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ABSTRACT
This paper introduces Plinko, a network architecture that
uses a novel forwarding model and routing algorithm to
build networks with forwarding paths that, assuming arbi-
trarily large forwarding tables, are provably resilient against
t link failures, ∀t ∈ N. However, in practice, there are
clearly limits on the size of forwarding tables. Nonetheless,
when constrained to hardware comparable to modern top-
of-rack (TOR) switches, Plinko scales with high resilience
to networks with up to ten thousand hosts. Thus, as long as
t or fewer links have failed, the only reason packets of any
flow in a Plinko network will be dropped are congestion,
packet corruption, and a partitioning of the network topol-
ogy, and, even after t+1 failures, most, if not all, flows may
be unaffected. In addition, Plinko is topology independent,
supports arbitrary paths for routing, provably bounds stretch,
and does not require any additional computation during for-
warding. To the best of our knowledge, Plinko is the first
network to have all of these properties.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design; C.2.2 [Computer-
Communication Networks]: Network Protocols—
Routing protocols; C.4 [Performance Of Systems]: Fault
tolerance

General Terms
Algorithms, Design, Reliability

1. INTRODUCTION
Simply put, the principal task of a network is to deliver

data between endpoints that are allowed to communicate.
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Failures can and will occur, and a resilient network is one
that is able to correctly perform its principal task despite
failures. The ideal network is fully resilient (∞-resilient),
which means it can correctly deliver data between all end-
points despite an arbitrary number of failures, as long as
there exists a path between the endpoints in the (new) un-
derlying topology. Unfortunately, almost all networks today
are far from the ideal, at least for periods of time.

This paper introduces Plinko, a new network architec-
ture that is based upon new theoretical advances on building
provably fully resilient forwarding tables that are . If it were
possible to build arbitrarily large Plinko forwarding tables,
then it would be possible to build a network that would only
drop packets due to congestion, packet corruption due to link
or switch failures, or a partitioning of the network topol-
ogy. Additionally, in Plinko, packet forwarding continues at
line rate despite failures. While Plinko requires features not
available on current datacenter switch hardware, we present
a design for implementing a Plinko switch based on com-
mon switch primitives. Arbitrarily large tables are clearly
impossible, so we also analyze the resource requirements of
Plinko switches configured into realistic datacenter topolo-
gies, concluding that Plinko scales with high resilience to
networks with up to ten thousand hosts.

Building a resilient network is a fundamental challenge in
networking with many diverse solutions. For the sake of dis-
cussion, we define two classes of resiliency: control-plane
resilience and data-plane resilience. The key difference be-
tween the two classes is the time scale at which they operate.
A fully resilient network that requires the control-plane will
experience outages during the time it takes to compute and
install a route, while a resilient data-plane uses preinstalled
backup rules and requires no action to adapt.

Historically, control-plane resilience has been sufficient
for most networks. However, failures are expected as the
norm in modern datacenters [4], and incurring any additional
latency is becoming increasingly unacceptable [1, 22, 24].
Further, a recent study of datacenter network failures found
that current approaches to network resilience are only 40%
effective in reducing the median impact of failure [4]. This
prior work suggests that failures in a datacenter with control-
plane resilience noticeably impact performance.
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Unfortunately, previous work on data-plane resilience has
either offered limited resilience, used inefficient paths, in-
curred additional latency, or relied on graph specific prop-
erties, which limits their usefulness. For example, Feigen-
baum et al. [2] proved that a fully resilient data-plane is
impossible for hop-by-hop routing if the packet cannot be
modified. ECMP, IP Fast Re-route [3], and MPLS Fast
Re-route [16] only provide limited resilience. Packet re-
cycling [10] uses very inefficient paths. R-BGP [7] relies on
graph-specific properties. FCP [8] requires expensive soft-
ware computation in response to failures. DDC [9] guaran-
tees connectivity but at least temporarily incurs significant
stretch and can suffer from forwarding loops, although an IP
TTL may terminate the forwarding of a packet.

