


ABSTRACT

Handling Congestion and Routing Failures

in Data Center Networking

by

Brent Stephens

Today’s data center networks are made of highly reliable components. Nonethe-

less, given the current scale of data center networks and the bursty traffic patterns

of data center applications, at any given point in time, it is likely that the network

is experiencing either a routing failure or a congestion failure. This thesis introduces

new solutions to each of these problems individually and the first combined solutions

to these problems for data center networks. To solve routing failures, which can lead

to both packet loss and a loss of connectivity, this thesis proposes a new approach to

local fast failover, which allows for traffic to be quickly rerouted. Because forward-

ing table state limits both the fault tolerance and the largest network size that is

implementable given local fast failover, this thesis introduces both a new forwarding

table compression algorithm and Plinko, a compressible forwarding model. Com-

bined, these contributions enable forwarding tables that contain routes for all pairs of

hosts that can reroute traffic even given multiple arbitrary link failures on topologies

with tens of thousands of hosts. To solve congestion failures, this thesis presents

TCP-Bolt, which uses lossless Ethernet to prevent packets from ever being dropped.

Although lossless Ethernet can degrade throughput in some situations, this thesis

demonstrates that it is possible to enable lossless Ethernet on data center networks



without reducing aggregate forwarding throughput. Further, this thesis also demon-

strates that TCP-Bolt can significantly reduce flow completion times for medium

sized flows by allowing for TCP slow-start to be eliminated. Unfortunately, using

lossless Ethernet to solve congestion failures introduces a new failure mode, deadlock,

which can render the entire network unusable. No existing fault tolerant forward-

ing models are deadlock-free, so this thesis introduces both deadlock-free Plinko and

deadlock-free edge disjoint spanning tree (DF-EDST) resilience, the first deadlock-

free fault tolerant forwarding models for data center networks. This thesis shows that

deadlock-free Plinko does not impact forwarding throughput, although the number of

virtual channels required by deadlock-free Plinko increases as either topology size or

fault tolerance increases. On the other hand, this thesis demonstrates that DF-EDST

provides deadlock-free local fast failover without needing virtual channels. This the-

sis shows that, with DF-EDST resilience, less than one in a million of the flows in

data center networks with thousands of hosts are expected to fail even given tens of

failures. Further, this thesis shows that doing so incurs only a small impact on the

maximal achievable aggregate throughput of the network, which is acceptable given

the overall decrease in flow completion times achieved by enabling lossless forwarding.
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CHAPTER 1

Introduction

In today’s data centers, computation is distributed. For example, Microsoft has over

a million servers [1]. Further, Facebook runs over 600,000 Hive queries and 1 million

map reduce jobs per day over a dataset larger than 300 petabytes [2], and other

companies have reported similar trends [3]. Every one of these queries and jobs can

not only require communication between many computers within a rack but also

between many racks in a cluster [4]. Because of this, the performance of the network

has become important to the overall performance of the data center.

However, due to both the size of today’s data center networks and the bursty

traffic patterns of many data center applications, data centers are in the unfortunate

situation where the network is expected to fail [5, 6] in ways that can severely re-

duce throughput [7, 6, 4] or even cause a (temporary) loss of connectivity [5]. For

example, a study of Facebook’s data center network found that bursty traffic can lead

to unacceptable loss rates [4], and a study of Microsoft data centers found that the

median time between both link and device failures was one hour or less [5]. While

the individual links and devices may be reliable, data centers are large enough that

failures are expected as the norm.

This thesis focuses on the two most common modes of failures in data center

networks: congestion and routing failures. Congestion failures occur whenever the
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incoming load for a link is greater than the outgoing capacity. Routing failures occur

whenever the physical network is connected but a valid route between two points does

not exist, or, even worse, packets are forwarded in a loop in the network.

While congestion is a well studied problem [8], existing approaches to congestion

control fail to meet performance requirements under data center workloads [7, 6, 9].

In other words, the ways in which data center networks handle congestion failures

have not grown to satisfy the increasing network load and tighter deadlines. For

example, some current data center workloads are capable of causing congestion on

timescales less than an RTT [7]. In this case, it is not possible for the end hosts

to react to congestion. One solution is to increase the buffer space available at the

switch, but this also only mitigates congestion problems instead of solving them.

Similarly, as data center networks continue to grow in size, so has the likelihood

that at any instant in time one or more switches or links have failed. Even though

these failures may not disconnect the underlying topology, they often lead to routing

failures, stopping the flow of traffic between some of the hosts. Ideally, data center

networks would instantly reroute the affected flows, but today’s data center networks

are, in fact, far from this ideal. For example, in a recent study of data center networks,

Gill et al. [5] reported that, even though “current data center networks typically

provide 1 : 1 redundancy to allow traffic to flow along an alternate route,” in the

median case the redundancy groups only forward 40% as many bytes after a failure

as they did before. In effect, even though the redundancy groups help reduce the

impact of failures, they are not entirely effective.

Although data center networks are handling bigger loads and operating under

tighter requirements, the mechanisms for handling failures have not similarly in-

creased in speed and efficacy. This thesis addresses this problem by introducing
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new solutions to congestion and routing failures, the two most common modes of

failures in data center networks.

I argue that current approaches to handling congestion and routing failures are

lacking and that these problems can be better solved by reacting to failures at the

switches local to the failure and reevaluating the division of labor between network

hardware and software. While it has been adequate or even appropriate to react

to network failures in data center networks largely in software running at either the

network edge or distributed across the network in the past, tight deadlines, faster

line rates, and frequent failures are pushing existing approaches to their limits. By

redrawing the boundary between what is done in software and what is done in hard-

ware and by reacting to failures locally instead of remotely, I argue it is possible to

significantly improve the performance of data center networks.

Specifically, I make two changes: 1) enabling lossless forwarding and 2) making

hardware forwarding decisions a function of the local switch port status. In this new

architecture, end hosts can start transferring packets at full line rate because lossless

forwarding guarantees that packets are never dropped due to congestion, and only

the packets in transit during a link or device failure are dropped because forwarding

hardware can make local rerouting decisions as soon as the PHY detects a failure.

Although lossless forwarding is available in existing data center switches, lossless

forwarding is typically only used to connect servers to a storage network via the

data network, and even then just for the first-hop from the server to the top-of-rack

(ToR) switch. The reason for the lack of adoption of lossless forwarding is because

enabling lossless forwarding introduces many non-obvious problems. In this thesis, I

both identify the problems caused by lossless forwarding, demonstrate the existence

of these problems on data center switches, and contribute solutions to these problems.
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In effect, the changes to congestion control simply add a new hardware fail safe to

existing software congestion control. Existing end-to-end data center congestion con-

trol [6] largely remains unchanged. However, when the existing end-to-end software

approach fails, the new hardware fail safe guarantees correctness at time scales that

are far smaller than software congestion control can operate by having the switch

local to the congestion event pause the queues responsible for the congestion. As an

important optimization, this thesis also uses the new hardware failsafe to eliminate

the existing congestion control ramp up period that is otherwise required for safety,

further improving network performance. I call the congestion control scheme that re-

sults from combining lossless forwarding with data center software congestion control

without a ramp up period TCP-Bolt.

As with congestion failures, the hardware solutions to routing failure also do not

preclude or eliminate existing software solutions. Software is still used to compute

backup routes and optimize the routes in the reconvergence process. However, the

problem is that the time required for even local action in software may be unaccept-

able. To address this problem, I use proactive hardware local fast failover. However,

software is still responsible for optimizing routing as necessary.

Although preinstalling backup routes in proactive local fast failover is made pos-

sible by recent trends in data center switch design towards increased forwarding table

state, state is still a limiting factor to local rerouting, and it is unclear exactly how

rerouting should be performed. To address this problem, this thesis considers mul-

tiple forwarding models for local recovery from routing failure. The most notable

of these forwarding models for local fast failover is Plinko, a new forwarding model

that is introduced by this thesis. Plinko is notable because it is specifically designed

to reduce state through the use of forwarding table entries that are compressible.
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Further, this thesis compares the different forwarding models in terms of effective-

ness, performance, and state, finding that the subtle differences in the way failures

are represented in the different forwarding models impact the forwarding table state

required to implement the forwarding model.

Ideally, one of the implementations of local fast failover could be combined with

lossless forwarding to protect against both routing and congestion failures. Unfor-

tunately, enabling lossless forwarding makes a new kind of failure, deadlock [10],

possible, and no existing implementation of local fast failover guarantees deadlock-

free routing. This thesis introduces the first ever approaches to local fast failover that

guarantee deadlock-free routing for arbitrary network topologies. The first approach

takes the routes built by Plinko and assigns these routes to the network’s virtual

channels so as to prevent deadlock. While deadlock-free Plinko does not impact for-

warding throughput, the number of virtual channels required by deadlock-free Plinko

increases as either topology size or fault tolerance increases. Because current switches

have a fixed number of virtual channels, this implies that deadlock-free Plinko may

not always be implementable. To enable deadlock-free local fast failover on topolo-

gies larger than deadlock-free Plinko can support, this thesis introduces a second

approach to deadlock-free local fast failover, deadlock-free edge disjoint spanning tree

(DF-EDST) resilience. While DF-EDST resilience does not need virtual channels, it

does have a small impact on forwarding throughput.

