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Abstract

This paper proposes a new algorithm for linear system identification from noisy measure-
ments. The proposed algorithm balances a data fidelity term with a norm induced by the set of
single pole filters. We pose a convex optimization problem that approximately solves the atomic
norm minimization problem and identifies the unknown system from noisy linear measurements.
This problem can be solved efficiently with standard, freely available software. We provide rig-
orous statistical guarantees that explicitly bound the estimation error (in the Hy-norm) in terms
of the stability radius, the Hankel singular values of the true system and the number of measure-
ments. These results in turn yield complexity bounds and asymptotic consistency. We provide
numerical experiments demonstrating the efficacy of our method for estimating linear systems
from a variety of linear measurements.
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1 Introduction

Identifying dynamical systems from noisy observation of their input-output behavior is of fun-
damental importance in systems and control theory. Often times models derived from physical first
principles are not available to the control engineering, and computing a surrogate model from data
is essential to the design of a control system. System identification from data is thus ubiquitous in
problem domains ranging from process engineering, dynamic modeling of mechanical and aerospace
systems, and systems biology. Though there are a myriad of approaches and excellent texts on the
subject (see, for example [13]), there is still no universally agreed upon approach for this problem.
One reason is that quantifying the interplay between system parameters, measurement noise, and
model mismatch tends to be challenging.

This paper draws novel connections between contemporary high-dimensional statistics, operator
theory, and linear systems theory to prove consistent estimators of linear systems from small mea-
surement sets. In particular, building on recent studies of atomic norms in estimation theory [3, 1],
we propose a penalty function which encourages estimated models to have small McMillan degree.

A related family of system identification techniques use finite sample Hankel matrices to estimate
dynamical system models, using either singular value decompositions (e.g, [22, 15]) or semidefinite
programming [7, 12, 21, 8]. In all of these techniques, no statistical guarantees were given about
the quality of estimation with finite noisy data, and it was difficult to determine how sensitive
these methods were to the hidden system parameters or measurement noise. Moreover, since these
problems were dealing with finite, truncated Hankel matrices, it is never certain if the size of the
Hankel matrix is sufficient to reveal the true McMillan degree. Moreover, the techniques based
on semidefinite programming are challenging to scale to very large problems, as their complexity
grows superlinearly with the number of measurements.



In contrast, the atomic norm regularizer proposed in this paper is not only equivalent to the sum
of the Hankel singular values (the Hankel nuclear norm), but is also well approximated by a finite
dimensional, /; minimization problem. We show that solving least-squares problems regularized by
our atomic norm is consistent, and scales gracefully with the stability radius, the McMillan degree of
the system to be identified, and the number of measurements. Our numerical experiments validate
these theoretical underpinnings, and show that our method has great promise to provide concrete
estimates on the hard limits of estimating linear systems.

1.1 Notation

We adopt standard notation; D and S will denote respectively the open unit ball and the unit circle
in the complex plane C . Hs and H, will denote the Hardy spaces of functions analytic outside
D, with the norms

27 )
1Fllre = /0 SR and | fl = supl ()

respectively. £o([a,b]) will denote the set of square summable sequences on the integers in [a, b].

2 Atomic Decompositions of Transfer Functions

We restrict our attention to SISO systems in this manuscript, as this will simplify the presentation.
However, we will describe in the discussion how to extend our techniques to MIMO systems. Sup-
pose we wish to estimate a SISO, LTI system with transfer function G,(z) from a finite collection
of measurements y = ®(G). The set of all transfer functions is an infinite dimensional space, so
reconstructing G, from this data is ill-posed. In order to make it well posed, a common regulariza-
tion approach constructs a penalty function pen(-) that encourages “low-complexity” models and
solves the optimization problem

minimizeg ||®(G) — y||3 + ppen(G) . (2.1)

This formulation uses the parameter p to balance between model complexity and fidelity to the
data. The least-squares cost can be modified to other convex loss functions if knowledge about
measurement noise is available (as in [21, 16]), though in general it is less clear how to design a
good penalty function.