Unlike prior work on data-plane resilience, Plinko takes a
simple exhaustive approach, when is made possible by the
Plinko forwarding model. At a high level, Plinko iteratively
protects the paths in the network against the failure of any
additional link each round. For every link in every route built
in the previous round, Plinko builds a backup route, if one
exists, that protects against the case that the link fails. In the
case of a failure, the switch local to the failure replaces the
old route of a packet with a backup route, effectively bounc-
ing the packet around in the network until it either reaches
the destination or is dropped because no path exists1.

At a first glance, it would appear that state explosion
would cause Plinko to have exorbitant state requirements
that would limit its applicability to all but the smallest net-
works. However, we show the surprising result that the ex-
haustive approach can provide high resilience on topologies
with up to ten thousand hosts with hardware comparable to
modern switches. This is possible in part because the design
of the Plinko forwarding model allows multiple Plinko for-
warding rules to be compressed into a single TCAM entry.

In this paper, we present practical advances to data-plane
resilience. The contributions of this paper are as follows:

Provably t-resilient forwarding tables: We introduce
a new forwarding model and algorithm that can build t-
resilient forwarding tables, ∀t ∈ N, supports arbitrary paths,
is topology independent, bounds stretch, and does not re-
quire additional computation during forwarding. To the best
of our knowledge, no other forwarding model has all of these
properties. Additionally, the forwarding model is notable for
using rules that are compressible.

Design of a Plinko Switch: We present an architecture
for implementing a Plinko switch and a heuristic for com-
pressing the Plinko forwarding entries.

Analysis of Resource Requirements: We quantify the
trade-offs between resilience and forwarding table state. We
demonstrate that even the resources available in current com-
modity TOR switches can provide enough resilience on dat-
acenter topologies with ten thousand hosts to be able to guar-
antee protection against over 90% of all of the failures seen

1The way a packet is bounced around in the network in response to
failures is reminiscent to us of “The Price is Right” game Plinko.

in Microsoft datacenters [4], with most larger failures result-
ing from maintenance.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the Plinko forwarding model and algorithm.
Next, Section 3 discusses the design of a Plinko switch,
and Section 4 evaluates the state requirements of a Plinko
network configured into realistic datacenter topologies. We
briefly discuss Plinko in Section 5 and work that is closely
related to Plinko in Section 6. Finally, we conclude and sug-
gest future work in Section 7.

2. PLINKO
This section introduces the Plinko forwarding model and

routing algorithm and contains our main theoretical result.
We first give a high level insight into the operation of a
Plinko network. Then we formally define the Plinko for-
warding model, present our algorithm for Plinko routing,
and provide intuition into its correctness.

2.1 Overview
The Plinko routing algorithm starts by establishing all-to-

all communication by installing a default source route for all
source/destination pairs of hosts at the source’s local switch,
with each source route being a list of next hops. Unless
one of the edges in the path fails, the the switches along
the source route will each pop a hop off of the source route
and push the input hop onto a reverse source route also in
the packet header. In the case that one of the edges in a path
does fail, the switch local to the failure enables resilience by
discarding the original route and using the packet’s header,
which includes both the destination and a reverse route, to
try to look up an alternate path in the local forwarding table.

The rest of the routing algorithm iteratively increases re-
silience by installing new alternate routes to protect the paths
built in the previous round against the failure of any one ad-
ditional edge. For every edge in the paths built in the previ-
ous round, a backup route that matches the header of packets
following the path is added to the node local to the edge. The
new entry’s output is either a path to the destination that does
not traverse any of the failed edges already encountered by
the packet or a drop rule if no such path exists. Because all
possible failures of an additional edge are considered in each
round, by the end of round t, paths have been built that are
resilient to all possible failures of t edges.

Although this appears simple, building recursive backups
is not always possible without modifying packets [2]. If a
packet encounters multiple failures in standard Ethernet, a
switch cannot determine the exact set of failures encountered
by the packet, which can cause backup routes to form loops.
Thus, the principal challenge in choosing an output path in
Plinko is determining the set of failed links that have been
encountered by a packet, which Plinko solves by introducing
a new forwarding model that matches on the reverse path
of a packet, which is accumulated in its header. Because
different forwarding paths are used during different failures
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Figure 1: Fully resilient Plinko routes for Dst

and forwarding is deterministic, the reverse path identifies
the set of failed edges already encountered by the packet.