1.1 Contributions

This thesis presents new architectures and mechanisms for the solving the most com-

mon types of failures in data centers. Specifically, there are three primary contribu-

tions in this thesis:
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1. I demonstrate both the problems caused by lossless forwarding and solutions

to these problems. Further, I show that lossless forwarding can be utilized to

reduce the completion time of flows.

2. I introduce a new forwarding model for proactive local fast failover, adapt ex-

isting forwarding models to hardware, and compare the new and adapted for-

warding models against other existing architectures that can be used to perform

local fast failover. Further, to reduce forwarding table state, I contribute a new

forwarding table compression algorithm and a compression-aware routing algo-

rithm.

3. I evaluate the feasibility and potential performance impact of two different ap-

proaches to simultaneously providing lossless forwarding and local fast failover

introduced in this thesis. I find that both approaches are feasible and represent

complementary points in the design space.

In summary, I introduce new ways of utilizing existing data center hardware to

transform the way in which failures are handled in data center networks, enabling

effective use of underlying hardware in data center networks.

The rest of this thesis is organized as follows. First, Chapter 2 introduces necessary

background information on lossless forwarding, congestion control, and fast failover.

Next, Chapter 3 discusses enabling lossless forwarding in the data center and intro-

duces TCP-Bolt. After that, Chapter 4 considers multiple forwarding models for local

recovery from routing failure, including Plinko, a new forwarding model for local fast

failover that is introduced by this thesis. In Chapter 5, this thesis introduces the

first ever approaches to local fast failover that guarantee deadlock-free routing for

arbitrary network topologies, deadlock-free Plinko and DF-EDST resilience. Lastly,
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Chapter 6 discusses related work, and Chapter 7 concludes this thesis and discusses

potential avenues for future work.
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CHAPTER 2

Background

This chapter provides necessary background information on data center networks.

Specifically, it focuses on the state-of-the-art in handling both congestion failures and

routing failures. First, this chapter discusses congestion control as a mechanism for

avoiding congestion failure in Section 2.1. Next, this chapter discusses lossless for-

warding, or Data Center Bridging (DCB), as a mechanism for preventing congestion

failures in Section 2.2. After that, it discusses approaches to handling routing fail-

ures in Section 2.3. Section 2.4 discusses a recent trend in data center switches, and

Section 2.6 concludes.

2.1 Data Center Congestion Control

Typical data center networks are built from Ethernet switches and IP routers [11].

Because Ethernet switches and IP routers are traditionally lossy, if the inbound traffic

for a given output port is greater than the line-rate of the output port, which is

referred to as congestion, then buffers space will begin to be consumed. Buffer space

is limited, so congestion can lead to buffer space becoming exhausted and packets

being dropped, which can also be referred to as a buffer overrun.

Congestion is a well known problem [8], and congestion avoidance and control

algorithms are an integral part of the near-ubiquitous TCP [8]. The discussion in this
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chapter is limited to congestion control in the data center.

Specifically, TCP can perform poorly given data center networks and workloads [6,

7]. One scenario where TCP performs particularly poorly is incast [7], which occurs

in partition-aggregate [6] workloads and some distributed filesystem workloads [12].

Concretely, incast is when a single server requests small chunks from many servers in

a barrier-synchronized fashion. Because many request are active at the same time,

congestion in incast leads to full window losses, which incur expensive retransmit

timeouts (RTOs) [7]. In addition, data center measurements performed by Alizadeh

et al. [6] also identified that long-lived TCP flows cause queue buildup on the ports

they occupy and buffer pressure on the other ports, which are additional causes of

buffers being overrun in data center switches.

To address some of the TCP problems in data centers, a new TCP variant called

DCTCP [6] has been proposed. To react to congestion without dropping pack-

ets, DCTCP reuses existing explicit congestion notification [13] (ECN) support in

switches, which allows switches to mark ECN bits in packet headers probabilistically

at configurable thresholds. However, instead of smoothing the congestion feedback

at the switches with probabilistic marking like RED [14], DCTCP marks all packets

after buffers occupancy passes a threshold, relying on hosts to aggregate feedback.

Unlike TCP, which halves its window upon receipt of a single ECN marked packet,

DCTCP hosts reduce their window in proportion to the fraction of marked packets

in a window. In practice, DCTCP keeps switch buffer occupancy lower than TCP

with RED and ECN. Because of this, DCTCP significantly outperforms TCP on the

previously mentioned data center workloads. However, DCTCP still requires at least

one RTT to react to congestion, so failures are possible if congestion can overrun

buffer space in less than an RTT.
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Unfortunately, data center environments cause additional performance problems

not addressed by DCTCP. As the network’s bandwidth-delay product increases as

data centers move to 10 Gbps and 40 Gbps servers, TCP slow-start requires more

RTTs to fill the available network capacity.

One proposed solution to address the problems caused by slow-start is pFabric [15],

which outright abandons TCP slow start, starting all flows at line-rate. To handle the

congestion and buffer overruns caused by abandoning slow-start, pFabric relies on a

combination of using an RTO that is on the order of the network RTT and switches

that implement a prioritization scheme to ensure that high priority flows get short

flow completion times.

2.2 Data Center Bridging

An alternate approach to avoiding buffer overruns is to use a lossless fabric. Lossless

Ethernet, or DCB, is designed to avoid losses caused by buffer overruns on Ethernet

networks. To prevent buffer overruns, a DCB NIC or switch port anticipates when

it will not be able to accommodate more data in its buffer and sends a pause frame

to its directly connected upstream device asking it to wait for a specified amount of

time before any further data transmission. Once this pause request expires, either

buffer space will be available or the NIC/switch port will renew the request by sending

another pause frame. Expiration is typically on the timescale of a few packets worth

of transmission time. To avoid buffer overruns, a DCB-enabled NIC or switch port

must conservatively estimate how much data the upstream device could send before

receiving and processing a pause frame and issue pause frames while it has enough

buffer space to accommodate this data.

In effect, pause frames exert backpressure because a persistently paused link will
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Figure 2.1 : An example of DCB fairness problems. Because DCB enforces per-

port fairness, the B → A flow gets half the bandwidth while the other flows share

the remainder.

cascade pauses back into the network until, ultimately, traffic sources themselves

receive pause frames and stop sending traffic.

2.2.1 Implications of Backpressure

While seemingly simple, DCB’s backpressure paradigm has some non-obvious impli-

cations that can degrade throughput and latency when used with TCP. This section

details these problems, leaving proposed solutions for later.

1. Increased queuing (bufferbloat): With DCB, congestion causes increased

buffer occupancy. This occurs because by eliminating packet losses, DCB effectively

disables TCP congestion control. If TCP sees no congestion notifications (i.e., losses),

its congestion window grows without bound. When congestion occurs, buffers become

fully utilized throughout the network before pause frames can propagate, which adds

substantial queueing delays, both in the switches and end hosts.

2. Throughput unfairness: Under stable operation, TCP achieves max-min

fairness between flows sharing a bottleneck link. This occurs because every host

receives and reacts appropriately to congestion notifications, typically packet losses.



12

Pause frames

Congestion
HoL Blocking

A

C

H1 H2 H3

D

Figure 2.2 : An example of head-of-line blocking. The A→ D flow suffers head-of-

line blocking due to sharing bottlenecked link with A→ C.

In contrast, DCB propagates pause frames hop-by-hop, without any knowledge of

the flows that are causing the congestion. Switches do not have per-flow information,

so they perform round robin scheduling between competing ports, which can lead

to significant unfairness at the flow level. Figure 2.1 illustrates one such situation.

Without DCB, TCP would impose per-flow fairness at the congested link (incoming

at A), resulting in each flow receiving 1
5

of the link. However, when DCB is employed

naively, fairness is enforced at a port granularity at the left (congested) switch. The

B → A flow gets 1
2

of the congested link while the other four flows share the remainder

because of DCB’s per-input-port fairness policy.

3. Head-of-line blocking: DCB issues pause frames on a per-link (or per

virtual-lane) granularity. If two flows share a link, they will both be paused even if

the downstream path of only one of them is issuing pauses. This scenario is illustrated

in Figure 2.2, where the A→ D flow suffers head-of-line blocking due to sharing the

virtual lane with A → C, even though its own downstream path is uncongested.

Further, as these pause frames are propagated upstream to both flows, periodicities

in the system may cause one flow to repeatedly be issued pauses even as the other
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Figure 2.3 : A cycle of buffer dependencies that could cause a routing deadlock.

Note that each individual route is loop-free.

occupies the buffer each time a few packets are transmitted. This latter anomaly is

similar to the ‘TCP Outcast’ problem [16].

4. Deadlocks in routing: Routing deadlocks arise from packets waiting indefi-

nitely on buffer resources. If a cyclic dependency occurs across a set of buffers, with

each buffer waiting on another buffer to have capacity before it can transmit a packet,

deadlock results [10]. If routes are not carefully picked, lossless networks can suffer

from this problem. Traditional Ethernet avoids deadlocks by dropping packets when

buffer space is not available.