In many applications, we know that the true model can be decomposed as a linear combination of
very simple building blocks. For instance, sparse vectors can be written as short linear combinations
of vectors from some discrete dictionary and low-rank matrices can be written as a sum of a few
rank-one factors. In [3], Chandraskearan et al. proposed a universal heuristic for constructing
regularizers based on such prior information. If we assumed that

T
G, :Zciai, for some a; € A,¢c; € C,
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where A is an origin-symmetric set of “atoms” normalized to have unit norm and r is relatively
small, then the appropriate penalty function is the guage function (or the Minkowski functional)



induced by the atomic set A:

|Glla:=1inf{t : G €t conv(A)} = inf {Z lcal + G = Z caa} . (2.2)
acA acA

In [3], it is shown that minimizing the atomic norm subject to compressed measurements yielded the
tightest known bounds for recovering many classes of models from linear measurements. Moreover,
in [1], the atomic norm regularizer was studied in the context of denoising problems and was found
to produce consistent estimates at nearly optimal estimation error rates for many classes of atoms.
To apply these atomic norm techniques to system identification, we must first determine the
appropriate set of atoms. For discrete time LTI systems with small McMillan degree, we can always

decompose any finite dimensional, strictly proper system G(z) as:

G(z) = Z . iiai .

i=1

via a partial fraction expansion. Hence, it makes sense that our set of atoms should be single-pole
transfer functions. We propose the following atomic set for linear systems

I el

A:{%(Z>_ : we[D)}.

Z—w

The numerator is normalized so that the Hankel norm of each atom is 1. See the discussion in
Section 3 for precisely why this normalization is desirable.
The atomic norm penalty function associated with these atoms is
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where the summation implies that only a countable number of terms have nonzero coefficients c,,.
This expression finds the decomposition of G(z) into a linear combination of single pole systems
such that the /1 norm, weighted by the norms of the single poles, is as small as possible.

With this penalty function in hand, we now turn to analyzing its utility. In Section 3, we first
show that for most systems of interest ||G|| 4 is a well-defined, bounded quantity. Moreover, we
will show that the atomic norm is equivalent to the nuclear norm of the Hankel operator associated
with G. Hence, the models that are preferred by our penalty function will have low-rank Hankel
operators, and thus low McMillan degrees.

In Section 4, we turn to computation, demonstrating practical algorithms for approximating
atomic norm regularization problems for several classes of measurements. We will show that with
finite data, our atomic norm minimization problem is well-approximated by a finite-dimensional ¢;
norm regularization problem. In particular, using specialized algorithms adapted to the solution
of the LASSO [23], we can solve atomic norm regularization problems in time competitive with
respect to techniques that regularize with the nuclear norm and SVD-based subspace identification
methods.

Finally, we analyze the statistical performance of atomic norm minimization in Section 5. We
show that our algorithm is asymptotically consistent over several measurement ensembles of interest.
We focus on sampling the transfer function on the unit circle and present Hs error bounds in terms
of the stability radius, Hankel singular values, H,, norm, and McMillan degree of the system to be
estimated.



3 The Hankel Nuclear Norm and Atomic Norm Minimization

Let us first show that most LTI systems of interest do indeed have finite atomic norm, and, moreover,
that the atomic norm is closely connected with the sum of the Hankel singular values.

3.1 Preliminaries: the Hankel operator

Recall that the Hankel operator, I'g, of the transfer function G is defined as the mapping from the
past to the future under the transfer function G. Given a signal u supported on (—oo, —1], the
output under G is given by g*u where “x” denotes convolution and g is the impulse response of G:

o0
z) = Z grz "
k=1

I'¢ is then simply the projection of g*u onto [0, 00). An introduction to Hankel operators in control
theory can be found in [5, Chapter 4] or [24, Chapter 7).

The Hankel norm of G is the operator norm of I'; considered as an operator mapping fo(—o00, —1]
to ¢2]0,00). The Hankel nuclear norm of G is the nuclear norm (aka the trace norm or Schatten
l1-norm) of T'g. To be precise, an operator T is in the trace class Sy if the trace of (T*T)'/2
finite. This implies first that 7" is a compact operator and admits a singular value decomposition

g i(vi, f
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The sequence o; are called the Hankel singular values of T'. Moreover, the Schatten 1-norm of T is
given by
IT||1 = trace ( 1/2> ZU’

3.2 The atomic norm is equivalent to the Hankel nuclear norm

The rank of the Hankel operator determines the McMillan degree of the linear system defined by G.
Rank minimization is notoriously computationally challenging (see [20] for a discussion), and we
don’t expect to be able to directly penalize the norm of the Hankel operator in implementations.
Thus, as is common, a reasonable heuristic for minimizing the rank of the Hankel operator would
be to minimize the sum of the Hankel singular values, i.e., to minimize the Schatten 1-norm of
the Hankel operator. For rational transfer functions, we can compute the Hankel nuclear norm
via a balanced realization [24]. On the other hand, while the maximal Hankel singular value
can be written variationally as an LMI, we are not aware of any such semidefinite programming
formulations for the Hankel nuclear norm.