Figure 1 illustrates the Plinko algorithm by showing fully
resilient Plinko routes for the Dst node. In the figure, source
routes are represented as arrows originating at the node con-
taining the forwarding function entry. The level of resilience
is shown by the linestyle and color, using 0-R, 1-R, and 2-R
for patterns resilient to 0, 1, and 2 failures, respectively. For
clarity, the paths are simply labeled with the original source
node instead of the full reverse path of the packet.

In Figure 1, there are two 2-R entries for node II. This is
because failure information is only known locally by Plinko
forwarding hardware, i.e., switches only learn of the failure
of local links, and the 1-R path [II-I, I-Dst] can fail at either
the II-I link or the I-Dst link and there is still an operational
path to Dst. Therefore, if links II-Dst and I-Dst are failed,
switch II will still attempt to forward packets along the [II-I,
I-Dst] path based on its local information. Only once packets
reach switch I will the failed link I-Dst be learned, at which
point the packet needs to be forwarded along the path [I-
II, II-III, III-Dst]. While this leads to path stretch in our
example, the stretch tends to be minimal in practice.

2.2 Model
We use a network model that is extended from that used

by Feigenbaum et al. [2]. Formally, a network is modeled as
an undirected graph G = (V,E), where V = {1, . . . , n} and
{u, v} ∈ E. We define Ev = {{u, v} ∈ E;u, v ∈ V } as
the set of edges local to vertex v ∈ V . The powerset 2Ev is
a bitmask representing the failure status of the edges in Ev .
E∗

v is the set of all paths starting at v, and P d
v ⊆ E∗

v is the set
of all paths from v to d. E(p[h]) and V (p[h]) are the edge
and source vertex of the h-th hop in a path p, respectively,
and p[h : 1] is the reverse path of p from V (p[h]) to i.

In our model, each node v ∈ V has a forwarding function
fv(d, rp, bm) → p that maps a packet’s destination d ∈ V
and reverse path rp ∈ E∗

v , which we assume are located in
headers, as a function of a bitmask bm ∈ 2Ev of the node’s
state to an arbitrary path p ∈ P d

v to the destination. For
convenience, we also represent the forwarding function as

Forwarding Entries (d, rp, Fv, e)→ p

(Dst, [ ], ∅, II-Dst)→ [II-Dst]
(Dst, [ ], {II-Dst}, II-I)→ [II-I, I-Dst]

(Dst, [ ], {II-Dst, II-I}, II-III)→ [II-III, III-Dst]
(Dst, [II-I], {II-Dst}, II-III)→ [II-III, III-Dst]
(Dst, [II-III], {II-Dst}, II-I)→ [II-I, I-Dst]

Table 1: The forwarding function for Dst at node II.

fv(d, rp, Fv, e) → p, where Fv is a set of local edges that
must be failed and e is an edge that must be up, so as to
compactly specify a set of bitmasks over the local incident
edges. We call each entry in the forwarding function a route
r, which is a structure that contains four fields: a destina-
tion r.d ∈ V , the output path r.p ∈ P d

v , the reverse path of
packets the entry matches r.rp ∈ E∗

v , and the set of failed
links already encountered by packets that match the entry
r.fl ⊆ E. We chose to use the reverse path of a packet
in the forwarding function because it can be used to identify
the set of failed edges already encountered by a packet, and
we expect that rules with similar reverse paths have similar
output paths, which allows for rules to be compressed.

As a concrete example, Table 1 shows the forwarding
function for node II in Figure 1. Although we present the
forwarding function entries symbolically, it is also possible
to represent each entry as an opaque blob of bits suitable for
matching in hardware.

