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Abstract
Suppose that one observes an incomplete subset of entries 
selected from a low-rank matrix. When is it possible to com-
plete the matrix and recover the entries that have not been 
seen? We demonstrate that in very general settings, one 
can perfectly recover all of the missing entries from most 
sufficiently large subsets by solving a convex programming 
problem that finds the matrix with the minimum nuclear 
norm agreeing with the observed entries. The techniques 
used in this analysis draw upon parallels in the field of 
compressed sensing, demonstrating that objects other 
than signals and images can be perfectly reconstructed 
from very limited information.

1. INTRODUCTION
In many practical problems of interest, one would like to 
recover a matrix from a sampling of its entries. As a moti-
vating example, consider the task of inferring answers in 
a partially filled out survey in which questions are asked 
to a collection of individuals. Then we can form a matrix 
where the rows index the individuals and the columns 
index the questions. We collect data to fill out this table, 
but unfortunately, many questions are left unanswered. Is 
it possible to make an educated guess about what the miss-
ing answers should be? How can one make such a guess? 
Formally, we may view this problem as follows. We are 
interested in recovering a data matrix M with n1 rows and 
n2 columns but have access to only m of its entries, where m 
is much smaller than the total number of entries, n1n2. Can 
one recover the matrix M from m of its entries? In general, 
everyone would agree that this is impossible without some 
additional information.

In many instances, however, the matrix we wish to 
recover is known to be structured in the sense that it is low-
rank or approximately low-rank. (We recall for complete-
ness that a matrix has rank r if its rows or columns span an 
r-dimensional space.) Consider the following two scenarios 
as prototypical examples.

˲˲ The Netflix problem. In the area of recommender sys-
tems, users submit ratings on a subset of entries in a da-
tabase, and the vendor provides recommendations based 
on the user’s preferences.31 Because users only rate a few 
items, one would like to infer their preference for unrated 
items. A special instance of this problem is the now famous 
Netflix problem.24 Users (rows of the data matrix) are given 
the opportunity to rate movies (columns of the data ma-
trix), but users typically rate only very few movies so that 
there are very few scattered observed entries of this data 
matrix. Yet, one would like to complete this matrix so that 

the vendor (here Netflix) might recommend titles that any 
particular user is likely to be willing to order. In this case, 
the data matrix of all user-ratings may be approximately 
low-rank, because only a few factors contribute to an indi-
vidual’s tastes or preferences.

˲˲ Triangulation from incomplete data. Suppose we are 
given partial information about the distances between ob-
jects and would like to reconstruct the low-dimensional 
geometry describing their locations. For example, we may 
have a network of low-power, wirelessly networked sensors 
scattered randomly across a region. Suppose each sensor 
only has the ability to construct distance estimates based 
on signal strength readings from its nearest fellow sensors. 
From these local distance estimates, we can form a partially 
observed distance matrix. We can then estimate the true dis-
tance matrix whose rank will be equal to 2 if the sensors are 
located in a plane or 3 if they are located in three-dimension-
al space.26, 32 In this case, we only need to observe a few dis-
tances per node to have enough information to reconstruct 
the positions of the objects.
These examples are of course far from exhaustive and 
there are many other problems which fall in this general 
category.

Suppose for simplicity that we wish to recover a square 
n × n matrix M of rank r. Although M contains n2 numbers, 
our assumption that its rank is r means that it can be rep-
resented exactly by its singular value decomposition (SVD)

	 	 (1.1)

where VT denotes the transpose of V. S is an r × r diag-
onal matrix with real, positive elements sk > 0. U is an  
n × r matrix with orthonormal columns u1, …, ur. That is, 
uk

Tuk = 1 and ui
T uj = 0 if i ≠ j. V is also n × r with orthonor-

mal columns v1, …, vr. The column space of M is spanned 
by the columns of U, and the row space is spanned by the 
columns of V.

The number of degrees of freedom associated with a rank 
r matrix M is r(2n − r). To see this, note that S has r nonzero 
entries, and U and V each have nr total entries. Since U and 
V each satisfy r(r + 1)/2 orthogonality constraints, the total 
number of degrees of freedom is r + 2nr − r (r + 1) = r(2n − r). 
Thus, when r is much smaller than n, there are significantly 
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fewer degrees of freedom than the size of M would suggest. 
The question is then whether M can be recovered from a 
suitably chosen sampling of its entries without collecting 
n2 measurements.

In this paper, we demonstrate that most low-rank 
matrices can be indeed recovered from a very sparse 
sampling of their entries. In Section 2, we summarize 
the main results of our paper, highlighting the necessary 
assumptions, algorithmic ingredients, and theoretical 
foundations of reconstructing matrices from a presented 
collection of entries. In Section  3, we  survey the subse-
quent developments in this area, including refinements 
and important extensions of our theory. We  close with a 
discussion of further progress and advances in low-rank 
and sparse modeling.