The following theorem provides a path towards minimizing the Hankel nuclear norm, minimizing
the atomic norm ||G(z)||4 as a proxy. Indeed, from the view of Banach space theory, the atomic
norm is equivalent to the Hankel nuclear norm.

Theorem 3.1 Let G € Hy. Then T'g is trace class if and only if there exists a sequence {\g} € £1
and a sequence {wy} with wy, € D such that

Z)\ 1wl (3.1)
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Moreover, we have the following chain of inequalities
sIGIAa < Tell < 1G]] (3-2)
where ||G|| 4 is given by (2.2).

Proof Outline Theorem 3.1 follows by carefully combining several different results from operator
theory. Peller first showed that transfer functions with trace class Hankel operators formed a Besov
space [18]. Peller’s argument can be found in his book [19]. The atomic decomposition of such
operators is due to Coifman and Rochberg [4]. The norm bounds (3.2) were proven by Bonsall and
Walsh [2]. There they show that the T is the best possible lower bound. They also show that if
ITglli < Cllglla for all g, then C' must be at least 1, so the chain of inequalities is nearly optimal.
A concise presentation of the full argument can be found in [17]. A modern perspective using the

theory of reproducing kernels can be found in [25].

Theorem 3.1 asserts that a transfer function has a finite atomic norm if and only if the sum of its
Hankel singular values is finite. In particular, this means that every rational transfer function has a
finite atomic norm. More importantly, the atomic norm is equivalent to the Hankel nuclear norm.
Thus if we can approximately solve atomic norm-minimization, we can approximately solve Hankel
nuclear norm minimization and vice-versa. We now turn to such computational considerations.

4 Algorithms for atomic norm minimization

From here on, let us assume that the G, that we seek to estimate has all of its poles of magnitude
at most p ( we will call p the stability radius, and treat it as a known parameter). Let D, denote
the set of all complex numbers with norm at most p. Note that if G, has stability radius p then

=i Gy = S Gl
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That is, we can restrict our set of atoms to only be those single pole systems with stability radius
equal to p. For the remainder of this manuscript, we assume that 4 only consists of such single
pole systems.

In what follows, we focus our attention on linear measurement maps. Let £; : H — C be a
linear functional that serves as a measurement operator for the system G(z). Many maps of interest
can be phrased as linear functionals of the transfer function,

1. Samples of the frequency response Ly (G) := G(e?%) for k = 1,...,n. From a control theoretic
perspective, this measurement operator corresponds to measuring the gain and phase of the
linear system at different frequencies.

2. Samples of the impulse response, L(G) := g;, for k =1,...,n and i € [1,00).
3. Convolutions of the impulse response with a pseudorandom signal uy: L;(G) := Z;’;l GjUk—j-
In all of these cases, we consider the problem

minimizeq > [£i(G) — vil* + pl|Glla - (4.1)
=1



This problem is equivalent to the constrained, semi-infinite programming problem

minimize, ¢ % S op Tk — yk|? + u Zwer |cw|
subject to  xp = Li(G) fori=1,...,n

_ cw(1=|wl?)
G = Zweﬂ)p zZ—w
Eliminating the equality constraint gives yet another equivalent formulation

minimize, % S ohq Tk — yk)? + p Zwer e
subject to xp = Zwer cw L (%) fori=1,...,n.

Z—w

(4.2)

Note that in this final formulation, our decision variable is z, a finite dimensional vector, and ¢,,, the
coefficients of the atomic decomposition. The infinite dimensional variable G has been eliminated.
Let us define a norm on R™ based on the formulation (4.2)

. 1 — |w|?
H$||E(A) = inf Z lew| @ ;= Z cwl; L —w

weD, weD,
Then we see that problem (4.1) is equivalent to the denoising problem
minimize, 3l — yl3 + ol e - (4.3)

Note that the first term is simply the squared Euclidean distance between y and x in R"™. The
second term is an atomic norm on R" induced by the linear map of the set of transfer functions
via the measurement operator £. In order to tractably solve (4.1), we thus only need focus on
computational schemes for computing or approximating ||z||z(4). The following proposition asserts
that we can approximate this finite dimensional atomic norm via a sufficiently fine discretization
of the unit disk.