A simple example of a deadlock resulting from a cycle of such wait dependencies

is shown in Figure 2.3. The left half of the figure has 3 flows running over 3 switches

A, B, and C. The example shows input-port buffers, but using output queues is

equivalent. Flow fABC starts at a host (not shown) attached to A, passes through

B, and ends at a host attached to C. Likewise, there are two other flows, fBCA

and fCAB. Note that individual routes are loop-free. However, as shown on the

right, if the packet at the head of the A’s input queue is destined for the host at

B, the packet at B’s input is destined for the host at C, and the one at C’s input
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is destined for the host at A, a cyclic dependency develops between the buffers at

A, B, and C: fABC waits for fBCA, which waits for fCAB, which waits for fABC .

While this simple example may seem easy to avoid, deadlocks can arise from complex

interactions involving many flows and switches.

In general, deadlocks can arise whenever there exists a cycle in the network’s

channel dependency graph. To formally describe this concept, let G = (V,E) be a

bi-directional graph, where V = {1, . . . , n} is the set of vertices, {u, v} ∈ E is the set

of bi-directional edges, and C = {(u, v), (v, u)∀{u, v} ∈ E} is the set of unidirectional

channels (ports/buffers), one for each direction of each edge. Let (c1, . . . , cs) ∈ R be

the set of all routes defined by the network’s forwarding functions, with each route

being represented as the sequence of channels used in the route. Let D = (C,K)

be the network’s channel dependency graph, where C again is the set of network

channels and K = {(ci, ci+1)∀i ∈ {1, . . . , s− 1}∀(c1, . . . , cs) ∈ R} is a set of directed

edges representing the channel dependencies created by R. Given this model, Dally

and Seitz [10] proved the following theorem.

Theorem 2.2.1 A network is deadlock-free if the network’s channel dependency

graph D is acyclic.

It is noteworthy that Dally and Seitz [10] originally presented a proof that a cycle

in a network’s channel dependency graph is both necessary and sufficient for the

network to become deadlocked. However, Schwiebert [17] showed that cycles in the

channel dependency graph can exist without causing deadlock as long as the network

configuration that leads to the routes that induce the cycle being simultaneously in

use is unreachable. Thus, an acyclic channel dependency graph is only a sufficient

condition for deadlock-free routing.
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2.2.2 Deadlock-Free Routing

While there is a significant amount of research on deadlock-free routing, the deadlock-

free routing algorithms that are applicable to Ethernet use two techniques, either

independently or in combination [18]. The first technique is to restrict routing to

avoid channel dependency cycles. The second technique is to divide each channel

into multiple independent virtual channels that share the same physical channel.

Channel dependency cycles can then be avoided by ensuring that routes that form

cycles in the physical channel dependency graph use different virtual channels such

that there is no cycle in the virtual channel dependency graph. However, this second

technique only feasible if the required number of virtual channels is less than or equal

to the number of virtual channels provided by the underlying network hardware. In

DCB, there are 8 virtual channels [19]. In Infiniband, there may be up to 16, although

recent hardware has only supported 8 [20].

The first relevant deadlock-free routing algorithm that uses the first technique

is Up*/Down* [21], which was the first deadlock-free routing algorithm for arbi-

trary topologies that did not require virtual channels, and there have been many

Up*/Down* variants since its original introduction [18]. Put simply, Up*/Down*

builds a spanning tree of the network and then assigns one direction of each link

as up and the other as down based on this spanning tree. Because routes are only

allowed to traverse up channels then down channels, forbidding a route to transition

from a down channels to an up channel, there can never be a channel dependency

cycle, ensuring that routing is deadlock-free.

Similar to Up*/Down* routing, minimal routing on any tree topology, including

generalized fat trees [22], is also deadlock-free because routes first traverse up the
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tree and then down the tree, never making a potentially cycle causing down to up

transition [23].

The first implementation of deadlock-free routing that uses the second technique,

virtual channels, was introduced by Dally and Seitz [10]. However, their routing algo-

rithm was specific to hypercubes and shuffle networks. The most relevant deadlock-

free routing algorithms that use virtual channels are LASH [24] and DFSSSP [20].

This is because they are the only two deadlock-free routing algorithms that allow for

both arbitrary topologies and routes [18]. Both generate paths between all sources

and destinations oblivious to deadlocks and then use a heuristic to breaks any cyclic

dependencies by assigning paths to virtual channels. However, because the expected

time complexity of DFSSSP is smaller than that of LASH, I focus on DFSSSP. DF-

SSSP starts of by assigning all paths to the first virtual channel. Then, for every

cycle in the channel dependency graph for this layer, the weakest edge of the cycle

is chosen and all of the paths that induce that edge are moved to the next virtual

channel, with the weakest edge being the one that is induced by the fewest number

of paths. This process is then repeated until the cycle dependency graphs for each

virtual layer are acyclic. While this approach allows for high performance routing,

the major drawback of this approach is that the number of required virtual channels

increases with topology size.

2.3 Routing Failures

A routing failure occurs when there exists a path in the underlying network topology

for a flow, but there does not exist a valid route, also known as a forwarding path,

for the flow in the forwarding pattern defined by all of the routing elements in the

network. Traditionally, Ethernet routing failures have been addressed by computing
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and installing a new end-to-end route, and this can be done with either distributed

or centralized protocols. However, it is becoming increasingly important to handle

routing failures at the switch local to the failure so as to avoid dropping packets while

computing a new end-to-end route.

FCP [25] introduces a new architecture for local reactive rerouting for implement-

ing in hardware. In FCP, when a packet encounters a failure, the ids of the local

failed edges are added to the packet’s header. Then software computes a new route

for the packet that does not traverse any of the local failed edges or any of the failed

edge ids that may already be present in the packet’s header, if such a route exists.

Because failures are explicitly marked in packet headers and are never removed, a

packet is guaranteed to eventually reach the destination or be dropped because no

path exists.

In contrast with FCP, MPLS Fast Re-route [26] (MPLS-FRR) preinstalls backup

paths either for each link regardless of path or, optionally, for each link in each path.

Current implementations of MPLS-FRR require about 50ms to reconverge after a

link failure [27], implying that current implementations use local software to update

the forwarding table.

Unlike FCP and MPLS-FRR which do not restrict routing, Yener et al. [28] intro-

duced the concept of routing along edge-disjoint spanning trees (EDSTs) to provide

fault tolerance. Because EDSTs are spanning trees, an alternate tree can be selected

regardless of which switch needs to route around a failure. Because EDSTs do not

have any edges in common, an alternate tree is guaranteed to avoid the edge that

causes the previous tree to fail. In a k-connected topology, there exist k/2 EDSTs,

and these k/2 EDSTs can be used to protect against the failure of k/2− 1 arbitrary

edges [29]. To ensure that packets are eventually dropped in the event of a partition,
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a k/2 bit wide bitfield is added to the packet headers, and when a failed edge is

encountered, the appropriate bit in the bitfield is set to represent that the tree the

edge is a member of has failed.

Similarly, Elhourani et al. [29] introduced another approach to resilience related

to FCP and MPSL-FRR that uses arc-disjoint spanning trees (ADST) instead of

EDSTs. Elhourani et al. created an algorithm that can provably provide protection

against up to k − 1 links given k ADSTs. Prior work has proved that there exist k

ADSTs on a k-connected topology, i.e. a topology that will not be disconnected after

the failure of k− 1 arbitrary edges, which implies that ADSTs can be used to protect

against the arbitrary failure of k−1 links. As with EDST resilience, ADST resilience

uses a k bit wide bitfield in packet headers to track which trees have failed. While

this is promising work, the forwarding algorithm, as described, is not immediately

suitable for a hardware implementation.

Lastly, Feigenbaum et al. [30] introduced some important theory on routing fail-

ures. First, they define the concept of a t-resilient forwarding pattern, where a for-

warding pattern is defined by the combination of every switch’s forwarding function.

A t-resilient network is one where the forwarding pattern defines a forwarding path

between two hosts as long as there exists a path between them in the underlying

topology. Further, a t-resilient forwarding pattern never defines any infinitely long

forwarding paths, i.e., forwarding loops. Additionally, Feigenbaum et al. proved that

it is not always possible to provide t-resilience if packets are not modified to identify

in some way the failures they have already encountered.

To be more specific, let a network be a graph G = (V,E), where, as before,

V = {1, . . . , n} and {u, v} ∈ E is the set of undirected edges. Each node v ∈ V

has a forwarding function fv(d, ∗, bm) → e that maps a packet’s destination d ∈ D
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and addition label as a function of a bitmask bm ∈ 2Ev of the node’s state to an

output edge e ∈ Ev. Feigenbaum et al. were primarily concerned with the resilience

of the forwarding pattern, which is the n-tuple of forwarding functions, given that

a set of edges F ⊆ E has failed. Let GF = (V,E \ F ) be the new graph defined if

the edges in F are removed, and let Gi = {GF : |F | = i} be the set of all possible

graphs formed by the failure of i edges. Let a forwarding path be a path in GF

that is defined by the forwarding pattern fp. Feigenbaum et al. then formalized the

degree of resilience of a forwarding pattern fp by defining that a forwarding pattern

is t-resilient if ∀GF ∈ Gi,∀i ≤ t, (1) there exists a forwarding path from a node v

to d in GF if any route exists from node v to d in GF , ∀v, d ∈ V , and (2) there

are no infinitely long forwarding paths defined by fp in GF . Given this definition of

resilience, Feigenbaum et al. proved the following theorem.