2. MATRIX COMPLETION
Which matrices?
In general, one cannot hope to be able to recover a low-rank 
matrix from a sample of its entries. Consider the rank 1 
matrix M equal to

	 	 (2.1)

where here and throughout, ei is the ith canonical basis vec-
tor in Euclidean space (the vector with all entries equal to 
0 but the ith equal to 1). The matrix M has the entries of x 
along its first row and all the other entries are 0. Clearly, this 
matrix cannot be recovered from a sampling of its entries 
unless we see all of the entries in the first row. As another 
example, the matrix e1eT

n is a matrix with a 1 in the (1, n) 
entry and 0s everywhere else. If we do not see this upper 
right corner, then we cannot distinguish the matrix from 
the all 0s matrix.

Even if it is impossible to recover all low-rank matrices 
from a set of sampled entries, can one recover most of them? 
To investigate this possibility, we introduce a simple model 
of low-rank matrices.

Definition 2.1. Let M be a rank r matrix with SVD defined 
by (1.1). Then we say that M belongs to the random orthog-
onal model if the family {uk}1 ≤ k ≤ r is selected uniformly at 
random among all families of r orthonormal vectors, and 
similarly for {vk}1 ≤ k ≤ r. The two families may or may not be 
independent of each other. We make no assumptions about the 
singular values, sk.

If a matrix is sampled from the random orthogonal 
model, then we would expect most of the entries to be non-
zero. This model is convenient in the sense that it is both 
very concrete and simple, and useful in the sense that it will 
help us fix the main ideas. In the sequel, however, we will 
consider far more general models. The question for now is 
whether or not one can recover such a generic matrix from 
a sampling of its entries.

Which sampling sets?
Clearly, one cannot hope to reconstruct any low-rank matrix 
M—even of rank 1—if the sampling set avoids any column 
or row of M. Suppose that M is of rank 1 and of the form xyT, 
x, y ∈ Rn so that the (i, j) entry is given by Mij = xi yj. Then, if we 
do not have samples from the first row, one could never infer 
the value of the first component x1 as no information about 
x1 is observed. There is, of course, nothing special about the 
first row and this argument extends to any row or column. 
To have any hope of recovering an unknown matrix, one 
needs to have access to at least one observation per row and 
one observation per column.

This example demonstrates that there are sampling sets 
where one would not even be able to recover matrices of 
rank 1. But what happens for typical sampling sets? Can 
one recover a low-rank matrix from almost all sampling sets 
of cardinality m? Formally, suppose that the set W of loca-
tions corresponding to the observed entries ( (i, j) ∈ W if Mij 
is observed) is a set of cardinality m sampled uniformly at 
random. Then, can one recover a generic low-rank matrix 
M, perhaps with very large probability, from the knowledge 
of the value of its entries in the set W?

Which algorithm?
If the number of measurements is sufficiently large, and 
if the entries are close to uniformly distributed, one might 
hope that there is only one low-rank matrix with these 
entries. If this were true, one would want to recover the data 
matrix by solving the optimization problem

	 	 (2.2)

where X is the decision variable and rank(X) is equal to the 
rank of the matrix X. The program (2.2) is a common sense 
approach which simply seeks the simplest explanation fit-
ting the observed data. If there were only one low-rank object 
fitting the data, the solution of (2.2) would recover M per-
fectly. This is unfortunately of little practical use, because 
not only is this optimization problem NP-hard but also all 
known algorithms which provide exact solutions require 
time doubly exponential in the dimension n of the matrix in 
both theory and practice.

If a matrix has rank r, then it has exactly r nonzero sin-
gular values so that the rank function in (2.2) is simply the 
number of nonvanishing singular values. In this paper, we 
consider an alternative which minimizes the sum of the sin-
gular values over the constraint set. This sum is called the 
nuclear norm,

	 	

where, here and below, sk(X) denotes the kth largest singular 
value of X. The heuristic optimization we study is then given by

	 	 (2.3)
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Whereas the rank function is equal to the number of non-
vanishing singular values, the nuclear norm equals their 
sum. The nuclear norm is to the rank functional what the 
convex 1 norm is to the 0 norm in the area of sparse signal 
recovery. The main point here is that the nuclear norm is a 
convex function and can be optimized efficiently via semi-
definite programming.14

There are many norms one could define for a given 
matrix. The operator norm is the largest singular value. 
The Frobenius  norm is equal to the square root of the sum 
of the squares of the entries. This norm is akin to the stan-
dard Euclidean norm on a real vector space. Why should the 
nuclear norm provide lower rank solutions than either of 
these two more commonly studied norms?