Proposition 4.1 Let ID)Ef) be a finite subset of the unit disc such that for any w € D, there exists

av e ID)E,E) satisfying lw — v| < e. Define

. 1— |wl?
HxHC(Ae):mf Z lew| @i = Z cwli Y w
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Then there exists a constant C, € [0,1] such that
Cellzllccany < Nzllzay < lzllea. -

The set }D)Ef) is called an e-net for the set D,. We show in the appendix that when Lx(G) = G(e*),
C. is at least (1 — ﬂ(lff Ep)). Other measurement ensembles can be treated similarly.
When we replace ||z(|z(4) with its discretized counterpart ||z ;4 in (4.3),

minimize, 3 ||z — yl|5 + pllzl g a,)



is equivalent to

minimizec%HMc —yll3 + p Z |cw| (4.4)

we]]])/(f)
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and j indexes the set Dﬁf). That is M is an n X \]D)ff)] matrix. Problem (4.4) is a weighted ¢;
regularization problem with real or complex data depending on specific problem. We call (4.4)
Discretized Atomic Soft Thresholding (DAST), as coined in [1].

The DAST problem can be solved very efficiently with a variety of off-the-shelf tools including
SPARSA [23], FPC [10] or even more general purpose packages such as YALMIP [14] or CVX [9].
DAST yields an approximate solution to problem (4.1), and, as we will see, yields a statistically
consistent estimate provided the parameter € is adjusted to meet the desired numerical accuracy.

5 Statistical Bounds

Let £; : H — C be a linear functional that serves as a measurement operator for the system H(z).
In this section, let us suppose that we obtain noisy measurements of the form

yi=Li(H(z2)+w i=1,...,n.

where w; is a noise sequence consisting of independent, identically distributed random variables. In
this section, we will specialize our results to the case where £ returns samples from the frequency
response at uniformly spaced frequencies:

Li(H(z)) = H(z), zp=em  k=1,...,n.

While the techniques here extend to other measurement ensembles, they will be explored in a longer
version of the paper.

Our goal in this section is to prove that solving the DAST optimization problem yields a good
approximation to the transfer function we are probing. The following theorem provides a precise
statistical guarantee on the performance of our algorithm.

Theorem 5.1 Let G, be a strictly proper transfer function with bounded Hankel nuclear norm.

Suppose the noise sequence w; is i.i.d. Gaussian with mean zero and variance 0. Choose § € (0,1)

and set ¢ = TU=0 1oy ]D)Ef) be as in Proposition 4.1 and let ¢ be the optimal solution of (4.4) with
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Set G(z) = > wen® éw%. Then if the set of vectors {L(p,) € R™ : a € ]D);f)} spans R™, we
p
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Corollary 5.2 There is a quantity C' depending on p and o such that for sufficiently large n
A _1
IG(2) = Gu(2)3, <ClTq,[1n2
with probability exceeding 1 — e=°™).

Before we describe how to prove this theorem and its corollary, let us first unpack the features.
First of all, the right hand side is a parameter of the number of samples, the Hankel nuclear norm
of the true system, and the stability radius of the true system. Also, if the McMillan degree of
G.(z) is d, then we can upper bound the Hankel nuclear norm by the product of the McMillan
degree and the Hankel norm of G,: ||I'q, |1 < d|Tq,||. Second, note that as n tends to infinity, the
right hand side tends to zero. In particular, this means that our discretized algorithm is consistent,
and we can quantify the worst case convergence rate.

The proof of theorem 5.1 is provided in the appendix. We prove this theorem by first upper
bounding the Hs in terms of the mean square error on the observed samples. We show that this
empirical mean square error can be upper bounded in terms of the Hankel nuclear norm of G,
times the dual atomic norm of the noise sequence w. We estimate this norm, and in the process
compute the optimal value of the regularization parameter. Putting these pieces together yields
our main result.

6 Numerical Experiments

In this section we validate the proposed framework via some preliminary numerical experiments
conducted in MATLAB. In many of the experiments where the solution of convex optimization
problems was required, the software package CVX [9] was used. Throughout our experiments, the
discretization of the unit circle was held to approximately 2000 points.

