, e.g., X. Matrices are denoted by non-bold
uppercase letters, e.g., X.

Fibers are the higher-order analogue of matrix rows and columns. A fiber
is defined by fixing every index but one. The mode-n fibers are all vectors
xi1...in−1:in+1...iN that are obtained by fixing the values of {i1, . . . , iN} \ in.

The mode-n unfolding (also called matricization or flattening) of a tensor X ∈
R

n1×n2×...×nN is denoted by X(n) and arranges the mode-n fibers to be the columns
of the resulting matrix. The tensor element (i1, i2, . . . , iN ) is mapped to the matrix
element (in, j), where

j = 1 +

N∑

k=1
k 6=n

(ik − 1)Jk with Jk =

k−1∏

m=1
m 6=n

nm

Therefore, X(n) ∈ R
nn×In , where In =

∏N
k=1
k 6=n

nk.

The n-rank of a N -dimensional tensor X ∈ R
n1×n2×...×nN is the tuple of the

ranks of the mode-n unfoldings.

n-rank(X) =
(
rankX(1), rankX(2), . . . , rankX(N)

)
.

The inner product of two same-sized tensors X,Y ∈ R
n1×n2×...×nN is the sum of

the products of their entries, i.e.,

〈X,Y〉 =
n1∑

i1=1

n2∑

i2=1

· · ·
nN∑

iN=1

xi1i2...iN yi1i2...iN .

The corresponding (Frobenius-) norm is ‖X‖F =
√
〈X,X〉.

The n-mode (matrix) product of a tensor X ∈ R
n1×...×nN with a matrix Ψ ∈

R
J×nn is denoted by X ×n Ψ and is of size n1 × . . . × nn−1 × J × nn+1 × . . . × nN .

Each mode-n fiber is multiplied by the matrix Ψ. This idea is compactly expressed in
terms of unfolded tensors:

Y = X×n Ψ ⇔ Y(n) = ΨX(n)

3. Recovery of low-n-rank tensors from partial information

In this section we consider the following problem: Given a linear map
A : Rn1×...×nN → R

p with p ≤
∏N

i=1 ni and given b ∈ R
p, find the tensor X that

fulfills the linear measurements A(X) = b and minimizes a function of the n-rank of
the tensor.

The n-rank is only one notion of tensor rank [1]. A second notion of rank is
rankCP(X) which defines the rank as the minimal number of rank-1 tensors that is
necessary to represent the tensor. A rank-1 tensor is a tensor that is the outer product
of N vectors (‘◦’ represents the vector outer product) and

rankCP(X) := min
r∈N

{
∃v

(i)
k , γi s. t. X =

r∑

i=1

γiv
(i)
1 ◦ v

(i)
2 ◦ . . . ◦ v

(i)
N

}
.

In a recent work, Lim and Common [7] discuss the uniqueness of the best
approximation of a third-order tensor with a tensor of fixed value of rankCP = r.
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In general such a best approximation might not exist, but by introducing conditions
on the appearing rank-1 terms, uniqueness can be enforced [7].

This tensor rank is difficult to handle, as there is no straightforward algorithm
to determine rankCP of a specific given tensor; in fact, the problem is NP-hard [1, 8].
The n-rank on the other hand is easy to compute. Therefore, we only focus on the
n-rank in this work and consider the minimization problem:

minimize
X∈T

f (n-rank(X)) s. t. A (X) = b,

where f (n-rank(X)) = f
(
rankX(1), rankX(2), . . . , rankX(N)

)
. In order to keep

things simple, we will use the sum of the ranks of the different unfoldings in the
place of the function f , i.e., f(n-rank(X)) = ||n-rank(X)||1 =

∑N
i=1 rank (X(i)). This

is one choice, but is also possible to incorporate a weighting, e.g., f(n-rank(X)) =∑N
i=1 γi rank X(i). Thus, our minimization problem of interest becomes:

Problem setting 3.1 (Low-n-rank tensor recovery).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. A (X) = b (1)

The exact form of the linear constraints on the tensor X is governed by the linear
operator A which can take many possible forms in general. We would like to point
out one special case, the tensor completion case. In tensor completion, a subset of the
entries of the tensor X is given, and under the low-n-rank assumption, the unknown
entries are to be deduced. Denoting the set of revealed entries by Ω, the corresponding
operator A retrieves the values of these locations. The vector b will then contain the
given entries of the tensor X. Equivalently, we can compactly write the constraint as
XΩ = TΩ, where XΩ denotes the restriction of the tensor on the entries given by Ω,
and TΩ contains the values of those entries of X.

Problem setting 3.2 (Tensor completion).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. XΩ = TΩ (2)

The low-n-rank tensor recovery problem (1) (also its variant (2)) is a difficult
non-convex problem. Therefore we will relax it to the following convex problem:

Problem setting 3.3 (Low-n-rank tensor pursuit).

minimize
X∈T

N∑

i=1

||X(i)||∗ s. t. A(X) = b. (3)

Here, ||Z||∗ =
∑n

i=1 σi(Z) denotes the nuclear norm, the sum of the singular values of
a matrix Z. It is well known that the nuclear norm is the greatest convex minorant of
the rank function [2] and therefore we chose to replace each rank term by a nuclear-
norm term.