One can gain further intuition by analyzing the geometric 
structure of the nuclear norm ball. The unit nuclear norm 
ball is precisely the convex hull of the rank 1 matrices of unit 
Frobenius norm. The nuclear norm minimization problem 
(2.3) can be interpreted as inflating the unit ball until it 
just touches the affine space Xij = Mij. Such an intersection 
will occur at an extreme point of the nuclear norm ball, and 
these extreme points are sparse convex combinations of 
rank 1 matrices. That is, the extreme points of the nuclear 
norm ball have low rank. This phenomenon is depicted 
graphically in Figure 1. There, we plot the unit ball of the 
nuclear norm for matrices parametrized as

The extreme points of this cylindrical object are the rank 1 
matrices with unit Frobenius norm. The red line in this figure 
is a “random,” one-dimensional, affine subspace which, as 
expected, intersects the nuclear norm ball at a rank 1 matrix.

As further motivation, an interesting connection exists 
between the nuclear norm and popular algorithms in 

data-mining and collaborative filtering. In these fields, 
researchers commonly aim to find an explicit factorization 
X = LRT that agrees with the measured entries. Here L and R 
are n × k matrices. Since there are many possible such factor-
izations that might agree with the observations, a common 
approach searches for matrices L and R that have Frobenius 
norm as small as possible, that is, the solution of the optimi-
zation problem

	 	 (2.4)

where we are minimizing with respect to L ∈ Rn×k, R ∈ Rn×k, 
and  X ∈ Rn×n, and ⋅F denotes the Frobenius norm. 
Surprisingly, the optimization problem (2.4) is equivalent 
to minimization of the nuclear norm subject to the same 
equality constraints provided k is chosen to be larger than 
the rank of the optimum of the nuclear norm problem (2.3).30

To get an intuition for this equivalence, take any matrix X 
of rank k. Suppose the SVD is X = USVT. If we set  and 

, we see that

because  for all j. Thus, the optimal solution 
of (2.3) is suboptimal for (2.4). The full equivalence can be 
seen via an appeal to semidefinite programming and can be 
found in Recht et al.30

The main advantage of this reformulation (2.4) is to sub-
stantially decrease the number of decision variables from n2 
to 2nr. For large problems, this leads to a significant reduc-
tion in computation time, such that very large instances can 
be solved on a desktop computer. On the other hand, the for-
mulation (2.4) is nonconvex and thus potentially has local 
minima that are not globally optimal. Nonetheless, this fac-
tored approximation (2.4) of the nuclear norm is one of the 
most successful stand-alone approaches to solving the Net-
flix Prize problem.16, 24 Indeed, it was one of the foundational 
components of the winning team’s prediction engine.

2.1. Main results
As seen in our first example (2.1), it is impossible to recover 
a matrix which is equal to 0 in nearly all of its entries unless 
we see all the entries of the matrix. This is particularly likely 
if the singular vectors of a matrix M have most of their mass 
concentrated in a few coordinates. For instance, consider 
the rank 2 symmetric matrix M given by

where the singular values are arbitrary. Then, this matrix 
vanishes everywhere except in the top-left 2 × 2 corner, and 
one would basically need to see all the entries of M to be 
able to recover this matrix exactly. There is an endless list 
of examples of this sort. Hence, we arrive at the notion that 
the singular vectors need to be sufficiently spread across 

Figure 1. Unit ball of the nuclear norm for symmetric 2 × 2 matrices. 
The red line depicts a random one-dimensional affine space. Such a 
subspace will generically intersect a sufficiently large nuclear norm 
ball at a rank one matrix.
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all components—that is, uncorrelated with the standard 
basis—in order to minimize the number of observations 
needed to recover a low-rank matrix. This motivates the 
following definition.

Definition 2.2. Let U be a subspace of Rn of dimension r 
and  PU be the orthogonal projection onto U. Then the coher-
ence of U (vis-à-vis the standard basis (ei)) is defined to be

Note that for any subspace, the smallest m(U) can be is 1, 
achieved, for example, if U is spanned by vectors whose 
entries all have magnitude . The largest possible value 
for m(U) is n/r which would correspond to any subspace that 
contains a standard basis element. Matrices whose column 
and row spaces have low coherence are likely not to vanish 
in too many entries and are our most likely candidates for 
matrices that are recoverable from a few samples. As we dis-
cuss below, subspaces sampled from the random orthogo-
nal model (Definition 2.1) have nearly minimal coherence.

To state our main result, we introduce two assumptions 
about an n1 × n2, rank r matrix M whose SVD is given by 
(1.1) and with column and row spaces denoted by U and V, 
respectively.

A0 � The coherences obey max(m (U), m(V) ) ≤ m0 for some 
m0 > 0.

A1 � The n1 × n2 matrix  has a maximum entry boun
ded by  in absolute value for some m1 > 0.