In this paper, we are primarily concerned with the re-
silience of the forwarding pattern given that a set of edges
F ⊆ E has failed. We define GF = (V,E \ F ) as the
new graph defined if F ⊆ E of the edges are removed, and
Gi = {GF : |F | = i} as the set of all possible graphs
formed by the failure of i edges. We define a forwarding
path as a path in GF that is defined by the forwarding pat-
tern f . To formalize the degree of resilience of a forwarding
pattern f , we say that a forwarding pattern is t-resilient if
∀GF ∈ Gi,∀i ≤ t, (1) there exists a forwarding path from
a node v to d in GF if any route exists from node v to d in
GF , ∀v, d ∈ V , and (2) there are no infinitely long forward-
ing paths defined by f in GF .

2.3 Algorithm
The algorithm for t-resilient routing in the Plinko for-

warding model is shown in Algorithm 1. The rest of this
section provides intuition into its correctness.

The first condition necessary for t-resilience is the exis-
tence of a forwarding path between all hosts after t arbitrary
failures as long as a path remains in the underlying topology.
To satisfy this condition, Plinko starts by building a single
default route for every pair of hosts. Then, in rounds, Plinko
increases the level of resilience by one by installing exactly
one backup path for every edge built in the previous round,
with the default paths being protected in the first round. This
is possible because the reverse path of a packet includes the
source hop of the packet, and, from a given source–be it
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Algorithm 1 – Plinko routing for t-resilient forwarding
Input: network topology G = (V,E) where V = {1, . . . , n}
Output: a forwarding pattern f = (f1, . . . , fn). ∀v ∈ V ,

fv(d, rp, Fv , e)→ p, d ∈ V , rp ∈ E∗
v , Fv ⊆ Ev , e ∈ Ev \ Fv , and

p ∈ P d
v

1. Build the Default Routes: ∀v, d ∈ V, do :

• Let p ∈ P d
v , e = E(p[1]), and r be a new route.

• Set r.d := d, r.p := p, r.rp := ∅, and r.fl := ∅.
• Set fv(r.d, r.rp, r.fl ∩ Ev , e) := r.p.

2. Iteratively Fix Routes for an Additional Failure Each Round: For
round i in {1, . . . , t}, do:

(a) Consider every edge in all the paths r.p built in round i− 1.
• Let Ri−1 = {r : |r.fl| = (i− 1)}.
• ∀r ∈ Ri−1 and ∀h ∈ {1, . . . , |r.p|}, do:

i. Build a backup path for r.p assuming that the link at hop h
failed.
• Let v = V (r.p[h]), e = E(r.p[h]), and rp = r.p[h : 1].
• If ∃np ∈ P d

v s.t. np ∩ (r.fl ∪ {e}) = ∅ do:
– Let enp = E(np[1]) and nr be a new route.
– Set nr.d := r.d, nr.p := np, nr.rp := rp+ r.rp and nr.fl :=

r.fl ∪ {e}.
– Set fv(nr.d, nr.rp, nr.fl ∩ Ev , enp) := nr.np.

the original switch or the switch local to a failure–there is
only one possible path given the local failures. This means
that the reverse path of any packet can be used to infer both
the original source and the exact set of failures the packet
has encountered. With this ability, Plinko can build backup
routes for every path from the previous round that are guar-
anteed to not use any of the failed links already encountered
by the packet, thus protecting the forwarding pattern against
the failure of any single additional link.

The second condition for resilience is that paths terminate.
In Plinko, the reverse and forward paths of a route are finite,
and the reverse path of a packet increases as it is forwarded
through the network. Therefore, the reverse path of a packet
is guaranteed to eventually grow to a point such that there is
no route in the network that can possibly match it.

If Algorithm 1 is used for routing, then it is possible to
prove the resiliency of the network and bound the hop count
of the paths in the network. We present two theorems on the
Plinko routing algorithm, although we omit the proofs for
space. The proofs of these theorems can be found in [21].

Theorem 1. For every network there exists a t-resilient
Plinko forwarding pattern, ∀t ∈ N.

Theorem 2. Let h be the length of a forwarding path for a
Plinko forwarding pattern. If the length of longest path used
by any forwarding function entry after i failures is lpi and
there are f failures, then h ≤

∑f
i=0 lpi.