Problem (3) is equivalent to a semidefinite program. For this class of problems
there exist off-the-shelf solvers that apply interior-point methods and have very
good convergence guarantees. Unfortunately, the calculation of the search direction
uses second-order information and scales very badly in the problem dimensions.
Therefore, these solvers can only be used for very small-sized problems. As large-
size problems appear naturally in tensor problems, the present work will propose
first-order algorithms that are able to cope with these larger-sized problem instances.
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The same objective function as in (3) was also considered in [9], but with a
different focus. Their minimization problem assumes the knowledge of complete
(noisy) information of a tensor and finds the best low-n-rank-approximation of this
tensor. They do not consider the presence of a linear map A. The work of [6] is also
related. They use a similar formulation that uses the sum of the nuclear norms of the
unfoldings as criterion and derived a specialized algorithm for the tensor completion
problem. We will compare to their algorithm, namely LRTC, in section 6.

In the presence of noise, we can substitute the equality constraint by a norm-
bound on the deviation from equality:

minimize
X∈T

N∑

i=1

||X(i)||∗ s. t. ||A(X)− b||2 ≤ ǫ

Introducing a quadratic penalty term [10], we obtain a corresponding unconstrained
formulation:

minimize
X∈T

N∑

i=1

||X(i)||∗ +
λ

2
||A(X)− b||22 . (4)

The Lagrange multiplier λ controls the fit to the constraint A(X) − b. We will be
interested in ensuring the equalityA(X) = b, so we will apply a continuation technique,
i.e., solve (4) for increasing values of λ. In order to achieve ‖A(X) − b‖2 ≤ δ, some
heuristic as used in [11], i.e., λnew = λoldδ/‖A(X

(k))− b‖2, can be used.

4. Minimization via the Douglas-Rachford splitting technique

In this section we will derive an algorithm based on the Douglas-Rachford splitting
technique to solve (4) efficiently. We first need to introduce some notation. Let Γ0(H)
denote the class of all lower semicontinuous convex functions from a real Hilbert space
H to (−∞,∞] which are not identically equal to +∞; let ‖.‖H denote the norm on H.

The Douglas-Rachford splitting technique has a long history [12, 13]; it addresses
the minimization of the sum of two functions (f + g)(x), where f and g are assumed
to be elements of Γ0(H). It was recently extended in [14] for the minimization of a
sum over multiple functions in Γ0(H), based on a product space formulation. The
Douglas-Rachford splitting was also identified as an instance of a Mann iteration [15].

The Douglas-Rachford splitting algorithm approximates a minimizer of (f+g)(x)
with the help of the following sequence (xn)n≥0:

xn+1 := xn + tn
{
proxγf

[
2proxγg(xn)− xn

]
− proxγg(xn)

}
, (5)

where (tn)n≥0 ⊂ [0, 2] satisfies
∑

n≥0 tn(2− tn) =∞.
In [13, 14], more involved versions of this process are studied in view of unavoidable
numerical errors during the calculation of the iterates.
Under certain conditions (see Theorem 4.1 for details), the iteration process (5)
converges (weakly) to a point x̃, which has the property that proxγg(x̃) is a minimizer
of (f +g)(x). In [16], this algorithm was successfully applied to the so-called principal
component pursuit problem, i.e., the problem of splitting a matrix into the sum of a
low-rank matrix and a sparse matrix.
Recall, that the proximal map, proxγf , of index γ ∈ (0,∞) of f ∈ Γ0(H) [17, 18], is
defined as

proxγf : H → H, x 7→ argmin
y∈H

{
f(y) +

1

2γ
‖x− y‖2H

}
, (6)
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where the existence and the uniqueness of the minimizer are guaranteed by the
coercivity and the strict convexity of f(.) + 1

2γ ‖x− .‖2H respectively.

We will consider minimization in the Hilbert space H0, denoting the (N +1)-fold
Cartesian product of T , H0 := T × T × . . .× T︸ ︷︷ ︸

N+1 terms

, with the inner product 〈X ,Y〉H0
:=

1
N+1

∑N
i=0〈Xi,Yi〉 and induced norm ||X ||H0

:=
√
〈X ,X〉H0

.

4.1. Douglas-Rachford splitting for n-rank-minimization

We can recast problem (4) into the unconstrained minimization of (f+g)(x) as follows:

minimize
Z∈H0

f(Z) + g(Z),

where Z = (Z0,Z1, . . . ,ZN ), D =
{
Z ∈ H0

∣∣ Z0 = Z1 = . . . = ZN

}
, and





f(Z) :=
N∑

i=0

fi(Zi) =
λ

2
||A(Z0)− b||22 +

N∑

i=1

||Zi,(i)||∗

g(Z) := iD(Z) =

{
0, if Z ∈ D
+∞, otherwise

(7)

This problem formulation is equivalent to (4), so we only need to identify the
proximal maps of f and g to apply algorithm (5). The proximal map of f is given by

proxγfX = argmin
Y∈H0

{
N∑

i=0

fi(Yi) +
1

2γ
||Y − X ||2H0

}

= argmin
Y∈H0

{
N∑

i=0

fi(Yi) +
1

N + 1

N∑

i=0

(
1

2γ
||Yi −Xi||

2
F

)}

=
(
prox(N+1)γf0X0, . . . , prox(N+1)γfNXN

)

where we used the definition of ||.||H0
and (6).