Theorem 2.3.1 If a network’s forwarding function is fv(d, ev, bm)→ e, where ev ∈

Ev is the input port of the packet, then (1) there always exists a 1-resilient forwarding

pattern, and (2) an ∞-resilient forwarding pattern does not always exist.

2.4 Reconfigurable Match Tables

Recent developments by academia and industry have lead to switches built with re-

configurable match tables [31] (RMT), which can implement a multitude of forwarding

functions with reconfigurable parsing, matching, and packet modification actions. For

example, an RMT switch would contain a pipeline of exact match and TCAM tables

that are capable implementing multiple logical tables and applying a set of generic

packet modifications, including push, pop, increment, decrement, encap, and decap.
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2.5 Feedback Arc Set

A feedback arc set of a graph is the (possibly empty) set of arcs whose removal makes

the graph acyclic. The minimum feedback arc set of a graph is the smallest possible

feedback arc set, and computing the minimum feedback arc set of a graph is called the

FAS problem. Although the FAS problem is NP-hard, there are many approximation

algorithms for this problem. The best of these algorithms was introduced by Eades

et al. [32], and is the only algorithm that executes in linear time and guarantees that

less than |E|/2 arcs will be removed. Specifically, the algorithm guarantees that less

than |E|/2− |V |/6 arcs will be removed.

2.6 Conclusions

In conclusion, existing solutions to congestion and routing failures are not always ad-

equate, but recent developments in data center hardware have lead the way for inno-

vative uses of existing or proposed features. Although data center congestion control

is not sufficient for solving all congestion failures, modern data centers support DCB,

which can completely prevent packet loss. Also, current solutions to routing failures

are lacking in some way. However, recent advances have created switch hardware that

can flexibly implement a multitude of protocols, and recent research has created a

theoretical framework for building new forwarding functions.
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CHAPTER 3

High Performance Lossless Forwarding

Recently, much attention has been paid to TCP performance in the data center [7,

6, 9, 15, 33]. On one hand, data center networks and workloads can cause TCP to

experience congestion failures [7, 6], and the tail end of the TCP flow completion time

distribution can be over an order of magnitude slower than the average [9]. At the

same time, today’s datacenters operate under tight SLAs, often tracked at the 99.999th

percentile or greater, and even 10’s or 100’s of milliseconds of additional latency

translates into a real loss of revenue [6]. However, current data center transport

protocols are not able to effectively use all of the available network capacity, at least

for some flow sizes [15, 34], and the key culprit for unused network capacity in the data

center is TCP’s slow start mechanism. Short flows (<1MB) incur large time overheads

for slow start and in some cases, may never reach the fair share rate. Unfortunately,

the recent trend towards using 10GigE in the data center only exacerbates the gap

beween the ideal flow completion times and what TCP is able to provide. In effect,

data center transport has two intertwined goals: transfer data as fast as possible and

avoiding congestion failures.

New developments in commodity Ethernet hardware, driven by Fibre Channel

over Ethernet (FCoE), have led to wide support in data center Ethernet switches and
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NICs for an enhanced Ethernet standard called Data Center Bridging (DCB)∗ [19].

This new standard, in part, augments standard Ethernet with a per-hop flow control

protocol that uses “backpressure” to ensure that packets are never dropped due to

buffer overflow. Because DCB never drops packets, congestion failure is not possible.

Thus, DCB allows for TCP slow start to be eliminated, which allows flows to im-

mediately transmit at a multigigabit line rate, addressing both goals of data center

transport simultaneously.

Unfortunately, a naive implementation of a network where all traffic exploits DCB

and TCP slow start is disabled has significant problems. As this thesis demonstrates

on real hardware, DCB can lead to increased latency, unfairness in flow rates, head-

of-line blocking, and even deadlock, which quickly renders the network unusable until

it is reset. However, as this thesis will show, none of these problems are irresolvable,

and they can be addressed using simple mechanisms already supported on commodity

hardware. Additionally, this thesis proposes solutions to these problems that do not

compromise the improvements achieved for flow completion times.

To address DCB’s problems, this thesis proposes TCP-Bolt , a TCP variant that

is designed to achieve shorter flow completion times in data centers while avoid-

ing head-of-line blocking and maintaining near TCP fairness, all while guaranteeing

deadlock freedom through the use of a recently proposed routing algorithm that uses

edge-disjoint spanning trees (EDSTs) to prevent deadlock [35]. TCP-Bolt avoids the

negative properties of DCB by using DCTCP [6] to maintain low queue occupancy

while relying on DCB to prevent throughput collapse due to incasts, which occur on

a timescale shorter than an RTT. TCP-Bolt is able to stress the network aggressively

∗These enhancements are also referred to as Converged Enhanced Ethernet (CEE) and Data

Center Ethernet (DCE), but this thesis will refer to them as DCB.
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Figure 3.1 : TCP with a large initial congestion window running over DCB achieves

significant speedup with standard TCP over Ethernet.

and optimistically by eliminating slow start, which results in faster flow completions.

As motivation for this work, this chapter first illustrates the gains achievable on

actual DCB-enabled hardware by comparing the performance of a single flow over a

simple two-hop network using TCP with an initial congestion window as large as the

network’s bandwidth-delay product† running over DCB (TCP-DCB) against default

TCP over normal Ethernet (TCP-Eth). Figure 3.1 plots a speedup factor of how

much faster flows of different sizes finish with TCP-DCB compared to TCP-Eth. The

speedup factor is superimposed over a probability density function of background

flow sizes from a production data center with 6000 servers [6]. For flow sizes between

100 KB and 10 MB, which represent a significant fraction of the flows, this experiment

shows that TCP-DCB can achieve speedups of 1.5–3×. This is important because

†Using an initial congestion window equal to or larger than the bandwidth-delay product effec-

tively disables slow start and is the mechanism used for that feature in TCP-Bolt.
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flows in this range are often time-sensitive short message flows [6].

The key contributions of this chapter are:

• Demonstrating on real hardware both the problems that exist with DCB and

solutions that avoid these pitfalls.

• Showing that using DCB to eliminate TCP slow start reduces average comple-

tion times for flow sizes between 10 KB and 1 MB by 50 to 70%; 99.9th percentile

flow-completion times are reduced by as much as 90%. Additionally, this thesis

show that TCP-Bolt outperforms prior work [15] that also eliminates TCP slow

start.

The rest of this chapter first discusses TCP-Bolt in more detail, then presents an

evaluation methodology. Next, preliminary results are presented. Finally, the chapter

discusses some implications of TCP-Bolt.

3.1 TCP-Bolt

As described in Chapter 2, DCB can have negative consequences for throughput

and latency. This chapter argues that these problems are not irresolvable, proposing

solutions to three of the four discussed problems, using the EDST routing algorithm

from prior work [35] to solve the problem of deadlock-free routing (DFR).

Specifically, one mechanism is able to solve three of the four problems: increased

queuing, throughput unfairness, and head-of-line blocking. The solution is to use

ECN [13] in conjunction with DCB. Packets are marked with ECN bits by each switch

at a configurable ECN threshold, allowing TCP to function normally even as DCB

prevents losses. However, using only ECN results in low throughput, because TCP

halves its window upon receipt of a single ECN marked packet. Thus TCP-Bolt is
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based on DCTCP [6], a recently proposed TCP variant that responds proportionally

to the fraction of ECN marked packets. This makes DCTCP’s response to congestion

more stable and less conservative. DCTCP also reduced buffer occupancy compared

to normal TCP, which further improves the completion time of short flows.

Although DCTCP has low flow completion times for short (2–8 KB) flows, DCTCP

can increase the tail end of the flow completion times for medium (64 KB–16 MB)

sized flows, a range of flow sizes that still includes latency-sensitive flows [6]. This

problem could be addressed by using DCTCP with bandwidth-delay product sized

congestion windows, but doing so is unsafe and can increase the tail of flow com-

pletion times because congestion collapse is still possible. However, by using DCB

and a bandwidth-delay product sized congestion window, TCP-Bolt can reduce flow

completion times for short and medium sized flows by eliminating slow start while

preventing congestion collapse because DCB eliminates packet loss.

3.2 Experimental Methodology

3.2.1 Physical Testbed

The physical testbed used in evaluating TCP-Bolt consists of 4 IBM G8264 [36] 48-

port, DCB-enabled, 10 Gbps switches, and 20 hosts. In the presented experiments,

they are arranged in a line. The RTT of the network is approximately 240µs, with

most latency coming from the hosts’ network stacks resulting in near-constant RTTs

regardless of path hop counts. Each switch has nine megabytes of buffer space for

packets, which is shared between all ports on the switch. Each host in the testbed

runs Ubuntu 12.04 Linux with the 3.2 kernel. Except when noted, the default Linux

TCP implementation, TCP Cubic, with an initial congestion window size of 10 MSS is
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used. The DCTCP implementation is based on TCP NewReno and is forward ported

to the 3.2 kernel from the implementation made available by the DCTCP authors [6].