3. IMPLEMENTATION
While the theoretical result of the resilience of the Plinko

forwarding model is an important advance, the forwarding
model and routing algorithm do not provide complete insight
into how to implement a Plinko network. Although a full
implementation of Plinko is beyond the scope of this work,
this section discusses various factors involved with building
a Plinko switch.

10GbE HP Procurve Intel IBM
Switch 5400zl FM6000 G8264

TCAM Size 35KB 110KB ∼140KB

Table 2: 10 Gbps TOR Switch TCAM Sizes

There are four main components necessary for building
a Plinko network. The first is source routing, the second is
building the reverse path, the third is the control plane, and
the fourth is implementing the Plinko forwarding function.
The first three components have been well studied, so we
elide most of the details of their implementation, assuming
that we implement source routing and reverse path building
similar to the Axon [18] and use OpenFlow [11] to imple-
ment the control plane.

The principal difficulty in implementing a Plinko switch is
then in efficiently implementing the Plinko forwarding func-
tion, and we only consider hardware implementations due
to the increased latency of software forwarding. Also,
although typical switches contain many different types of
hardware tables, we currently only consider implementing
Plinko with a single TCAM, hardware tables that match
headers against wildcard patterns, outputting only the high-
est priority entry. The amount of TCAM state required by
Plinko will be the dominant limiting factor of a Plinko net-
work, and, like most hardware tables, TCAM state is mea-
sured by the number of bytes per entry and the total number
of entries, which when combined give the total number of
bytes of state.

Table 2 provides some context by showing the TCAM
sizes of current TOR Ethernet datacenter switches [5, 6,
20]. Given current trends, we expect that these tables sizes
will increase in future generations, especially since recent
research has designed a switch with 4.75MB of TCAM
state [14]. While these switches may not be immediately
suitable for implementing Plinko, TCAMs are generic, so it
is safe to assume that a Plinko switch could be built with a
comparable amount of state.

Although the forwarding function entries in Algorithm 1
have a simple mapping to TCAM entries, mapping the
Plinko forwarding function to a TCAM introduces an op-
timization problem: given a forwarding function, find a
smaller set of TCAM entries and priorities that are equiva-
lent to the forwarding function.

In our implementation, we use a combination of two
heuristics to solve the TCAM packing optimization problem.
The first heuristic, which we developed, greedily merges for-
warding table entries, and the second heuristic is bit weav-
ing [12]. We evaluated the two heuristics independently, and
found that bit weaving on its own significantly underper-
forms the first heuristic, although combining the two pro-
vides modest improvements.

The first heuristic is based off of two observations. The
first observation is that higher priority entries in a TCAM
have to be finer in granularity so as to avoid matching pack-
ets intended for a lower priority entry. The second obser-
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vation is that there is a greater chance for state reduction by
favoring aggregating the largest set of rules that share a com-
mon output path first. Based on these two observations, the
first heuristic first sorts the rules in descending order based
on the size of the set of rules that share the same output path
and then greedily attempts to aggregate entries into rules in
a new TCAM. For each of the forwarding function entries,
if modifying a rule already in the new TCAM to also match
the entry from the old table does not result in a conflict with
any of the lower priority TCAM rules in the new table, then
the modification is performed. Otherwise, a TCAM rule that
is identical to the forwarding function entry is created at the
highest priority in the new table.

After applying the first packing heuristic, we then perform
bit weaving [12] on the resulting TCAM. Bit weaving finds
a bit swapping for a group of adjacent rules that allow the
rules to be expressed as a LPM table. Next, it applies tech-
niques for compressing LPM tables and then merges com-
patible rules into a ternary string. Lastly, the bit swapping is
undone to restore the original rules.

Although prior work has demonstrated that installing only
a single path for each source/destination pair can still pro-
vide good load balancing [20], NetLord [13] introduced
techniques applicable to Plinko that can enable ECMP while
simultaneously reducing state. The TCAM state is reduced
by using encapsulation to perform routing on the switch
topology instead of the host topology. ECMP is enabled by
adding hosts to multiple VLANs. The physical hosts can
then perform load balancing by either using deterministic
hashing, as in ECMP, packet spraying, or MPTCP [23] to
send packets on different VLANs. We consider Plinko im-
plementations both with and without NetLord.