These definitions implicitly define two critical parameters, 
m0 and m1. These m’s may depend on r and n1, n2. Moreover, 
note that A1 always holds with  since the (i, j )th 
entry of the matrix  is given by  and by 
the Cauchy–Schwarz inequality,

Hence, for sufficiently small ranks, m1 is comparable to m0. 
We say that a subspace U ⊂ Rn is incoherent with the stan-
dard basis if m(U) is at most logarithmic in n. As we show 
in the full version of this paper that, for larger ranks, both 
subspaces selected from the uniform distribution and 
spaces constructed as the span of singular vectors with 
bounded entries are not only incoherent with the standard 
basis but also obey A1 with high probability for values of m1 
at most logarithmic in n1 and/or n2.

We are now in a position to state our main result: if a 
matrix has row and column spaces that are incoherent with 
the standard basis, then nuclear norm minimization can 
recover this matrix from a random sampling of a small num-
ber of entries.

Theorem 2.3. Let M be an n1 × n2 matrix of rank r obey-
ing A0 and A1 and put n = max(n1, n2). Suppose we observe m 
entries of M with locations sampled uniformly at random. Then 
there exist constants C, c such that if

for some b > 2, then the minimizer to the problem (2.3) is unique 
and equal to M with probability at least 1 − cn−b. For  
this estimate can be improved to

with the same probability of success.

Theorem 2.3, proven in the full version of this paper, 
asserts that if the coherence is low, few samples are required 
to recover M. For example, if m0 is a small constant and the 
rank is not too large, then the recovery is exact with large 
probability provided that

	 	 (2.5)

We give two illustrative examples of matrices with inco-
herent column and row spaces. This list is by no means 
exhaustive.

1.	 The first example is the random orthogonal model 
(see Definition 2.1). For values of the rank r greater 
than log n, m(U) and m(V ) are O(1), m1 = O(log n) both 
with very large probability. Hence, the recovery is 
exact on most sampling sets provided that m ≤ Cn5/4r 
log n. When r ≤ n1/5, we can strengthen this bound to 
m ≤ Cn6/5r log n.

2.	 The second example is more general and simply 
requires that the components of the singular vectors of 
M are small. Assume that the uj and vj’s obey

	 	 (2.6)

for some value of mB = O(1). Then, the maximum coherence is 
at most mB since m(U) ≤ mB and m(V) ≤ mB. Further, we show in 
the full version of this paper that A1 holds most of the time 
with . Thus, for matrices with singular vectors 
obeying (2.6), the recovery is exact provided that m obeys 
(2.5) for values of the rank not exceeding mB

−1n1/5.

2.2. Numerical validation
To demonstrate the practical applicability of the nuclear 
norm heuristic for recovering low-rank matrices from their 
entries, we conducted a series of numerical experiments 
for a variety of the matrix sizes n, ranks r, and numbers of 
entries m. For each (n, m, r) triple, we repeated the follow-
ing procedure 50 times. We generated M, an n × n matrix of 
rank r, by sampling two n × r factors ML and MR with i.i.d. 
Gaussian entries and setting M = MLMR

T. We sampled a sub-
set W of m entries uniformly at random. Then, the nuclear 
norm minimization problem was solved using the semi-
definite programming solver, SeDuMi.33 We declared M to 
be recovered if the solution returned by the solver, Xopt, sat-
isfied Xopt − MF/MF < 10−3. Figure 2 shows the results of 
these experiments for n = 50. The x-axis corresponds to the 
fraction of the entries of the matrix that are revealed to the 
SDP solver. The y-axis corresponds to the ratio between the 
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dimension of the rank r matrices, dr = r (2n − r), and the num-
ber of measurements m.

Note that the axes range from 0 to 1 as a value >1 on 
the x-axis corresponds to an overdetermined linear sys-
tem where the semidefinite program always succeeds, and 
a value > 1 on the y-axis corresponds to when there are an 
infinite number of rank r matrices with the provided entries. 
The color of each cell in the figures reflects the empiri-
cal recovery rate of the 50 runs (scaled between 0 and  1). 
Interestingly, the experiments reveal very similar plots for 
different n, suggesting that our theoretical upper bounds on 
recovery may be rather conservative.

For a second experiment, we generated random posi-
tive semidefinite matrices and tried to recover them from 
their entries using the nuclear norm heuristic. As above, 
we repeated the same procedure 50 times for each (n, 
m, r) triple. We generated M, an n × n positive semi-
definite matrix of rank r, by sampling an n × r factor MF 
with i.i.d. Gaussian entries and setting M = MFMF

T. We 
sampled a subset W of m entries uniformly at random. 
Then, we solved the nuclear norm minimization prob-
lem with an additional constraint that the decision vari-
able be positive definite. Figure 2(b) shows the results 
of these experiments for n = 50. The x-axis again corre-
sponds to the fraction of the entries of the matrix that 
are revealed to the solver, but, in this case, the number of 
measurements is divided by Dn = n(n + 1)/2, the number 
of unique entries in a positive-semidefinite matrix, and 
the dimension of the rank r matrices is dr = nr − r(r − 1)/2.  
The color of each cell is chosen in the same fashion as 
in the experiment with full matrices. Interestingly, the 
recovery region is much larger for positive semidefinite 
matrices, and future work is needed to investigate if the 
theoretical scaling is also more favorable in this scenario 
of low-rank matrix completion.