For TCP-Bolt, TCP is modified to disable slow start by setting the initial congestion

window to allow for line-rate transmission over the network.

3.2.2 ns-3 TCP Simulations

To consider the effects of larger networks and more complicated congestion dynamics,

this thesis also uses ns-3 [37] simulations.

In all of the simulations, the TCP variants are based on TCP NewReno, the

default TCP initial congestion window is set to 10 segments, and the bandwidth-

delay product congestion window is set to 200 segments. To increase the performance

of the baseline TCP, the minimum retransmit timeout is set to the low value of 2ms,

as suggested by Vasudevan et al. [38]

Further, the simulations also allow for comparing TCP-Bolt against pFabric [15],

a recently proposed congestion scheme that uses line-rate initial congestion windows,

small priority queues, and a short fixed retransmit timeout. In the simulations, the

initial pFabric congestion window is set to 200, and the minimum retransmit timeout

is set to 600µs, roughly three times the minimum RTT, as recommended by the

authors.

The simulations use a full bisection bandwidth 3-tier fat-tree topology with 54

hosts. All links in the network operate at 10 Gbps, and the network delays are set so

that the RTT is 240µs. Each port in the network has 225 KB of buffer space unless

pFabric is enabled, in which case I use 22.5 KB of buffer per port, similar to the

author’s suggestions for implementing pFabric. When DCTCP is used, the marking

threshold is set to 22.5 KB. These parameters were chosen to emulate the physical
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testbed.

Further, the simulations use two different load balancing schemes. The first is

ECMP. The second is packet spraying, suggested by DeTail [9], which routes each

packet along a random minimal path. When packet spraying is enabled, TCP Fast

Retransmit is disabled so that packet reordering does not have an adverse impact on

TCP behavior.

Workload To evaluate TCP-Bolt, this thesis proposes using a workload based on

the characterization of a production data center [6] that is similar to the workloads

used in previous work [39, 9, 40]. Short partition-aggregate jobs, or incasts, arrive

according to a Poisson process at each host. For each incast job, the origin host, or

aggregator, requests a server request unit (SRU) from 10 other randomly chosen hosts.

The SRU is randomly chosen from 2 KB, 4 KB, and 8 KB with equal probability. The

average arrival rate is set to 200 incasts per second per host—about 1% of the total

network throughput.

In addition to incast flows, each host also averages sending about one background

flow to another randomly chosen host. To maintain this property independent of

network load and ensure that background flows are desynchronized, each sender waits

for a random time between 0 and 1ms after finishing a transfer before initiating

another transfer to a random destination. These background flows are sized from

64 KB to 32 MB and represent non-query, non-aggregate traffic in the network, which

includes both short message and background traffic in a real data center [6].
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3.3 Evaluation

This section presents results from an evaluation of DCB and TCP-Bolt. First, this

section shows that the problems of DCB are real by demonstrating that they exist on

physical data center hardware. Second, this section shows that TCP-Bolt mitigates

the potential fairness and head-of-line blocking pitfalls of DCB that were described

in Section 2.2. Finally, this section demonstrates that TCP-Bolt improves flow com-

pletion times at scale across the full range of flow sizes using experiments performed

on a testbed and ns-3 simulations.

3.3.1 Implications of Backpressure

While seemingly simple, DCB’s backpressure paradigm has some non-obvious impli-

cations that can degrade throughput and latency when used with TCP. This section

details these problems, leaving proposed solutions for later.

1. Increased queuing (bufferbloat): In the experiments on the physical

testbed, round trip times increase from 240µs to 1240µs when TCP is run over

DCB, more than a 5x increase. This occurs because by eliminating packet losses,

DCB effectively disables TCP congestion control. If TCP sees no congestion notifi-

cations (i.e., losses), its congestion window grows without bound. When congestion

occurs, buffers become fully utilized throughout the network before pause frames can

propagate, which adds substantial queueing delays, both in the switches and end

hosts.

2. Throughput unfairness: Under stable operation, TCP achieves max-min

fairness between flows sharing a bottleneck link. This occurs because every host

receives and reacts appropriately to congestion notifications, typically packet losses.
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In contrast, DCB propagates pause frames hop-by-hop, without any knowledge of

the flows that are causing the congestion. Switches do not have per-flow information,

so they perform round robin scheduling between competing ports, which can lead

to significant unfairness at the flow level. Figure 2.1 illustrates one such situation.

Without DCB, TCP would impose per-flow fairness at the congested link (incoming

at A), resulting in each flow receiving 1
5

of the link. However, when DCB is employed

naively, fairness is enforced at a port granularity at the left (congested) switch. The

B → A flow gets 1
2

of the congested link while the other four flows share the remainder

because of DCB’s per-input-port fairness policy.

Figures 3.2 and 3.3 present what happens in the scenario shown in Figure 2.1

on the hardware testbed using TCP over Ethernet and TCP over DCB, respectively.

Hosts H{1, 2, 3, 4} are attached to one switch, while hosts A and B are connected to

another switch. There is a single link between the two switches. There are five flows:

B → A, and H{1, 2, 3, 4} → A. Two flows, B → A and H1 → A, last the entire

experiment. H2 → A lasts from t = 2 to 12, H3 → A lasts from t = 4 to 10, and

H4→ A lasts from t = 6 to 8. Figure 3.2 presents the results for TCP over Ethernet;

each flow’s bandwidth converges to roughly its fair share soon after any flow joins

or leaves, but there is substantial noise and jitter. Figure 3.3 presents the results

for TCP over DCB; almost all jitter is eliminated, but bandwidth is shared per-port

rather than per-flow. The B → A flow gets half of the shared link’s capacity, while

the flows that share the same input port on the second switch share the remaining

capacity uniformly.

3. Head-of-line blocking: DCB issues pause frames on a per-link (or per

virtual-lane) granularity. If two flows share a link, they will both be paused even if

the downstream path of only one of them is issuing pauses. This scenario is illustrated



30

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  2  4  6  8  10  12  14

T
hr

ou
gh

pu
t 

(G
bp

s)

Time (s)

B to A
H1 to A
H2 to A
H3 to A
H4 to A

Figure 3.2 : The throughput of competing normal TCP flows in the topology shown

in Figure 2.1. TCP roughly approximates per-flow fair sharing of the congested link.

in Figure 2.2, where the A→ D flow suffers head-of-line blocking due to sharing the

virtual lane with A → C, even though its own downstream path is uncongested.

Further, as these pause frames are propagated upstream to both flows, periodicities

in the system may cause one flow to repeatedly be issued pauses even as the other

occupies the buffer each time a few packets are transmitted. This latter anomaly is

similar to the ‘TCP Outcast’ problem [16].

Figure 3.4 presents the results on the testbed from a set of workloads that in-

duced head of line blocking on a similar configuration (the results for H3 → C are

elided). In this scenario, the flow from A→ C exists from time t = 0 to 10 and then

completes. During the initial ten seconds, the flow from A→ D is unable to achieve

full (10 Gbps) bandwidth because of the head of line blocking induced by the A→ C

flow’s congestion. During this period, all flows achieve only 2.5Gb/sec. When the

A→ C flow stops at time t = 10, flow A→ D ramps up to its full 10 Gbps potential,
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Figure 3.3 : The throughput of competing normal TCP flows in the topology shown

in Figure 2.1 with DCB enable on the switches. Because DCB provides per-port fair

sharing, the A to B flow gets half the bandwidth while the other flows share the

remaining bandwidth.

while the remaining flows evenly share the 10 Gbps link to C.

3.3.2 Solving DCB’s Pitfalls

Although DCB’s per-hop flow control can cause per-port fairness and head-of-line

blocking, TCP-Bolt’s use of DCTCP ensures that in the common case switch buffers

are not full and thus pause frames are rare. This in effect allows us to use pause

frames for safety, while using DCTCP’s mechanisms to adapt to the correct long-

term transmission rate.

Fairness Figure 3.5 shows the throughput achieved using TCP-Bolt for flows B →

A and H{1, 2, 3, 4} → A on the same configuration (Figure 2.1) used for the fairness
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Figure 3.4 : Throughput of normal TCP flows over the topology seen in Figure 2.2

with DCB-enabled switches. The A → D flow is unable to use the full bandwidth

available to it because it is being blocked along with the A→ C flow.

experiments in Figures 3.2 and 3.3. The flows clearly come much closer to fairly

sharing available bandwidth than normal TCP either with (Figure 3.3) or without

(Figure 3.2) DCB. While there is small variance in throughput, the average per-flow

throughput is very close to the per-flow fair levels of 5, 3.33, 2.5 and 2 Gbps as the

number of competing flows increase from 2 to 5. Also, note that compared to the

normal TCP result shown in Figure 3.2, TCP-Bolt exhibits far less noise.