4. EVALUATION
The primary aspect of Plinko that we evaluate is the for-

warding table state requirements, which we only report as
the total required kilobytes because the width of the entries
were always less than 30 bytes per entry, smaller than the
TCAM widths of modern switches. We find that Plinko, if
used with NetLord, scales at 4-resilience to networks with
8K hosts. We also evaluated stretch, but we omit the results
due to space, noting that stretch was typically negligible.

For our evaluation, we build all-to-all paths between the
hosts in the topology. Networks that require less connectiv-
ity are expected to require proportionally less state. While
Plinko supports arbitrary paths, we chose to build shortest
paths in our evaluation so as to not artificially increase the
required state per switch. Also, we reuse the paths of exist-
ing entries whenever possible to provide more opportunities
for TCAM entry compression.

We use two types of realistic datacenter topologies in our
evaluation of Plinko. The first type of topology is a 1 : 5
bisection bandwidth Jellyfish topology [19], and the second
type is a 1 : 1 bisection bandwidth extended generalized fat
tree (EGFT) [15]. For the EGFT topologies, we searched the
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Figure 2: TCAM sizes of different Plinko networks

space of all possible EGFTs to find the one with the fewest
possible number of switches.

When considering TCAM state, we report only the max-
imum state required at any switch in the network. Cur-
rent datacenter topologies, including the two that we con-
sider, are designed to be implemented with (close to) iden-
tical TOR switches, so reporting the maximum captures the
state requirements necessary for TOR switch to implement
Plinko. Also, we make the pessimistic assumption that all
entries need to be padded to the length of the longest entry.
On some switches, such as the Intel FM6000 series, this is
not the case, so the actual TCAM state would be reduced [6].

Figure 2a shows the number of bytes of TCAM state re-
quired for different levels of resilience on the EGFT topol-
ogy. We omit the similar figure from the Jellyfish topol-
ogy, noting that both the Jellyfish and the EGFT have similar
state requirements, although the EGFT uses fewer hosts per
switch and requires more switches. With edge protection,
Plinko can provide a 4-resilient, 2-resilient, and 1-resilient
forwarding pattern with less than 140KB of state for net-
works with 1024, 2048, and 4096 hosts, respectively. To
provide context on the number of failures in a datacenter, a
recent study [4] found that 59% of correlated failures only
involve a single link, and 90% of correlated failures involve
4 links or fewer, with the bulk of the larger failure groups
resulting from planned maintenance, which can be handled
explicitly. Given these results, we can see that Plinko is able
to support high levels of resiliency for modest size datacen-
ters on hardware comparable to today’s switches.

As discussed in Section 3, using NetLord with Plinko can
reduce state requirements. To quantify the benefit of using
NetLord with Plinko, we calculate the state given four routes
per destination at each switch then fit them to second degree
polynomials to predict the state requirements for topology
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sizes larger than 4096 hosts, which we have not fully consid-
ered. Figure 2b, which plots the prediction, shows that us-
ing NetLord with Plinko is expected to provide a 4-resilient,
2-resilient, and 1-resilient forwarding pattern with less than
140KB of TCAM state for networks with approximately 8K,
16K, and 27K physical hosts, respectively.

To demonstrate the effectiveness of TCAM compression,
we present the compression ratios from the 4096 host Jelly-
fish topologies in Figure 2b. We saw that the compression
ratio was 1.48, 2.08, 4.12, and 11.00 for 1-, 2-, 4-, and 8-
resilience, respectively.

5. DISCUSSION
Although it may seem as though Plinko requires signifi-

cant computation to install routes, implementing Plinko as
an online algorithm is simple. When a host joins the net-
work, Plinko only needs to compute and install 0-resilient
routes for the host before connectivity is established, after
which the routes for additional resilience can then be com-
puted and installed lazily. The task of computing 0-resilient
routes is fundamental to all networks, so Plinko does not in-
cur unnecessary latency.