For i = 1 . . . N , the proximal map of fi is essentially the shrinkage operator
shrink(.), as it is the proximal map associated to the nuclear norm function [19]:

proxτ ||.||∗T = argmin
Z

{
||Z||∗ +

1

2τ
||Z − T ||2F

}
= shrink (T, τ) , (8)

where shrink(T, τ) denotes the shrinkage operator which applies the soft-thresholding
operator to the singular values of T . The shrinkage operator acts as follows on
a matrix T . Let T = UtΣtV

∗
t be the singular value decomposition of T . Then,

Σt = diag(σ1(T ), . . . , σr(T )) is a diagonal matrix containing the singular values σk(T )

on the diagonal. Define Σ̃t as the diagonal matrix that contains the singular values
shrunk by τ , i.e., Σ̃t := diag(max{σ1(T ) − τ, 0}, . . . ,max{σr(T ) − τ, 0}). Then, the

singular value shrinkage operator is given by shrink(T, τ) := UtΣ̃tV
∗
t and we can

compute

prox(N+1)γfiXi = argmin
X∈T

{
||X(i)||∗ +

1

2(N + 1)γ
||Xi −X||2F

}

= refold

(
argmin

X(i)

{
||X(i)||∗ +

1

2(N + 1)γ
||X(i) −Xi,(i)||

2
F

})
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= refold
(
prox(N+1)γ‖.‖∗

Xi,(i)

)

= refold
(
shrink(Xi,(i), (N + 1)γ)

)

Here, refold(.), denotes the refolding of the matrix (=unfolded tensor) into a tensor.
For i = 0, the proximal map of f0 is given by (A∗ denotes the adjoint operator of A
and I denotes the identity operator on T ):

proxτf0X0 = argmin
Y0∈T

{
λ

2
||A(Y0)− b||22 +

1

2τ
||Y0 −X0||

2
F

}

=

(
λA∗A+

1

τ
I

)−1(
λA∗b+

1

τ
X0

)
(9)

In the case of tensor completion, where A = ATC is a sampling operator which
extracts the entries at positions given by the set Ω, the inversion in (9) reduces to an
easy computation. Let ξ = (i1, . . . , iN ), then A∗

TCATC takes the form:

(A∗
TCATC(Z)) (ξ) =

{
Z(ξ), if ξ ∈ Ω
0, otherwise

(10)

Therefore, (9) reduces to:

(
proxτfTC

0
Z
)
(ξ) =

[(
λA∗

TCATC +
1

τ
I

)−1(
λA∗

TCb+
1

τ
Z

)]
(ξ)

=

{ (
λ+ 1

τ

)−1 (
λA∗

TCb+
1
τ
Z
)
(ξ), if ξ ∈ Ω

τ 1
τ
Z(ξ), otherwise

=

{
τ

λτ+1

(
λA∗

TCb+
1
τ
Z
)
(ξ), if ξ ∈ Ω

Z(ξ), otherwise

where we used that (A∗
TCb)(ξ) = 0 for all ξ 6∈ Ω.

For general A, it can be helpful to apply the so-called Sherman-Morrison-
Woodbury formula [20] which expresses the inverse of a matrix M that underwent
a rank-one correction vvT as a rank-one correction of M−1:(

M + vvT
)−1

= M−1 −M−1v
(
1 + vTM−1v

)−1
vTM−1,

The matrix λA∗
TCATC + 1

τ
I can be written as p rank-one corrections of 1

τ
I:

λA∗
TCATC +

1

τ
I =

1

τ
I +

p∑

i=1

(A(i))TA(i), (11)

where A(i) denotes the i-th row vector of the matrix representation of A. Thus the
inversion can be performed as a series of matrix multiplications.

Another approach is to use some inner structure, e.g., block structure, of A if
applicable. If for example A(X)−b can be expressed as A(X)−b =

∑
i∈J(Ai(X)−bi),

then the term ‖A(X)− b‖22 can be expressed as sum of |J | terms depending on Ai and
bi. When applying the variable splitting as in (7), the function f then has N + |J |
terms. The inversion problem with respect to A as in (9) then results in |J | separate
inversion problems with respect to Ai, which can be beneficial if the operators Ai have
nice properties.

Finally, the proximal map of the indicator function iD is the orthogonal projection
PD onto the set D. It is given by:

PD(Z) = [IT , . . . , IT ] ·
1

N + 1

N∑

i=0

Zi = [IT , . . . , IT ] ·mean(Z),
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where IT is the identity operator on T and we define mean(Z) := 1
N+1

∑N
i=0(Zi).