Head-of-Line Blocking Perhaps even worse, DCB can prevent full utilization of

available bandwidth if packets of some otherwise-unencumbered flows are stuck be-

hind packets of flows crossing a bottleneck. Figure 3.6 shows the throughput of

TCP-Bolt flows in the same configuration (Figure 2.2) as the head-of line blocking

experiments described in Figure 3.4.
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Figure 3.5 : The throughput of competing TCP-Bolt flows with DCB enabled on

the network switches using the topology shown in Figure 2.1. DCTCP dynamics keep

buffer occupancy low so that per-flow (instead of per-port) fair sharing emerges.

The DCTCP dynamics of TCP-Bolt allow the flow from A→ C to once again be

able to use all of the spare capacity not claimed by the flow from A→ D. However,

the flow from A → D now only receives half of its fair share of the link to D.

Unfortunately, this is a consequence of DCTCP dynamics. A DCTCP flow will receive

a certain rate of ECN-marked packets for each bottleneck link it crosses. Thus, a flow

which crosses two such links will receive approximately twice the number ECN signals

and thus back off twice as often converging to half of its expected fair-share. While

the end-result does not achieve the max-min per-flow fairness that might be desired,

it is a significant improvement over the bandwidth wasted by head-of-line blocking.
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Figure 3.6 : The throughput of TCP-Bolt flows using the topology show in Fig-

ure 2.2. DCTCP dynamics prevent any head-of-line blocking, but also cause slight

unfairness.

3.3.3 TCP-Bolt Performance

To demonstrate that TCP-Bolt improves performance under data center workloads, a

realistic partition-aggregation workload is used in combination with short message and

background flows to compare TCP-Bolt against other TCP variants. This workload

is used both on a testbed and in simulation.

Testbed performance To show that TCP-Bolt works on current commodity hard-

ware, the partition-aggregation workload was run on the testbed, although the results

are omitted. As expected, using bandwidth-delay product sized congestion windows

with standard TCP hurts the performance of the incast flows, and, surprisingly, did

not significantly improve the throughput of background flows. On the other hand,
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TCP-Bolt consistently achieved half the flow completion time of standard TCP for

the incast flows, and, for the background flows, TCP-Bolt achieved a speedup curve

similar to that shown in Figure 3.1, achieving a 2x speedup at the peak of the curve.

However, due to the lack of complicated congestion, both DCTCP and TCP with

DCB and slow start disabled matched the performance of TCP-Bolt when run on a

topology with a single switch.

Performance at scale In networks with larger and more complex topologies, the

head-of-line blocking and fairness problems of DCB may be more problematic than

on the testbed, and congestion can be more complex. Ns-3 is used to consider such a

scenario. The results show that TCP-Bolt consistently achieves fast flow completion

times across the full range of flow sizes, noting that packet scattering is necessary for

achieving the shortest incast flow completion times. TCP-DCB, which prevents TCP

congestion control, performs about 20× worse than the best performing algorithm

for the short incast flows, and 2× worse for the medium sized flows. DCTCP, on the

other hand, achieves short flow completion times, but DCTCP is roughly 10× worse

than the best performing variant for the medium sized flows.

There are many individual aspects of TCP-Bolt that all contribute to decreased

flow completion times, such as DCTCP, disabling slow start, DCB, and packet scat-

tering. The results indicate that none of the individual benefits of these elements

dominates the others, and that all of them are necessary for short flow completion

times.

Figure 3.7 shows the 99th percentile flow completion time for the short message

and background flows, which represent the range of latency-sensitive background

flows that TCP-Bolt benefits. The number of bytes transferred in the flow is on the
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Figure 3.7 : Simulation comparison of the normalized 99th percentile medium flow

completion times for different TCP variants. Variants of TCP and DCTCP wit slow

start disabled are omitted for clarity—results with these variants are very similar to

TCP’s performance.

x-axis, and the y-axis is the flow completion time, which is normalized to the optimal

completion time.

First, Figure 3.7 shows that the conservative DCTCP performs consistently more

than 10x worse than TCP-Bolt for all of the flow sizes in the figure. DCTCP-DCB

has very similar performance to DCTCP and is omitted from the figure. pFabric also

does not achieve low flow completion times for short message flows because incasts

transmit more data than the switch buffer sizes, so pFabric is almost guaranteed to

incur a retransmit timeout.

TCP-DCB, where TCP is unable to perform rate control because packets are never

dropped or marked, performs significantly better, but it still more than 2x worse than

TCP-Bolt. Although TCP-Bolt has consistently low completion times, both TCP and
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Figure 3.8 : Simulation comparison of the normalized 99.9th percentile incast com-

pletion times for different TCP variants.

the TCP variants that disable slow-start outperform TCP-Bolt for background flows.

This is because they gain their performance at the expense of the incast flows.

Figure 3.8 shows the 99.9th percentile flow completion time for the incast flows.

The x-axis is the SRU for the incast, and the y-axis is the normalized flow completion

time for the 10 replies to be sent to the aggregator. TCP-DCB is omitted from this

figure because its normalized flow completion time was always greater than 40. As

expected, TCP performs the worst of all the presented variants, and TCP without

slow start, which is omitted for clarity, matches the performance of TCP. pFabric also

performs similarly to TCP. Both TCP-Bolt and DCTCP without slow start, which

is also omitted, fail to match the performance of DCTCP, taking about 2× as long

instead. Fortunately, as is shown by PS-TCP-Bolt, which stands for TCP-Bolt with

packet spraying enabled, increasing the congestion window does not hurt performance

if the incast load is balanced over the network.



38

 2
 3
 4
 5
 6
 7

 2  3  4  5  6  7  8  9

FC
T

SRU (Kilobytes)

NoSS-DCTCP
TCP-Bolt

PS-NoSS-DCTCP
PS-TCP-Bolt

PktSprayVanillaTCP
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for lossy and lossless TCP-Bolt variants.

Due to omissions for clarity, it may not be clear that DCB is necessary for reducing

flow completion times instead of just enabling DCTCP with packet spraying and

without slow start. Figure 3.9 shows the 99.9th percentile flow completion times

for the incast flows with the variants of the DCTCP, packet spraying (PktSpray),

and disabling slow start (NoSS). This figure shows that, with packet spraying, TCP-

Bolt provides a 20% improvement over the equivalent TCP variant without lossless

Ethernet. Although omitted for space, it is worth noting that packet spraying no

slow start DCTCP performs over 5x worse than TCP-Bolt for some of the small

background flow sizes. This is because enabling packet spraying requires that TCP

fast retransmit be disabled, so all packet losses incur a retransmit timeout. When

DCB is enabled, packet losses, and subsequently retransmit timeouts, do not happen.
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3.4 Discussion

In the previous section, the experiments showed that packet spraying is necessary

for fast completion times for the incast workload. Although packet spraying sounds

exotic, it can easily be implemented on existing hardware and networking stacks

that support ECMP by randomizing currently unused Ethernet or IP type fields per

packet. Similarly, hosts may easily perform packet scattering by using MPTCP [41],

or, when the EDST DFR algorithm is used, hosts may randomize the VLANs that

they use per-packet.

Also, even though TCP-Bolt relies on features only found in modern data center

switches—DCB and ECN, specifically—it is still possible to use TCP-Bolt and safely

communicate with hosts on the global internet. Existing networking stacks already

have support for different segment sizes per subnet, and support can also be added for

different initial congestion window and ECN settings per subnet. If ECN is disabled

and the TCP initial congestion window is left at the default value, then traffic to the

outside world will behave as normal.

3.5 Summary

In this chapter, I demonstrate that it is practical to enable DCB in a fully converged

network, despite the many associated pitfalls, and that doing so provides flow comple-

tion time benefits. Specifically, I present TCP-Bolt, an immediately implementable

TCP variant that utilizes DCB, DCTCP, and bandwidth-delay product sized conges-

tion windows to achieve shorter flow completion times.

In my evaluation of TCP-Bolt, I show that using DCB and disabling TCP’s con-

servative initial congestion window on an uncongested network can reduce flow com-
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pletion times by 50 to 70%. Next, I use physical hardware to demonstrate that using

DCTCP with DCB resolves the problems of increased latency, fairness, and Head-of-

Line blocking.

I then evaluate the performance of TCP-Bolt against other TCP variants under a

realistic workload. Using physical hardware, I demonstrate that TCP-Bolt offers 2x

lower flow completion times than TCP. Using ns-3 simulations, I find that TCP-Bolt

performs the best of all of the variants, reducing flow completion times by up to

90% compared to DCTCP for medium flow sizes, while simultaneously matching the

performance of DCTCP for short, latency-sensitive flows.
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CHAPTER 4

Fault-Tolerant Forwarding

As data center networks continue to grow in size, so has the likelihood that at any

instant in time one or more switches or links have failed. Even though these failures

may not disconnect the underlying topology, they often lead to routing failures, stop-

ping the flow of traffic between some of the hosts. Ideally, data center networks would

instantly reroute the affected flows, but today’s data center networks are, in fact, far

from this ideal. For example, in a recent study of data center networks, Gill et al. [5]

reported that, even though “current data center networks typically provide 1 : 1 re-

dundancy to allow traffic to flow along an alternate route,” in the median case the

redundancy groups only forward 40% as many bytes after a failure as they did before.