In the first experiment we consider a stable system G with two poles. We make m = 80
noisy observations of the frequency response by evaluating the transfer functions G(z;) at regularly
spaced frequencies z; = e%i on the complex unit circle. The noise is additive i.i.d. zero-mean
Gaussian with a variance of o2 = 10~%. We reconstruct G (z) by DAST as proposed in section 4.
Our algorithm recovers a system of degree 6 which achieves an Hy performance error of .0043 and
Hoo error of .0079. The locations of the true and recovered poles are depicted graphically in Fig.
1.

In Fig. 2 we consider again the problem of recovering a second order system from noisy frequency
response measurements. The noise variance is set to 0?2 = 107, The plot below shows the
performance of DAST as the number of measurements increases. The error metric used is the Ho
norm.

In Fig. 3, we compare our algorithm to a widely used method known as subspace identification
[13, Chapter 10]. A second order system, starting from an initial condition of z[0] = 0 is excited
by a random input u[t] corresponding to an i.i.d. sequence of zero-mean, unit-variance Gaussian
random variables for m time steps. We record the output y[t] of the system for m time steps. From
this input-output relationship, we use DAST and subspace identification to attempt to reconstruct
the unknown system. We plot the estimation error in the Hs norm as m is increased from 10 time
units to 120 time units. As is evident, the performance of DAST is superior to that of subspace
identification when m is small, i.e. of the order of 10 to 50 measurements.
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Figure 1: In the figure above, the locations marked with a circle represent the locations of
the poles (in the complex plane) of a second order discrete time LTI system. The locations
marked with a cross correspond to poles recovered by DAST.
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Figure 2: In the figure above, we plot the Hs estimation error between the true system and
the recovered system as the number of frequency measurements m varies.
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Figure 3: In the figure above, we compare Hy estimation error of the algorithm proposed in
this paper (DAST) and the error obtained by the subspace identification method.

Another aspect that we emphasize is that in these experiments, subspace identification was
assisted with the knowledge of the true system order. If the wrong model order was used, the
performance of subspace identification worsened noticeably. By contrast, DAST does not need
knowledge of the true system order.

7 Conclusion

By using the atomic norm framework of [3], we were able to posit a reasonable regularizer for linear
systems, understand the computational demands of such a regularizer, and analyze its statistical
performance. Since it is closely connected to the Hankel nuclear norm but is computationally more
practical, we believe that our atomic norm will be useful in a variety of practical implementations
and also in theoretical analysis. However, there are still several outstanding questions to address
before we fully understand the potential of this norm. We list several of these open problems here.

Other measurement ensembles Our analysis in Section 5 focused on the particular case of
sampling the frequency response at regular intervals. By focusing on this example, we were able
illustrate the critical ingredients to computing convergence rates. First, we needed to show that
our measurement error provided a reasonable upper bound on the distance to the true transfer
function. Second, we used convex analysis to upper bound the measurement error in terms of the
statistics of the noise process. Third, we estimated the noise statistics using probabilistic techniques
and appealing to the structure of the atomic set and its e-nets. This methodology can be extended
to the other sampling methods described in Section 4, and may also be extendable to estimating
transfer functions from pairs of input-output time series.

Fast Rates and minimax optimality The rates provided by Theorem 5.1 demonstrate that
the DAST algorithm is asymptotically consistent. However, we believe the upper bound we have
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derived is quite crude. In particular, as discussed in [1], it may very well be possible to improve
our upper bounds by leveraging more of the geometry of the set of single-pole transfer functions.
It would be interesting to find reasonable lower-bounds on the reconstruction error from limited
measurements, and to see how close we can match these worst-case estimates via a new analysis.

Interpolating with derivatives While gridding the space of poles enables us to quickly solve
atomic norm problems, a main drawback is that we are then can never exactly localize the true poles
of the system without an extremely fine grid. One recent proposal to enable such a localization uses
a linearization technique to simultaneously fit a model on the grid points and at the derivatives of
the transfer functions at these grid points [6]. It would be of interest to see if such an adjoining
method could work in this setting, and future experiments will evaluate the improvements on system
identification in theory and in practice.