Having identified all ingredients, we can now specialize the Douglas-Rachford
splitting algorithm of (5) to this choice of f and g, (7). Here, cλ controls the increase
of the Lagrange multiplier λ:

(DR-TR): Douglas-Rachford splitting for Tensor Recovery

input: A, b, tk, λ, cλ,γ
initialization: X (0) = (0, . . . , 0), k = 0, γ′ = (N + 1)γ

repeat until convergence:
if subproblem solved: λ = cλλ

X̂ = mean(X (k)) = mean
(
(X

(k)
0 ,X

(k)
1 , . . . ,X

(k)
N )
)

for i = 1 to N do

X
(k+1)
i = X

(k)
i + tk

(
refold

(
shrink(2X̂(i) −X

(k)
i,(i), γ

′)
)
− X̂

)

end

X
(k+1)
0 = X

(k)
0 + tk

(
proxγ′f0

(2X̂−X
(k)
0 )− X̂

)

k = k+1

output: X = mean(X (k))

4.2. Convergence of the Douglas-Rachford splitting

In order to state a convergence theorem of the Douglas-Rachford splitting algorithm,
we need the notion of domain (dom(f)) of a function f :
Define dom(f) := {x ∈ H | f(x) <∞} and

dom(f)− dom(g) :=
{
x1 − x2 ∈ H

∣∣ x1 ∈ dom(f) ∧ x2 ∈ dom(g)
}
.

The following theorem states the convergence properties of the Douglas-Rachford
splitting algorithm (5):

Theorem 4.1 ([13, 14, 15]). Let f, g ∈ Γ0(H) satisfy S := argmin
x∈H

{f(x) + g(x)} 6= ∅.

Suppose that
cone(dom(f)− dom(g)) (12)

:=
⋃

λ>0

{
λx
∣∣ x ∈ dom(f)− dom(g)

}

is a closed subspace of H. Then the sequence (xn)
∞
n=0 generated by (5) converges

weakly to a point in (proxγg)
−1(S). This holds for any initial value x0 ∈ H, any

γ ∈ (0,∞) and any (tn)n≥0 ⊂ [0, 2] that satisfies
∑

n≥0 tn(2− tn) =∞.

We will show that the condition on (12) holds for the DR-TR algorithm.

Lemma 4.2. The qualifying condition on (12), i.e. the condition that the set defined
in (12) is a closed subspace, holds for the functions f and g as defined in (7).

Proof. The domain of f , dom(f), is the whole space H0, as f(Z) =
λ
2 ||A(Z0)− b||22 +∑N

i=1 ||Zi,(i)||∗ <∞, ∀Z ∈ H0. From (7) it follows immediately that

dom(g) = {X | X0 = X1 = . . . = XN} 6= ∅.

Thus, dom(f)− dom(g) = H0, therefore cone(H0) = H0 and the qualifying condition
on (12) holds.
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Applying Lemma 4.2 to Theorem 4.1, we can now state the convergence of
algorithm (DR-TR):

Theorem 4.3. Let all parameters of the algorithm (DR-TR) be chosen as in Theorem
4.1, let cλ = 1. Then, mean(X(k)) converges to a minimizer of (4).

5. Alternative approach: ADM

In this section we will derive a second algorithm for the solution of Problem 3.1 based
on the classical ADM method. ADM goes back to the seventies [21, 22] It is known
that ADM is an application of the Douglas-Rachford splitting to the dual problem of
the minimization of (f + g)(x) [23, 24]. With this in mind, the algorithm ADM-TR
which we derive in the following is also a Douglas-Rachford-type algorithm. We chose
to present ADM as separate algorithm as it simplifies the presentation.

The minimization problem that ADM solves is [25]:

minimize
x∈Rq,y∈Rm

f(x) + g(y) s. t. x ∈ Cx, y ∈ Cy, Gx = y (13)

Here, f : Rq → R and g : Rm → R are convex functions, G is a m × q matrix and
Cx ⊂ R

q and Cy ⊂ R
m are nonempty polyhedral sets. (A polyhedral set P is one that

is specified by a finite collection of linear inequalities).
By introducing a Lagrange multiplier w ∈ R

m to the equality constraint Gx = y,
we can consider the augmented Lagrangian function

LA(x, y, w) = f(x) + g(y)− 〈w,Gx− y〉+
β

2
||Gx− y||22.

The alternating direction method of multipliers is given by ([25], eq.(4.79)-(4.81)):




x(k+1) ← argmin
x∈Cx

LA(x, y
(k), w(k))

y(k+1) ← argmin
y∈Cy

LA(x
(k+1), y, w(k))

w(k+1) ← w(k) − β(Gx(k+1) − y(k+1))

(14)

The parameter β is any positive number, and the initial vectors w(0) and y(0) are
arbitrary. The advantage of these minimization problems (compared to a direct
joint minimization of argmin(x,y) LA(x, y, w)) is that the functions f and g and the
constraint sets Cx and Cy have been decoupled.

Theorem 5.1 ([25], Proposition 4.2). Assume that the optimal solution set X∗ ⊂
R

q×R
m of problem (13) is nonempty. Furthermore, assume that either Cx is bounded

or else that the matrix G∗G is invertible.
A sequence {x(k), y(k), w(k)} generated by algorithm (14) is bounded, and every limit
point of {x(k)} is an optimal solution of the original problem (13).

5.1. Rephrasing the low-n-rank tensor pursuit as ADM problem

In order to apply the ADM method to problem (4), we need to transform it into the
form f(x)+g(y) of separate variables x and y. Therefore we perform variable splitting
and attribute a separate variable to each unfolding of X.