Similarly, handling changes of the switch topology can be
done safely and efficiently. Removing a switch is equiva-
lent to the failure of its links, but after a topology change,
we would like for other switches to use routes that do not
attempt to traverse the now removed switch. Permanent
topology changes from both switch removals and additions
can be handled by periodically recomputing routes, as com-
putational resources become available. Packet loss during
updates can be completely avoided by performing provably
consistent network updates [17].

Next, we note that a Plinko network that provides t-
resilience does not immediately fail when there have been
more than failures. Instead, the forwarding pattern shows a
graceful degradation in performance because only paths that
encounter t+ 1 failures lose connectively.

Lastly, Plinko is well suited for enabling energy-
proportional networking. With knowledge of both the traffic
matrix and all of the paths in the network, a controller can
find out the maximal set of switches that can be suspended,
subject to resiliency constraints, and suspended switches
simply appear as failed switches to the operating switches.
The controller is also able to intelligently re-enable switches
in the network as the load increases because it can compute
the throughput benefits that can be gained by enabling dif-
ferent switches in the network, subject to the current traffic
matrix and routes.

6. RELATED WORK
In addition to the work of Feigenbaum et al. [2], which

formalized resilience and provided some initial results,
Plinko is also related to other work. Due to the extent of
the approaches to resilience, we limit our discussion to a few
projects that are closely related to Plinko.

The most closely related work to Plinko is Failure Car-
rying Packets, or FCP [8]. Like Plinko, FCP uses failure
information accumulated in a packet’s header to guarantee
a fully resilient network, although in FCP, only the IDs of
failed links are added to the packet, while Plinko accumu-
lates the full reverse path of the packet. The key difference
between Plinko and FCP is that, unlike Plinko, FCP requires
the control plane of the router local to a failure to dynam-
ically recompute routes and perform forwarding on a per-
packet basis, which can add latency and reduce the maxi-
mum forwarding rate. Plinko builds upon the work of FCP
by precomputing all of the backup routes and installing them
in a forwarding table.

Packet Re-cycling (PR) [10] is also closely related to
Plinko. Although PR can pre-compute forwarding tables that
are fully resilient and only require and additional log2(d)
bits of data in a packet’s headers, PR cannot use arbitrary
paths. Additionally, path lengths in PR are typically far
from minimal in the presence of failures. This is because PR
routes around failures in a manner akin to solving a labyrinth
by the right-hand rule.

DDC [9], or data-driven connectivity, is a closely re-
lated project that provably provides ideal forwarding-
connectivity, which only guarantees that a packet will reach
its destination as long as the network remains physically
connected. DDC achieves ideal forwarding-connectivity by
performing provably safe link-reversals. DDC repeats link-
reversal operations until the forwarding DAG converges ,
which, for n switches, is guaranteed to occur after O(n2)
reversal operations.

The key differences between Plinko and DDC are that
DDC can temporarily incur significant latency, and, in DDC,
packets on the side of a partition that is not connected to the
packet’s destination will persistently be forwarded in loops
until either the control plane detects the partition and deletes
routes, a TTL in the packet, if any, expires, or the packet is
dropped due to congestion. In contrast, Plinko guarantees
that packets will be dropped in the event of a partition.

7. CONCLUSIONS
In conclusion, we introduced Plinko, a network that uses a

new provably resilient forwarding model. We evaluated the
state requirements of a simple implementation of Plinko, and
found that it can build a 4-resilient network for topologies
with up to about ten thousand hosts.

As future work, we plan to explore implementing Plinko
with a pipeline of multiple hardware tables similar to those
found in today’s switches, which could improve scalability.
Additionally, FCP [8] introduced another provably resilient
forwarding model, although they did not consider imple-
menting it in hardware. We plan to consider hardware im-
plementations of FCP, which we will compare and contrast
against Plinko. Lastly, we plan to extend our evaluation to
include stretch, forwarding throughput, and additional fail-
ure models.
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