These phase transition diagrams reveal a considerably 
smaller region of parameter space than the Gaussian models 
studied in Recht et al.30 In the experiments in Recht et al.,30 
M was generated in the same fashion as above, but, in the 

place of sampling entries, we generated m random Gaussian 
projections of the data (see the discussion in Section 2.4). 
In these experiments, the recovery regime is far larger than 
that in the case of sampling entries, but this is not particu-
larly surprising as each Gaussian observation measures a 
contribution from every entry in the matrix M.

2.3. More general bases
Our main result (Theorem 2.3) extends to a variety of other 
low-rank matrix completion problems beyond the sampling 
of entries. Indeed, suppose we have two orthonormal bases 
f1, …, fn and g1, …, gn of Rn, and that we are interested in solv-
ing the rank minimization problem

	 	 (2.7)

The machine learning community’s interest in specialized 
algorithms for multiclass and multitask learning provides 
a  motivating example (see, e.g., Amit et al.1 and Argyriou 
et  al.2). In multiclass learning, the goal is to build multi-
ple classifiers with the same training data to distinguish 
between more than two categories. For example, in face 
recognition, one might want to classify whether an image 
patch corresponds to an eye, nose, or mouth. In multitask 
learning, we have a large set of data and a variety of dif-
ferent classification tasks, but, for each task, only partial 
subsets of the data are relevant. For instance, in activity 
recognition, we may have acquired sets of observations of 
multiple subjects and want to determine if each observed 
person is walking or running. However, a different classi-
fier is desired for each individual, and it is not clear how 
having access to the full collection of observations can 
improve classification performance. Multitask learning 
aims to take advantage of access to the full database to 
improve performance on individual tasks. A description 
of how to apply our results to the multiclass setting can be 

m/n
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m/D
n

d r
/m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(b)(a)

d r
/m

Figure 2. Recovery of full matrices from their entries. For each (n, m, r) triple, we repeated the following procedure 50 times. A matrix M 
of rank r and a subset of m entries were selected at random. Then, we solved the nuclear norm minimization for X subject to Xij = Mij on the 
selected entries. We declared M to be recovered if Xopt − MF/MF < 10−3. The results are shown for (a) general 50 × 50 matrices (b) 50 × 50 
positive definite matrices. The color of each cell reflects the empirical recovery rate (scaled between 0 and 1). White denotes perfect recovery 
in all experiments, and black denotes failure for all experiments.
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found in the full version of this paper.
To see that our theorem provides conditions under which 

(2.7) can be solved via nuclear norm minimization, note that 
there exist unitary transformations F and G such that ej = Ffj 
and ej = Ggj for each j = 1, …, n. Hence,

Then, if the conditions of Theorem 2.3 hold for the matrix 
FXGT, it is immediate that nuclear norm minimization finds 
the unique optimal solution of (2.7) when we are provided a 
large enough random collection of the inner products f T

i Mgj. 
In other words, all that is needed is that the column and row 
spaces of M be, respectively, incoherent with the bases (fi) 
and (gi).

2.4. Connections, alternatives, and prior art
Nuclear norm minimization is a recent heuristic intro-
duced by Fazel14 and is an extension of the trace heuristic 
often used in control theory; see, for example, Beck and 
D’Andrea.3 Indeed, when the matrix variable is symmetric 
and positive semidefinite, the nuclear norm of X is the sum 
of the (nonnegative) eigenvalues and thus equal to the trace 
of X. Hence, for positive semidefinite unknowns, X, (2.3) 
becomes the semidefinite program

Even for the general matrix M, which may not be positive 
definite or even symmetric, the nuclear norm heuristic can 
be formulated in terms of semidefinite programming. The 
program (2.3) is equivalent to

with optimization variables X, W1, and W2 (see, e.g., 
Fazel14). There are many efficient algorithms and high-
quality software packages available for solving these types 
of problems.