Extension to MIMO Systems While we focused on the single-input single-output (SISO)
case in this paper, we expect that these techniques would extend to the multi-input multi-output
(MIMO) case. One simple extension to note is that if the number of inputs and outputs in the
system remain small, the SISO techniques presented herein could be applied to each input-output
pair. Alternative approaches that avoid this pairwise identification would be important in large-
scale systems with many inputs and outputs, this is an important direction for future research.

To extend our methodology to MIMO systems, we need to find an appropriate set of atoms.
One possibility is the set

_ 2 *
A:{(l‘wUCb cweD,ceS beSp‘l},

Z—w

where p is the number of inputs and r is the number of outputs. Any discrete time, MIMO system
with McMillan degree d can be written in terms of d of these atoms. The only difficulty remains
computing or approximating the norm [|ul|z(4) for finite measurements as described in Section 4.
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A Useful Lemmas

Before we proceed with the proofs of our main results, let us record a few useful lemmas. Recall
that our atomic functions are defined as

1—|af?
#alz) = z—a
Lemma A.1 For any a € D, ||pa(2)||H., < 2.
_ 0y |1=lal? 1—|a|?
Proof For z = exp(if), |[—,-| < | —a] | <1+ |a| <2 |

Lemma A.2 For any a € D, and 2z, = exp(iby) we have
1+p
Palz1) — palz2)] < E|‘91 — 6o (A1)

Proof

1—1a> 1—laf?

|Pa(21) = wa(22)] =

zZ1 —a zZ9 —Q
21 — 29
< (1—lal?
< (1 —lal%) o =) —a)
(1—la) 1+p
< 5|7 — 2| < ——101 — 0y].
(1 — la])? 1—p
|
Lemma A.3 For any a,b € D,,
2p
ITp = Tgplls < 7—la—1]. (A.2)
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Proof The Hankel operator for ¢,(2) is given by the semi-infinite, rank one matrix

1 a a® & clz
2 3 4
a‘ a° a 9
1—|al? =1—la? | @
(I—1al*) | g2 o3 a4 & (1—1al?) "

Q =

SIS
w N

T

Let ¢, = /1 — |al? [ 1 a a® a® - ]T. Note that (, € £ with norm equal to 1. Also note

that we have

_ V1-—[a?/1— b

1—ab

(Cav Cb>

Then we have

ITg, = Tyl = [1€aCs = GG7 ln
= HC@(Ca - Cb)T + (Ca - Cb)Cl?”l
< 16alCa = G) Tl + 11(Ga — G)G I

= 2[[Ca = Cblle
1—Ja\/1— |02
=2V2 1—9‘{2\/ \a|\{ 19
1—ab
2
< ja -y
—p

(A.3)

(Ada)
(A.4b)
(A.4c)

(A.4d)

Here, (A.4b) is the triangle inequality. (A.4c) follows because the nuclear norm of a rank one
operator is equal to the product of the ¢ norm of the factors. (A.4d) follows from (A.3). The final
inequality follows from analyzing the taylor series of the preceding expression.

B Dual norms

We record here a few basic properties about dual atomic norms that we need for our proofs (see [3, 1]

for more details). For an atomic set A, the dual norm is given by

l[2[I%4 = sup(a, z) .
acA

Note that for this norm, we have the generalization of Hélder’s inequality (x,z) < ||zl 4l 2[%.

Moreover, note that we have the chain of inequalities
allzlla < flzlla < Bllfla
for some a <1 and 8 > 1 for all z if and only if
Bz < Nzl < @ izl

for all z.
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C Proof of Proposition 4.1

First note that for any atomic sets A C A, ||z||4 < ||z]|4. The harder part of this proposition is
the lower bound. To proceed, we use the dual norm.

Let D,(,T) be a subset of I, such that for every a € D,, there exists an a € ID),(,T) satisfying

)

la —a| < 7. For each a € D,, we will actually denote @ as the closest point in D,(OT to a.

Now observe that
8 16pT
1£(va — a)llciay < llva — @alla < ;HF% — Tyl < (l—p)

Here, the first inequality follows from our reasoning in Section 4. The second inequality is Theo-
rem 3.1, and the final inequality is by (A.2).
We then can compute

||Z”2(,4) = sup (L(¢a), 2)
ach,

= sup (L(va), 2) + (L(va — pa), 2)

acD,
< sup (L(pa),2) + sup {L(pa — ¥a), 2)
aEID)E;r> a€D,

= lzllzca,) + sup (L(va — ¥a), 2)
ach,

< Mellzean + 5w l1£(0a = o)l l2llzca
aclp

N 16p7 N
< llzllzea,y + mHZHL(A) :

Rearranging both sides of this inequality gives
20124y < CF M2l

: _ 16pT :
with C; =1 — TA=p) completing the proof.