Let Y1, . . . ,YN be new tensor-valued variables, which represent the N different
mode-n unfoldings X(1), . . . X(N) of the tensor X, i.e., introduce the new variables:

Yi ∈ R
n1×...×nN such that Yi,(i) = X(i), ∀i ∈ {1, . . . , N}.
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With these new variables Yi, we can rephrase (4) as follows:

minimize
X,Yi∈T

N∑

i=1

||Yi,(i)||∗ +
λ

2
||A(X)− b||22 (15)

subject to Yi = X ∀i ∈ {1, . . . , N}

It becomes clear that (15) has the same structure as (13) when first defining
K := T × T × . . .× T︸ ︷︷ ︸

N times

, Z ∈ K,Z = (Z1, . . . ,ZN )T . Then we can define the constraint

sets Cx := T , Cy := K, and the functions f : T → R and g : K → R:




f(X) :=
λ

2
||A(X)− b||22,

g(Y) :=
N∑

i=1

gi(Yi) =

N∑

i=1

||Yi,(i)||∗ .

The coupling between X and Y is given by

X = Yi ∀i ⇒ Y = [IT , . . . , IT ]
T
X = GX,

where IT is the identity operator on T . We define the inner product and induced norm

on the product space K as 〈X ,Y〉K :=
∑N

i=1〈Xi,Yi〉F and ||X ||K :=
√∑N

i=1 ||Xi||2F .

In (13), the functions are defined over real-valued vectors. However, with our definition
of the inner product and the norm on K, we can identify the elements of K with their
vectorized form (rewrite the entries of the set of tensors as one long vector). The
inner product on K then maps isometrically to the usual vector product and the norm
becomes the vector-ℓ2-norm. Therefore, minimization over (T ,K) is equivalent to

minimization over (Rq,Rm), where q =
∏N

i=1 ni equals the number of entries of an
element of T and m = Nq is the number of entries of N tensors that form an element
in K.

The augmented Lagrangian of (15) becomes

LA(X,Y,W) = f(X) + g(Y)− 〈W, GX− Y〉K +
β

2
||GX− Y||K

=
λ

2
||A(X)− b||22 +

N∑

i=1

(
||Yi,(i)||∗ − 〈Wi,X−Yi〉+

β

2
||X−Yi||

2
F

)

We can now directly apply ADM with this augmented Lagrangian function.

5.2. ADM: update step for the Y-variables

First, we will discuss the minimization of LA(X ,Y,W) with respect to the variable
Y. By noticing that the function g(Y) is a sum of independent non-negative functions
gi(Yi), we can find the minimizer of g by finding each minimizer of gi(Yi) separately.
So let us pick one of the variables Yi, say Yj , and let us consider all other variables
(X,W,Y1, . . . ,Yj−1,Yj+1, . . . ,YN ) to be constant. We will calculate the minimizer
in the unfolded regime, paralleling the calculation of the proximal map for the Douglas-
Rachford splitting.(

argmin
Yj∈T

LA(Yj)
)
(j)

= argmin
Yj,(j)

{
||Yj,(j)||∗ − 〈Wj,(j), X(j) − Yj,(j)〉+

β

2
||X(j) − Yj,(j)||

2
F

}
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= argmin
Yj,(j)

{
1

β
||Yj,(j)||∗ +

1

2

∣∣∣∣
∣∣∣∣Yj,(j) −

(
X(j)−

1

β
Wj,(j)

)∣∣∣∣
∣∣∣∣
2

F

+ const.

}

= shrink

(
X(j) −

1

β
Wj,(j) ,

1

β

)

Here, we completed the square and applied (8) (for X(j) and Wj,(j) constant).
The minimizer (Yj)min is thus

(Yj)min = refold

(
shrink

(
X(j) −

1

β
Wj,(j) ,

1

β

))
.

Its calculation contains one application of the shrinkage operator followed by a
refolding of the resulting matrix into a tensor. The application of the shrinkage
operator requires the calculation of one (partial) singular value decomposition.

The derivation was completely independent of the choice of j, so the above
minimization can be performed for any Yi, i ∈ {1, . . . , N}. The minimizer Y(k+1)

is therefore

Y(k+1) = ((Y1)min, . . . , (YN )min)
T
.

5.3. ADM: update step for the X-variable – exact version

Now we will fix all variables except X and minimize LA over X. The resulting
minimization problem is the minimization of a quadratic function:

minimize
X∈T

LA(X) =
λ

2
||A(X)− b||22 −

N∑

i=1

〈Wi,X−Yi〉

+

N∑

i=1

β

2
||X−Yi||

2
F , (16)

The objective function is differentiable, so the minimizer Xmin is characterized

by ∂LA(X)
∂X

= 0. The gradient of LA is given by:

∂LA(X)

∂X
= λA∗ (A(X)− b)−

N∑

i=1

Wi +NβX−
N∑

i=1

βYi

Thus, by setting the above formula equal to zero, we obtain

Xmin = (λA∗A+NβI)−1

[
N∑

i=1

Wi +
N∑

i=1

βYi + λA∗b

]
. (17)

In the case of tensor completion we can use (10) and readily calculate the inverse:

[
(λA∗

TCATC +NβI)−1
(Z)
]
(ξ) =

{
(λ+Nβ)

−1
Z(ξ), if ξ ∈ Ω

(Nβ)
−1

Z(ξ), otherwise

Thus, (17) can be computed as

XTC
min(ξ) =





(λ+Nβ)
−1
[∑N

i=1 Wi +
∑N

i=1 βYi + λA∗b
]
(ξ), if ξ ∈ Ω

(Nβ)
−1
[∑N

i=1 Wi +
∑N

i=1 βYi

]
(ξ), otherwise

Therefore, the update for X(k) is simply (note that for general A, (11) is applicable):
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Exact Version: Update of X(k)

X(k+1) =

{
XTC

min, if A == ATC,

Xmin, otherwise.