Our work is inspired by results in the emerging field of 
compressive sampling or compressed sensing, a new para-
digm for acquiring information about objects of interest 
from what appears to be a highly incomplete set of mea-
surements.8, 13 In practice, this means that high-resolution 
images can be captured with fewer sensors or that signal 
acquisition can be accelerated by orders of magnitude in 
biomedical applications, simply by taking far fewer spe-
cially coded samples. Mathematically speaking, we wish 
to reconstruct a signal x ∈ Rn from a small number of mea-
surements y = Fx, y ∈ Rm with m much smaller than n; that 
is, we have far fewer equations than unknowns. In general, 

one cannot hope to reconstruct x but assume now that the 
object we wish to recover is known to be structured in the 
sense that it is sparse (or approximately sparse). This means 
that the unknown object depends upon a smaller number 
of unknown parameters. Then, it has been shown that 1 
minimization—minimizing the sum of the absolute values 
of x, subject to the linear constraints y = Fx—allows recov-
ery of sparse signals from remarkably few measurements.8 
If F is chosen randomly from a suitable distribution, then 
with very high probability, all sparse signals with about k 
nonzero entries can be recovered from on the order of k log 
n measurements. For instance, if x is k-sparse in the Fourier 
domain, that is, x is a superposition of k sinusoids, then 
it  can be perfectly recovered with high probability—by 1 
minimization—from the knowledge of about k log n of its 
entries sampled uniformly at random.

From this viewpoint, the results in this paper greatly 
extend the theory of compressed sensing by showing that 
other types of interesting objects or structures, beyond 
sparse signals and images, can be recovered from a limited 
set of measurements. Moreover, the techniques for prov-
ing our main results build upon ideas from the compressed 
sensing literature together with powerful probabilistic tools 
for bounding norms of operators between Banach spaces.

Also, our notion of coherence generalizes the concept 
of the same name in compressive sensing. Notably, the 
authors Candès and Romberg7 introduce the notion of 
the  coherence of a unitary transformation U; the coher-
ence of U is simply proportional to maxj,k|Uj,k|2. This 
quantity plays a crucial role in determining the minimal 
sampling rate necessary to recover a k-sparse signal by 1 
minimization.

In Recht et al.,30 the authors studied the nuclear norm 
heuristic applied to a related problem where partial infor-
mation about a matrix M is available from m equations of 
the form

	 	 (2.8)

Here, for each k,  is an i.i.d. sequence of Gaussian 
or Bernoulli random variables and the sequences {A(k)} are 
also independent of each other (the sequences {A(k)} and 
{bk} are available to the analyst). Building on the concept 
of restricted isometry in the context of sparse signal recov-
ery, Recht et  al.30 establish the first sufficient conditions 
for which the nuclear norm heuristic returns the mini-
mum rank element in the constraint set. The authors prove 
that the heuristic succeeds with large probability when-
ever the number m of available measurements is greater 
than a constant times 2nr log n for n × n matrices of rank 
r. These results do not generalize to the matrix comple-
tion problem of interest to us in this paper. The measure-
ments in (2.8) give some information about all the entries 
of M, whereas in our problem information about most of 
the entries is simply not available. As a consequence, our 
methods are quite different and require more involved 
probabilistic analysis.
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Our work also has close connections with the study of 
stochastic algorithms for low-rank matrix approximation. 
In this body of work, one is interested in sampling some 
entries of a matrix in order to construct an approximate 
factorization of this matrix. Typically, it is assumed that 
one may sample any subset of entries but would like to 
minimize the computational complexity involved in con-
structing an approximation. Pioneering work in this area 
appears in Frieze et al.15 and Liberty et al.,25 and an exten-
sive survey of these methods can be found in Halko et al.19 
While this body of work also uses similar foundational 
theory of random matrices, our modeling assumptions are 
fundamentally different. Here, we are primarily concerned 
with the scenario where we have very limited control over 
which entries of the matrix we can observe. In the examples 
described in the introduction, one does not have access to 
all of the entries of the matrix due to systemic constraints. 
Surprisingly, our results demonstrate that low-rank matri-
ces can be recovered exactly from almost all sufficiently 
large subsets of entries. However, when we have the ability 
to sample entries at will, the algorithmic recovery schemes 
become considerably more efficient. We see our results 
as complementary extremes of the sort of access one may 
have to the entries of a matrix.

Indeed, when the sampling can be chosen in specially 
designed patterns, the exact recovery problem becomes dra-
matically simpler. For example, suppose that M is generic 
and that we precisely observe every entry in the first r rows 
and columns of the matrix.

Write M in block form as

with M11 an r × r matrix. In the special case that M11 is invert-
ible and M has rank r, it is easy to verify that M22 = M21 M11

–1 M12. 
One can prove this identity by forming the SVD of M. That 
is, if M is generic, the upper r × r block is invertible, and 
we observe every entry in the first r rows and columns, we 
can recover M. This result immediately generalizes to the 
case where one observes r rows and r columns and the r × 
r matrix at the intersection of the observed rows and col-
umns is invertible. Algorithms in the stochastic low-rank 
matrix approximation literature are essentially no more 
complicated than this simple algorithm. They use random-
ness to add numerical robustness and to guarantee that the 
sampled entries span the row/column space of the matrix 
to be acquired.