In effect, even though the redundancy groups help reduce the impact of failures, they

are not entirely effective.

Local fast failover schemes, such as OpenFlow fast failover groups [42], can po-

tentially bridge this effectiveness gap by preinstalling backup routes at switches that

provide high-throughput forwarding in the face of multiple simultaneous failures. In

particular, in this thesis, I explore the use of local fast failover with backup routes

that are t-resilient, i.e., the backup routes are designed to protect against t arbitrary

failures while simultaneously ensuring that packets do not enter routing loops [30].

Moreover, if a local fast failover scheme is implemented at the hardware level, it can
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react near-instantaneously to link failures. However, the principal challenge in closing

the effectiveness gap is in providing both high throughput forwarding and a sufficient

number of backup routes within the forwarding table size constraints of current data

center switches/routers [31, 43, 36].

Given this challenge, this thesis explores two different approaches to providing re-

silient local fast failover: failure identifying (FI) resilience and disjoint tree resilience.

In exploring FI resilience, this thesis contributes Plinko, a new FI resilient forwarding

function. Additionally, this thesis discusses two existing forwarding functions capable

of implementing FI resilient forwarding tables, FCP [25] and MPLS-FRR [26]. For

disjoint tree resilience, this thesis considers using both Arc-Disjoint Spanning Trees

(ADST) [29], and Edge-Disjoint Spanning Trees (EDST) [29, 44] to provide fault tol-

erance, adapting their routing algorithms as necessary for implementing forwarding

table resilience in hardware. In effect, these two different approaches fall into different

points in the design space regarding performance and forwarding table state. While

FI resilience allows for arbitrary shortest path routing, even for backup routes, for-

warding table state in FI resilience is roughly exponential in t, the level of resilience.

On the other hand, forwarding table state in disjoint tree resilience is polynomial with

respect to t, but forwarding is restricted, which can potentially impact performance.

Despite the differences between these two approaches to implementing t-resilient

local fast failover, for all values of t, all of the forwarding models in both approaches

share two key features: 1) switches with forwarding tables that match on the current

local port status in addition to packet headers, and 2) packets that include a way

of encoding failures in a header. The need for the first requirement is clear, and the

second requirement follows from Feigenbaum et al. [30], who proved that t-resilience

is not always possible for all values of t without adding a new packet header field
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(Theorem 2.3.1). Thus, the key degree of freedom in implementing t-resilient local

fast failover is in selecting what to use as this field.

In FI resilience, t-resilient routing builds a backup route that may use any arbitrary

path, if a path exists, for every link in every (t − 1)-resilient route, starting with 0-

resilient default routes, which may also use any path. In the case of a failure, the

switch local to the failure changes from the current route to a backup route that

avoids the failed links already encountered by the packet, effectively bouncing the

packet around in the network until it either reaches the destination or is dropped

because either no path existed or the packet encountered more failures than the

level of resilience. In order to guarantee resilience, an FI resilient forwarding model

modifies packets when they use a backup route so that the failed edge that the packet

encountered can be identified from the packet header.

The principal challenge in implementing FI resilience is in providing a sufficient

number of backup routes within the forwarding table size constraints of current data

center switches/routers [31, 43, 36]. Assuming all-to-all default routes, the additional

number of forwarding table entries required by FI resilience to move from (t− 1) to

t-resilience is roughly |D|2 ∗ ap(t+1)/|V |, assuming that all state is distributed evenly

across the switches V , where D is the set of destinations, ap is the average path length,

and |D|2 ∗ ap/|V | is an estimate of the number of default 0-resilient forwarding table

entries at each switch. This rapid increase in state clearly limits the level of resilience

that is practical today.

To solve this problem, I explore different approaches to achieving forwarding ta-

ble compression. First, I contribute a new forwarding table compression algorithm.

Then, I observe that only forwarding table entries that share both the same output

and the same packet modification action can be compressed, which implies that the
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achievable compression ratio is limited by the number of unique (output, action) pairs

in the table. Thus, my next two contributions were explicitly conceived as ways to

increase the number of common outputs and actions. First, I introduce the concept

of compression-aware routing, which increases the number of entries with common

forwarding table outputs. Second, I have created Plinko, a new forwarding model in

which all entries in the forwarding table apply the same action.

My forwarding table compression algorithm is based on two observations. The first

is that the earlier an entry is considered for compression, the more likely that entry

is to be compressible, which is due to potential conflicts with the already compressed

entries. The second is that compressing the entries with the more common (output,

action) pairs can reduce state more than compressing less common pairs. Based on

these observations, my algorithm first sorts table entries by their (output, action)

pairs before merging entries.

The number of unique (output, action) pairs fundamentally limits compressibility.

Compression-aware routing stretches this limit by reducing the number of unique

outputs in t-resilient forwarding tables. Because only backup routes share existing

outputs and only a subset of the backup routes can be in use at the same time,

aggregate throughput is not impacted.

In contrast with FI resilience, disjoint tree t-resilience starts by building (t + 1)

disjoint spanning trees. Forwarding table entries are then built at each switch to pro-

tect against each output edge of each disjoint tree failing, with the entry then marking

the entire tree as failed and selecting an alternate, non-failed tree for forwarding.

Although disjoint spanning tree resilience has already been introduced by previous

work, as previously described, disjoint spanning tree resilience is not well suited for

implementing in hardware. This thesis introduces a routing algorithm for disjoint
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spanning tree resilience that is well suited for hardware, specifically TCAMs, or a

combination of exact match and TCAM memories. From my analysis of the algorithm,

I find that the number of forwarding table entries required at each switch to implement

tree resilience is |D| ∗ (t+ 1)2.

Given these two different points in the local fast failover design space, I evalu-

ated the performance and state requirements of implementing variants of both failure

identifying and disjoint tree resilience on data center topologies through simulations.

As expected, FI resilience provides good performance, incurring little stretch and

closely matching the aggregate throughput of reactive shortest path routing. Also

as expected, disjoint tree resilience impacts performance, although surprisingly less

than may have been expected, frequently only incurring a median stretch of 1.5 and

reducing forwarding throughput by as little as 7%. On the other hand, in my state

evaluation, FCP, which does not even benefit from forwarding table compression, sur-

prisingly requires less forwarding table state than disjoint tree resilience for a given

level of resilience with all optimizations combined on the topology sizes I evaluated.

However, FCP is not clearly better than disjoint tree resilience because disjoint tree

resilience is surprisingly a little more fault tolerant than failure identifying resilience.

Regardless, when Plinko and forwarding table compression are considered, the more

desirable point in the design space is clear. Plinko clearly can provide equal or better

fault tolerance than disjoint tree resilience while requiring less forwarding table state

and without noticeably impacting performance.

Finally, although, by definition, t-resilience protects against all possible t failures,

regardless of whether t-resilience is provided by FI resilience of disjoint tree resilience,

analysing the resilience of forwarding tables is analogous to analysing the time com-

plexity of Quicksort. Although there exists a set of failures or list of elements that can
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excite the worst-case behavior, respectively, on average, it would be expected that

t-resilience to protect against more than t failures when averaged over all possible

sets of failures just as the average-case time complexity of Quicksort is smaller than

the worst case. Because no prior work evaluates the effectiveness of varying levels of

resilience, I also evaluate the trade-off between the state requirements and the prob-

ability of routing failure by performing the first expected-case analysis of resilience,

computing the average probability of routing failure through simulations. Also, be-

cause it is hard to perform such analysis without performing extensive simulations,

I introduce a closed form approximation for the probability of routing failure. In

effect, I show that in addition to providing easy to understand worst-case behavior,

t-resilience also provides good expected-case behavior.

In summary, the key contributions of this chapter are as follows:

• I introduce Plinko, a new t-resilient forwarding model that, most notably, en-

ables compressible forwarding tables. I show that Plinko is often 6–8× more

scalable than the other two FI resilient forwarding models. With all optimiza-

tions combined, 4-resilient Plinko is able to scale to networks with about 10K

hosts while only requiring 1Mbit of TCAM state.

• I created a new compression algorithm. Although I demonstrate the effective-

ness of my compression algorithm on Plinko forwarding tables, this compression

algorithm is applicable to any forwarding function where forwarding table en-

tries with the same output and action share common bits. In my experiments, it

achieved compression ratios ranging from 3.28× to 22.53× for 4-resilient routes

on the full bisection bandwidth generalized fat tree [22] topologies that I eval-

uated.
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• The compressibility of a forwarding table is fundamentally limited by the num-

ber of unique (output, action) pairs used in a forwarding table. By selecting

routes that are designed to be compressible, I show that it is possible to re-

duce forwarding table state without impacting resilience or performance. With

both my compression algorithm and compression-aware routing, I show that the

forwarding table state required by resilience is not prohibitive.

• I have created a new routing algorithm for disjoint spanning tree resilience that

is suitable for implementing in either TCAM memory or a combination of exact

match and TCAM memory.