5.4. ADM: update step for the X-variable – inexact version

The exact calculation of the minimizer of LA(X), Xmin, via (17) can be difficult to
handle. The matrix representation of A might not be accessible and the matrix-
inversion difficult to compute or expensive to store. In these cases, it can be beneficial
to use the following approach. Instead of the minimizer Xmin, we will just determine
a value of X that achieves a lower value of the augmented Lagrangian function. For
example, a gradient descent method can be applied with respect to X.

Here we will introduce such an inexact scheme without giving any convergence
guarantees. The augmented Lagrangian is a differentiable function in X, so we
use a gradient step. The step-size will be chosen by the method of Barzilai-
Borwein[26] which uses the idea of mimicking the unavailable second order information
by approximating the secant equation.

The gradient step is given by: X(k+1) = X(k) − s∇L
(k)
A (X(k)),

where ∇L
(k)
A (X(k)) :=

∂L
(k)
A

(X)

∂X

∣∣∣
X(k)

is the gradient of L
(k)
A (X,Y(k),W(k)) at X(k).

In order to state the step-size-rule, we need to introduce the values

∆X := X(k) −X(k−1) and ∆g := ∇L
(k)
A (X(k))−∇L

(k−1)
A (X(k−1)).

In each iteration, the step-size s is chosen adaptively as

s =
|〈∆X , ∆g〉|

〈∆g , ∆g〉
=
|〈∆X , ∆g〉|

||∆g||2
.

We further used an acceleration technique to combine the previous iterate X(k)

with an intermediate value X̃, to obtain the next value X(k+1). The way of combining
these two values parallels the acceleration used in Nesterov’s optimal methods and
later used in the FISTA algorithm for sparse vector recovery[27].

The intermediate value X̃ will be the result of the gradient step with s chosen
by the Barzilai-Borwein step-size-rule. The acceleration is given by the following

equations, where we set t1 = 1 and tk+1 := 1
2

(
1 +

√
1 + 4t2k

)
:

X̃ = X(k) − s∇L
(k)
A (X(k))

X(k+1) = X̃+
tk − 1

tk+1

(
X̃−X(k)

)

The value X(k+1) is not the minimizer of L
(k)
A (X), but a monotone decrease in the

augmented Lagrangian function, i.e., L
(k)
A (X(k+1)) < L

(k)
A (X(k)), is achieved when no

acceleration is used. We added the acceleration as it empirically improves the conver-
gence rate. Putting these steps together, the inexact update of X becomes:
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Inexact Version: Update of X(k)

input: X(k), λ, β,Y
(k)
i

,W
(k)
i

,A, b

∇L
(k)
A

(X(k)) = λA∗

(
b−A(X(k))

)
+

N∑

i=1

Wi
(k)−NβX

(k) +

N∑

i=1

βY
(k)
i

∆g = ∇L
(k)
A

(X(k))−∇L
(k−1)
A

(X(k−1)), s =
|〈X(k) −X

(k−1) , ∆g〉|

〈∆g , ∆g〉
,

X̃ = X
(k) − s∇L

(k)
A

(X(k)), tk+1 = 1
2

(
1 +

√
1 + 4t2

k

)

output: X(k+1) = X̃+
tk − 1

tk+1

(
X̃−X

(k)
)

5.5. ADM algorithm for low-n-rank tensor recovery

After discussing the minimization of the appearing subproblems, we are now in the
position to present the complete ADM algorithm which we named ADM-TR.

The algorithm uses as input the linear operator A, the measurements b and the
parameters β, λ, cβ and cλ. It iteratively minimizes (15) for increasing parameters
of λ and β. When the inner iterations indicate a slow change per iteration, these
parameters are increased by constant factors cβ and cλ.

The loop is the application of the iterations of the ADM method (14) to (15). The
update of X is optimally performed via the exact update as described in section 5.3.
If the inverse function in the update rule for X should be difficult to calculate, an
inexact update step, as given in section 5.4 can be used.

(ADM-TR): ADM algorithm for low-n-rank tensor recovery

input: A, b, β, λ, cβ , cλ
initialization: X(0) = Y

(0)
i = W

(0)
i = 0, ∀i ∈ {1, . . . , N}, k = 0

repeat until convergence
if subproblem solved: β = cββ, λ = cλλ

X(k+1) = . . . % use exact or inexact update step

for i = 1 : N

Y
(k+1)
i = refold

(
shrink

(
X

(k+1)
(i) − 1

β
W

(k)
i,(i) ,

1
β

))

Wi
(k+1) = Wi

(k) − β
(
X(k+1) −Y

(k+1)
i

)

end
k = k+1

output: X(k)

Theorem 5.2 (Convergence of ADM-TR (E)). Assume that the optimal solution
set X∗ of problem (4) is nonempty. A sequence {X(k),Y(k),W(k)} generated by ADM-
TR (E), i.e., the ADM-TR algorithm with the exact update for X(k+1), cλ = cβ = 1,
is bounded, and every limit point of {X(k)} is an optimal solution of the original
problem (4).