3. RECENT ADVANCES IN LOW-RANK MODELING
Our original article announced the possibility of vari-
ous refinements and extensions, and invited research-
ers to develop the new field of matrix completion. We are 
pleased to see that the area of low-rank modeling and 
matrix completion has been quite active, and the field is 
growing at a very fast pace. In fact, there are so many new 
and exciting  results recently developed that it is unfor-
tunately impossible to review them all here. Below, we 

survey selected progress that has occurred since our origi-
nal submission.

3.1. Improvements and other approaches
The results discussed in Section 2.1 show that under suit-
able conditions, one can reconstruct an n × n matrix of 
rank r from a small number, m, of its sampled entries pro-
vided that m is on the order of n1.2r log n, at least for mod-
erate values of the rank. One would like to know whether 
better results hold, in the sense that exact matrix recovery 
would be guaranteed with a reduced number of measure-
ments. In particular, recall that an n × n matrix of rank r 
depends on (2n − r)r degrees of freedom; is it possible to 
recover most low-rank matrices from on the order of nr 
randomly selected entries? Can the sample size be merely 
proportional to the true complexity of the low-rank object 
we wish to recover?

In this direction, we would like to emphasize that there 
is nothing in the approach of our original paper that 
stands in the way of stronger results. Our proof architec-
ture requires bounding an infinite matrix series in the 
operator norm. We develop a bound on the spectral norm 
of each of the first four terms of this series and a general 
argument to bound the remainder of the series in the full 
version of this paper. Presumably, one could bound higher 
order terms by the same techniques. Getting an appro-
priate bound on the fifth term would lower the exponent 
of n from 6/5 to 7/6. The appropriate bound on the sixth 
term would further lower the exponent to 8/7, and so on. 
To  obtain an optimal result, one would need to bound 
O(log n) terms.

Following this main idea, the authors Candès and Tao9 
reduced the upper bound on the number of required mea-
surements to O(nr log6(n) ) using a combinatorial argu-
ment to bound precisely this particular series. Their results 
depend on some additional assumptions, including a 
“strong incoherence condition” that is more restrictive than 
the one defined in Section 2.1. However, they also show that 
no algorithm could succeed with high probability if less than 
Q(nrlog(n) ) entries were observed.

An unexpected and clever method for approximating 
this infinite matrix series was invented in Gross et al.18 This 
new approach used powerful large deviation bounds from 
quantum information theory combined with an iterative 
construction that circumvented much of the combinatorics 
necessary for the proof in Candès and Tao.9 This approach 
is dramatically simpler than previous approaches, and, 
using this technique, it was shown that O(nrlog2(n) ) entries 
were sufficient for exact matrix completion in Gross17 and 
Recht.29 In Recht,29 the leading constant was even upper 
bounded by 64.

From a very different perspective, the authors in Keshavan 
et al.21 provided a non-convex algorithm for low-rank matrix 
recovery. Here, the authors analyze a gradient descent 
scheme over the Grassmannian manifold of subspaces. 
Using some of the techniques developed in the full version 
of this paper, the authors show that this nonconvex problem 
is actually convex in a neighborhood of the true low-rank 
matrix provided the number of observed entries exceeds 
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O(nlog(n) ) and the rank is less than log(n). This provides 
the asymptotically tightest bound on the number of entries 
required for recovery, but the authors need to assume that 
the singular values of the unknown low-rank matrix are all 
of order unity and that the rank is less than log(n) for their 
results to hold.

3.2. Toward a more general theory
More general measurement models. In our original work, 
we  anticipated in Section 1.3 that our results would 
extend to the case where one observes a small num-
ber of arbitrary linear functionals of a hidden matrix M. 
Set  N  =  n2  and let  A1, . . . , AN be an orthonormal basis for 
the  linear  space of n ×  n matrices with the usual inner 
product  áX,  Yñ  =  trace(XT Y). Then, we predicted that 
our results should also apply to the rank minimization 
problem

  minimize rank(X)  subject to áAk, Xñ = áAk, Mñ  k ∈ Ω,� (3.1)

where W ⊂ {1, . . . , N} is selected uniformly at random. 
In fact, (3.1) is (2.2) when the orthobasis is the canoni-
cal basis  (eie

T
j )1 ≤ i, j ≤ n. We conjectured that those low-

rank matrices that have small inner product with all the 
basis elements Ak may be recoverable by nuclear norm 
minimization.