D Optimality conditions for DAST

The following two important inequalities were proven in [1, Section 2]:

Theorem D.1 Let Q C R"™ be an arbitrary set of atoms. Suppose that we observe y = T4 + w
where w ~ N'(0,0%I). Let & denote the optimal solution of

minimizez 5|z — |3 + pllzllo
with p > [|w||g. Then we have

12 — 24lf3 < 2pllz4llo (D.1)
I12lo < llzallo + 1w, & — 2.) - (D.2)

We will use these inequalities in the following proof
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E Proof of Theorem 5.1

To upper bound the Hs norm, let us use some properties of functions which admit atomic decom-
positions. Note that for any function, H(z) = >, cp Cwpw(2) With [[H||4 = Y, cp [cw|, we have,
for any 21,20 € S,

[H(21)* = [H(22)] = (|H(z1)| = [H(z2))(|H (21)] + |H (22)])
< 2[H(z1) — H(22)|[|H |7

<2 (Z |ewlpw(21) — puw(z2 ) (Z ‘Cw|H(Pw”HOO> (E.1a)

weD webD

< 4ﬂ (Z |cw\> 101 — 6| (E.1b)

webD

I+p
—47”HHA‘91 02| -

Here, (E.la) is the triangle inequality and (E.1b) uses Lemmas A.1 and A.2.
Let A=G,— G and 6, = M. Then we can bound the norm of A as

2
|w%—/ (¢) 26

Or+1
/ 19 ‘ do
O

1 n— 1 9k+1 1_|_p
ZZ/ QAmWH a8 - 0 ) df
k=
1 47T 1 1+4+p
N A INGY
k=0

The inequality here follows from our preceding argument.
Now, in this expression, we need to both upper bound the size of A on the measured frequencies
and its atomic norm. We will bound the latter in terms of the former:

INVESTA VRN T (E.20)
= G+ L@l e (B:2b)
< IGa+ LG oay + ™, £(E — G)) (B.20)
<G+ (1= 0) LG e + 17w, £C — G) (B.20)
< 2200+ M, £(C — L) (B2¢)
n—1 1/2
s2|mnA+unm<§]A2%|) . GED
k=1

(E.2a) is the triangle inequality. (E.2b) follows from how we defined G. (E.2¢) follows from
Theorem D.1. (E.2d) follows from Proposition 4.1. (E.2e) follows because ||L(H )| ) < [[H]|.4 for
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all linear maps £ and transfer functions H. (E.2f) is Hélder s inequality. Note that the quantity

[£(G+)ll£a.) could be infinite if the set {L£(¢a) : a € ]D) } does not span R™. This is precisely
what leads to us including this assumption in the theorem statement.
To bound the size of A on the frequency grid, we use Theorem D.1:

- n

1 21 2%
;Z‘A PP < LG ey < (1= 0) TGl
k=1

Let w ~ N(0,0%1,). Using the well known upper bound for maximum of Gaussian variables
(see, for example [11]), we have

E|wllf ) =E | sup (L(ga).w)| <o <sup ||£(<Pa)||2> V/2log D]

ae]D)Ef) a€b,

Now, [|[£(va)ll2 < Vnll@allH., < 2¢/n. Moreover, by a simple volume argument, |D 6)] < 102457

m2(1—p)252°
To see this, suppose S is a maximal set of points on DD, which are separated by at least 7. The
maximal size of such a set is at most 47%2. Moreover, |S| > UD)E;S)\. Now set 7 = € = “(llglf’)é. In

particular, note that we have E[H“’HZ(Ae)] =1ip.
Now we can put all of the ingredients together.

87Tw 1+

2
167 1+p
— G
1024p%
1+p\ 8o \/210g(7r2(1 p7252)
<(1+2
_(+w1_)1_5 U516,
167 1—|—p
— G,
a1 || %

1+p 11p2 ”G*Hil ||G*||?4
<59~ 4021
_591_p \/J Og(<1_p)6 n(1_5)2+n(1_5)2

as desired.
Applying the inequality ||Gy|l4 < 2||T'q, |1 completes the proof.
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