Proof. We check the assumptions of Theorem 5.1. Cx is not bounded, but G∗G is
invertible as G∗G = NIT is a constant multiple of the identity operator on T . Thus
Theorem 5.1 can be applied to ADM-TR (E) and Theorem 5.2 follows.
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6. Numerical experiments

In this section, we evaluate the empirical performance of the proposed algorithms. We
performed experiments in the tensor completion setup, where we first used randomly
generated input data. We compared the results with other algorithms, namely LRTC
(Low Rank Tensor Completion) [6] and the N-way toolbox for MATLAB. Then we
applied the algorithms to the completion of third-order tensors, taken from medical
imaging (MRI scans of parts of the human body) and hyperspectral data.

Remark: The computational cost of the algorithms DR-TR and ADM-TR relates
as follows to the size of n1, . . . , nN and the size of N . The sizes ni determine
the size of the unfolded tensors and thereby influence the computational cost of
one (partial) singular value decomposition which is the main operation within the
shrinkage operator. A singular value decomposition of a matrix of dimensions n × n
has complexity O(n3) [20]. However, using the Lanczos algorithm for computing
only the singular vectors corresponding to the largest singular values speeds up the
calculation [28, 29]. The order N governs the number of different unfoldings of
the tensor. In total there are N shrinkage operations applied per iteration of the
algorithms.

Experiments with randomly generated problem settings: In each experiment we
generated a low-n-rank tensor X0 which we used as ground truth. Therefore, we
fixed the dimension r of a ‘core tensor’ S ∈ R

r×...×r which we filled with Gaussian
distributed entries (∼ N (0, 1)). Then, we generated matrices Ψ(1), . . . ,Ψ(N), with
Ψ(i) ∈ R

ni×r and set

X0 := S ×1 Ψ
(1) ×2 . . .×N Ψ(N).

With this construction, the n-rank of X0 equals (r, r, . . . , r) almost surely. We fixed
a percentage ρs of the entries to be known and chose the support of the known
entries uniformly at random among all supports of size ρs

∏N
i=1 ni. The values and

the locations of the known entries of X0 was used as input for the algorithms.
We used four different settings to test the algorithms. The order of the tensors

varied from three to five, and we also varied the n-rank and the fraction ρs of known
entries. Table 1 shows these different settings and the recovery performance for
different algorithms. The parameters were set to cβ = 2, cλ = 2, β = 1, λ = N, γ′ =
1/β and tk = 1. We compared the ADM algorithm with inexact (ADM-TR (IE)) and
exact (ADM-TR (E)) update rule for X, the Douglas-Rachford splitting for tensor
recovery (DR-TR) and the N-way toolbox for MATLAB.

The N-way toolbox for MATLAB fits a tensor of a given n-rank [r1, r2, . . . , rN ] to
the given input data TΩ, i.e., it essentially solves:

minimize ||XΩ −TΩ||F s. t. n-rank(X) = [r1, r2, . . . , rN ]

In table 1 we show the results for two different initializations of the N-way
toolbox. In N-way-E, we provided the exact n-rank of the ground-truth tensor X0

to the algorithm. As this is a very strong extra information, we also run the N-way
toolbox providing it an incorrect model information. In the setting N-way-IM, we told
the toolbox to fit a tensor whose unfoldings have rank: rank(X(i)) = rank((X0)(i))+1.

The experiments in table 1 can be considered to vary from small-sized problems
to large-sized problems. Note that the number of entries of a tensor of dimensions
20×20×20×20×20 has 205 = 3, 2 million entries. The computations were performed
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Table 1: Comparison of different algorithms for tensor completion

T = R
20×20×20×20×20, ρs = 0.2, r = 2 T = R

20×20×20×20×20, ρs = 0.3, r = 2

algorithm error # iter time (s) algorithm error # iter time (s)

ADM-TR (IE) 2.54e-4 2000 3676 ADM-TR (IE) 5.3e-4 509 3518

DR-TR 1.06e-5 1663 9819 DR-TR 1.1e-5 619 5630

ADM-TR (E) 1.89e-7 598 4033 ADM-TR (E) 7.8e-8 386 2587

N-way-E 2.8e-6 61 434 N-way-E 2.0e-6 40 284

N-way-IM 0.022 195 1482 N-way-IM 0.017 72 552

T = R
50×50×50×50, ρs = 0.4, r = 4 T = R

20×30×40, ρs = 0.6, r = 2

algorithm error # iter time (s) algorithm error # iter time (s)

ADM-TR (IE) 1.9e-4 1381 16884 ADM-TR (IE) 6.2e-4 2000 138

DR-TR 1.1e-5 624 8562 DR-TR 2.0e-6 627 43

ADM-TR (E) 3.8e-8 259 3983 ADM-TR (E) 2.0e-9 205 16

N-way-E 8.0e-7 28 180 N-way-E 1.7e-6 26 1.7

N-way-IM 0.0085 36 251 N-way-IM 0.12 279 21

on standard desktop machines, equipped with a dual core 2.66GHz processor and 8
GByte of memory.