This conjecture was proven to be true by Gross,17 where 
a general definition of coherence was provided, and it 
was shown that the same number of measurements suf-
ficed for reconstruction under this modified definition. 
Additionally, in Gross et al.,18 it was shown that the Pauli 
basis, studied in quantum information theory, was inco-
herent with any basis. This fact follows because all of the 
matrices in the Pauli basis are mutually orthogonal and 
unitary. Hence, the Pauli basis is a deterministic collection 
of matrices such that a random subset of these matrices 
can be used to reconstruct any low-rank matrix. This result 
has been applied to propose new methods in quantum-
state tomography where one aims to determine the state 
of some quantum mechanical system with as few measure-
ments or experiments as possible.

Matrix completion with noise. All of the results described 
above concern the problem of exact matrix completion, 
where we have perfect information about the entries 
of  the  matrix to be reconstructed. Of course, in almost 
all real-world problems, we can only gain access to noisy 
samples of the entries of the matrices we would like to 
recover. Fortunately, many authors have investigated 
the stability of matrix completion when the observations 
are noisy. The first such result6 uses a stability argument 
based on convexity to guarantee accurate recovery from 
noisy data. Several subsequent works studied this prob-
lem under different matrix models. The work in Keshavan 
et al.22 gives near-optimal bounds provided the unknown 
matrix obeys additional assumptions which say that the 
singular values are all about the same size. In Negahban 
and Wainwright,28 error bounds are derived provided the 

matrix is not spiky; that is to say, assuming that all the 
entries have about the same magnitude. We additionally 
invite interested readers to peruse Koltchinskii et al.,23 
which very recently introduced powerful results with yet a 
slightly different matrix model.

Algorithmic innovations. While it was known that the 
nuclear norm problem could be efficiently solved by 
semidefinite programming, the results of Recht et al.30 
and the full version of this paper have inspired the devel-
opment of many special purpose algorithms to rapidly 
minimize the nuclear norm. For example, in Cai et al.4 
and Ma et al.,27 the authors show that many of the fast first 
order methods developed for compressed sensing prob-
lems can be adapted to solve large-scale matrix comple-
tion problems. These algorithms are projected gradient 
algorithms which operate by alternately correcting the 
predictions on the observed entries and soft-threshold-
ing the singular values of the iterate. Using accelerated 
gradient schemes, the authors Ji and Ye20 and  Toh and 
Yun34 have improved these algorithms to provide very fast 
implementations of nuclear norm minimization. These 
codes enable the solution of problems with hundreds of 
thousands of rows and columns in a few hours on a stan-
dard workstation. Moreover, the numerical experiments 
in these works confirm that nuclear minimization can 
successfully recover very large low-rank matrices with on 
the order of 3 to 5 times the number of latent degrees of 
freedom. Additional experiments demonstrate that low-
rank matrices can be robustly recovered under significant 
additive noise using nuclear-norm minimization.

3.3. From sparsity to rank and beyond
In concert with Recht et al.,30 our work on matrix comple-
tion crystallized some of the foundational ideas of com-
pressed sensing. We were able to extend the notion of 
sparsity to the much more general concept of matrix rank, 
and situate the main ideas of compressed sensing in a dra-
matically broader context.

One exciting new development since the appearance of 
our original paper shows that the notions of sparsity and 
rank are in some sense orthogonal. If a matrix can be writ-
ten as a sum of a low-rank matrix and a sparse matrix, then 
these two matrices can be identified and deconvolved from 
their sum. Deterministic conditions required for such 
an algorithm to work were provided in Chandrasekaran 
et al.12 A randomized analysis in Candes et al.5 provided 
sharper recovery guarantees and furnished a new method 
for Robust Principal Components Analysis, demonstrat-
ing that principal components could be constructed even 
in the presence of a large number of outliers. Moreover, 
the results of Chandrasekaran et al.12 were extended 
to provide convex algorithms for identifying Gaussian 
graphical models in Chandrasekaran et al.10 Prior art in 
this area had  resorted to nonconvex heuristics based on 
Expectation–Maximization with no provable guarantees. It 
is quite surprising that, under very modest assumptions, 
a convex algorithm can solve a hidden variable estimation 
problem in multivariate statistics.
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This subsequent research has shown that there is much 
more work to be done in this area. Work in compressed 
sensing, matrix completion, and their generalizations 
have shown that convex optimization can be used to solve 
a myriad of hard identification problems at nearly optimal 
rates. But the picture is likely much broader than what we 
currently understand. There are likely notions of simplicity 
beyond rank and sparsity that can also be leveraged in high-
dimensional data analysis to open new frontiers in low-rate 
sampling. New work in Chandrasekaran et al.11 develops a 
unified program for recovering simple signals and objects 
from incomplete information, illustrating a general ap-
proach for translating expert domain knowledge into con-
vex optimization algorithms. This work not only generaliz-
es prior art on compressed sensing and matrix completion 
but also provides several new models where  low-rate sam-
pling can recover specially structured models. Such new 
developments suggest that we have only begun to scratch 
the surface of the types of models and objects that may be 
recovered from highly incomplete information.	
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