All settings except N-way-IM returned a tensor that had a relative deviation of
the ground-truth tensor X0 of less than 10−3. The N-way toolbox with exact n-rank
information outperformed our algorithms, but it depends strongly on the knowledge
of the n-rank of the underlying tensor. When the mismatch to the correct n-rank was
introduced, the tensor could no longer be recovered. This shows the sensitivity of the
N-way toolbox on the model initialization.

Our algorithms do not use any information of the n-rank of the underlying tensor.
ADM-TR (E) performed best, converging faster than both DR-TR and ADM-TR (IE).
The inexact ADM algorithm performed worst in general. Applying it repeatedly
for the same problem dimensions and setup, its performance varied a lot whereas
ADM-TR (E) and DR-TR needed an almost constant number of iterations. For some
examples, ADM-TR (IE) was faster than DR-TR but never faster than ADM-TR (E).

The more entries are known, i.e., for higher values of ρs, the more probable it
becomes that the solution of the low-n-rank tensor recovery problem and the ground
truth tensor coincide. Additionally, the constraints on the tensor are stronger for
higher ρs, so the search space is smaller and the algorithms converge faster (see first
and second experiment in table 1 where the setting only differs in the value of ρs).

Next, we compared with the work on tensor completion by Liu et al, [6]. Their
algorithm solves the optimization problem

minimize
X,Y,M

1

2

N∑

i=1

αi||M−X||2F +
1

2

N∑

i=1

βi||M−Y||2F +
N∑

i=1

γi||M(i)||∗ (18)
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Table 2: Tensor recovery experiments with LRTC [6]

tensor dimensions ρ r # iter rel. error time(s)

T = R
20×20×20×20×20 0.2 2

500 0.379 1263
2000 0.0198 3535

T = R
20×20×20×20×20 0.3 2

500 0.489 1261
2000 0.034 3992

T = R
50×50×50×50 0.4 4

500 0.613 2216
2000 0.021 6238

T = R
20×30×40 0.6 2

500 0.0105 6.9
2000 0.168 26.5

(a) One slice of the original
tensor

(b) Input to the algorithm
(60% known entries)

(c) Recovery result

Figure 1: Simulations, using the KNIX data set [30]

subject to YΩ = TΩ

which they derived as substitute to their original problem formulation:

minimize
X,Y

1

2
||X−Y||2F s. t.

N∑

i=1

||X(i)||∗ ≤ c ∧ YΩ = TΩ

We set the parameters of their algorithm α, β, γ to 1. The algorithm fits a tensor to
the given entries, but it fails to recover the ground truth tensor X0. The maximum
iteration number was set once to 500, and once to 2000. A higher number of iterations
gives the algorithm time to get closer to the minimizer.

An iterative scheme adjusting the parameters α and β during the runtime should
result in a better fit to the ground truth tensor X0. The rank they reported for
the matrices Mi does not directly reflect the rank of the unfoldings X(i) as equality
Mi = X(i) = Y(i) is not enforced (this would require α and β to become large).

Experiments with medical/hyperspectral data: For the following experiments we used
medical data from the OsiriX repository [30], which contains a large number of different
data sets of mostly MRI scans; it is available online.

Figure 1 shows a recovery experiment using the KNIX data set of this
repository [30]. It contains 22 slices through a human knee, each having dimension
256 × 256. So the input data is a third-order tensor of dimensions 256 × 256 × 22.
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(a) One slice of the original
tensor

(b) Input to the algorithm
(50% known entries)

(c) Recovery result

Figure 2: Simulations, using the INCISIX data set [30]

(a) Four slices of the original tensor

(b) Corresponding input to the algorithm (70% known entries)

(c) Recovery result

Figure 3: BRAINIX data set [30]

We only show one of the slices exemplarily. In the left of figure 1 the ground truth is
shown. The middle image shows the known entries (60% of the entries are known).
On the right, we show the recovered image.

Next, we used the INCISIX data set. It contains 166 images of size 256 × 256.
Figure 2 shows the recovery result for one of the images from only 50% of the entries.

We picked one other data set of [30], the BRAINIX data set. It is a three-
dimensional scan of the head and brain of a subject. The data forms a third-order
tensor of dimensions 256× 256× 100. Figure 3 shows the recovery result from 70% of
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(a) One slice of the original
tensor

(b) Input to the algorithm
(50% known entries)

(c) Recovery result

Figure 4: Hyperspectral data, Urban data set [31]

the entries.
We also applied our algorithms to hyperspectral data. For this experiment we

used the URBAN data set from the Army Geospatial Center of the US Army Corps of
Engineers [31]. We used all 69 images (each image corresponds to a different band of
wavelengths of the light that was collected) and used a spatial resolution of 200× 200
pixels. The recovery result is shown for one of the bands in figure 4.

7. Concluding remarks

In this work we focussed on the algorithmic aspects of tensor completion via convex
optimization. Our experiments suggest, that tensors that have sufficiently low n-rank
and that have their singular spaces in general position can be recovered exactly from
a subset of the entries of the tensor via the solution of the low-n-rank tensor pursuit.
The derivation of recovery guarantees is still an open problem, but it seems that a
result along the lines of the results on matrix completion, [4, 5], is likely to hold. This
possibility provides an exciting direction of future theoretical work.
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