The rest of this section then discusses failure identifying and disjoint tree resilience

in further detail. First this section motivates local fast failover and resilience as a

metric in Section 4.1. Next, this section introduces some formalism that is useful for

comparing resilient forwarding models in Section 4.2. After that, Section 4.3 describes

FI resilience and Section 4.4 describes disjoint tree resilience. Section 4.5 motivates

and discusses compressing FI resilient forwarding tables, then Section 4.6 discusses

how to implement both FI and disjoint tree resilience. After that, Section 4.7 describes

my methodology, and then Section 4.8 presents an evaluation of the fault tolerance

and performance of FI and disjoint tree resilience. Finally, Section 4.9 ties up loose

ends and Section 4.10 concludes with a summary of the chapter.

4.1 Motivation

Section 2.3 has already formally defined t-resilience, and Theorem 2.3.1 has already

introduced the main result from Feigenbaum at el. [30]. However, my interest in local

fast failover and resilience as a metric for evaluating the efficacy of local fast failover
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has yet to be motivated. In this section, I motivate my interest in t-resilience by

presenting the first expected-case analysis of the probability of routing failures under

t-resilience. Specifically, I present simulation results, and I introduce an equation

that approximates the probability of routing failure given a network topology and

level of resilience. In effect, I show that, in addition to providing easy to understand

worst-case behavior, t-resilience also provides good expected-case behavior.

To recap, a t-resilient forwarding function guarantees two properties. First, it

guarantees that, for any possible set of failures F of size |F | = t, there exists a route

from any node v to any destination d in the forwarding function if there exists a

path in the underlying topology after removing F . This implies that t may be larger

than the connectivity of the network because resilience allows for a route to not exist

if the underlying topology is disconnected. Second, a t-resilient forwarding function

guarantees that no packets can ever enter a forwarding loop, even if the network is

partitioned.

Since the first property quantifies the level of fault tolerance, its purpose is clear.

However, the motivation for the second property, which guarantees loop freedom, may

not be so obvious. In data center networks, high-throughput forwarding is important.

The second property is included because forwarding loops can significantly impair

throughput, potentially leading to network-wide packet loss and congestion, even if

looping packets are dropped from the network using a TTL mechanism [45, 46]. As an

interesting aside, without the inclusion of the second property, trivial yet impractical

solutions such as completely random routing would qualify as ∞-resilient.

Also, the definition of resilience treats all sources and destinations as equal. Intu-

itively, the goal of resilience is to prevent routing failures, and, if all pairwise routes are

equally important, then it is reasonable to consider resilient forwarding tables that
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provide the same level of protection against routing failures for all of the pairwise

routes. However, if some hosts are more important, then it would be more desirable

to look at the resilience of individual sources and/or destinations. Because this thesis

only considers homogeneous networks, I only look at network-wide resilience.

From my analysis, I have concluded that resilience is highly effective at preventing

routing failures. I find that 4-resilient forwarding tables, although only guaranteed

to protect against any 4 failures, provide protection against 99.999% of active routes

failing given 16 and 64 edges failing on a 1024-host topology with bisection bandwidth

ratios of 1 : 6 and 1 : 1, respectively. Further, the probability of failure decreases as

topology size increases. In the rest of this section, I present more of the results from

my analysis of the effectiveness of resilience.

4.1.1 Expected-Case Analysis

Given a network that provides t-resilience but more than t failures, I would expect

the forwarding pattern to show a graceful degradation as the number of failures

increases because only paths that encounter t+ 1 failures lose connectively, barring a

partition. Further, I also would expect that increases in t will exponentially decrease

the probability of routing failure because they also exponentially increase the number

of backup routes. To support these claims, I show the fraction of flows that failed

under simulations of failures and introduce new approximations for the probability

of a routing failure given a topology, level of resilience, and a number of routing

failures. In addition to helping provide intuition into the effectiveness of resilience,

these approximations are also useful for finding the expected probability of routing

failure without requiring extensive simulations.

In my approximations, I refer to the forwarding pattern as fp, the average path
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length between destinations as ap, the set of edges as E, and the set of edge failures

as Fe. The average path length between destinations is the only topological property

that I use. Additionally, I assume that failures occur uniformly and that the routes

are uniformly spread over the edges or vertices. Also, if shortest path routing is

not used, ap should be replaced with the average length of the routes. Equation 4.1

presents my approximation of the probability of a routing failure given edges failures:

Pr(pdv /∈ fp) =



0 if |Fe| ≤ t

1 if |E| − |Fe| < ap

(1− (|E|−|Fe|
ap )

(|E|ap)
)t+1 otherwise

(4.1)

The idea behind this approximation is, if all edges are equally likely to be in a route,

then the probability there is not a routing failure is the number of sets of ap edges

that do not include a failed edge divided by the number of possible sets of ap edges.

Consequently, this gives the probability of routing failure. Given t-resilience, a total

of t + 1 (backup) paths must all encounter a failure, so the probability that a path

fails is raised to the power t + 1. An interesting implication of this approximation

is that the probability of a routing failure does in fact decrease exponentially with

respect to increases in t.

However, Equation 4.1 can still be slightly improved. This is because the number

of possible edges that can be used is decreased by one every time a failure occurs.

Equation 4.2 presents a slightly more accurate version of the approximation that

captures this dynamic, and, for the rest of the thesis, this approximation is the
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approximation that I use for edge resilience:

Pr(pdv /∈ fp) =



0 if |Fe| ≤ t

1 if |E| − |Fe| < ap∏|E|−t
e=|E|(1−

(|E|−|Fe|
ap )

( e
ap)

) otherwise

(4.2)

Additionally, I have also approximated the probability of flow failures given vertex

failures instead of edge failures. Unlike edge failures, vertex (switch) failures are likely

to disconnect end hosts when a switch connected to hosts fails. Equation 4.3 is an

approximation of the probability a path fails given ideal reactive shortest path routing:

Pr(P d
v /∈ GFv) =


1 if |Fv| > |V |

|Fv |
|V | ∗ (1 + (1− |Fv |

|V | )) otherwise

(4.3)

This equation computes the expected fraction of paths where a source vertex failed

plus the paths where the source did not fail but the destination did.

Equation 4.4 extends Equation 4.3 to vertex resilience:

Pr(pdv /∈ v-fp) =



0 if |Fv| ≤ t

1 if |V | − |Fv| < ap + 1

1− ((1− Pr(P d
v /∈ GFv)∗

(1− (1− (|V |−|Fv |
ap−1 )

( |V |ap−1)
)t+1)) otherwise

(4.4)

This approximation starts with the estimate of the fraction of source/destination pairs

that are not disconnected from the topology from Equation 4.3 and multiplies this by

the fraction of forwarding paths that did not fail given the level of resilience. In this

equation I use ap−1 instead of ap as in Equation 4.1 because there are ap+1 vertices

in a path that is ap edges long, and multiplying by the fraction of source/destination

pairs that did not fail guarantees that 2 of the vertices did not fail.
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Figure 4.1 : Expected Effectiveness of Edge Resilience
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In addition to quantifying the expected probability of routing failure, I would like

to verify the accuracy of Equation 4.2, Equation 4.3, and Equation 4.4. To do so, I

simulated different sizes and modes of routing failures according to the methodology

described in Section 4.7 given different levels of failure identifying resilience. Fig-

ure 4.1 presents the results of my experiments on full bisection (B1) fat trees, with

*-R and *-H representing differing levels of resilience and numbers of hosts, respec-

tively, and (M) marking the output of my approximation. Figure 4.1a not only shows

that my approximation is accurate across a range of levels of resilience on an EGFT

with 1024 hosts but also that linear increases in resilience provide orders of magnitude

decreases in the probability of routing failure.

To show the impact of topology size, Figure 4.1b presents the probability of routing

failure given a varying number of failures and 4-resilience on EGFT topologies. I chose

to use the same sizes of edge failures for each topology size instead of normalizing the

failure sizes to the topology because the most simultaneous link failures reported in

any of tens of production data centers was 180 [5]. Thus, the probability of failing

in Figure 4.1b decreases with topology size. The most notable aspect of this figure

is that, even though the forwarding tables only provide 4-resilience, the first failures

that I observed occurred only when 64 links were failed.

Although elided, I find that the probability of routing failure on Jellyfish topolo-

gies [47] is similar but slightly less than the results in Figure 4.1, and my approxi-

mation is similarly accurate. In the end, the accuracy of my approximation of the

probability of routing failure given edge resilience in my experiments was always

within an order of magnitude and frequently within a factor of 2–3×.

To show the accuracy of my approximations given vertex resilience, Figure 4.2

shows the approximated probability of failure and fraction of failed routes computed
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Figure 4.2 : Effectiveness of Vertex Resilience on a 4096 host EGFT Topology

from simulations for both edge and vertex failures given vertex resilience on the EGFT

topology. Because vertex failures can cause failures even in shortest path routing if

a vertex with hosts attached fails, I present the number of failures given reactive

shortest path routing in lines labeled SP, and, as before, the sets of edges and vertices

were selected randomly.

Figure 4.2 shows that my vertex failure approximation is accurate, and even mod-

erate levels of vertex resilience are effective at preventing avoidable routing failures.

However, vertex resilience does not provide significant protection given edges failures.

This is expected, because, if the last hop of a path fails, then vertex resilience assumes

that the switch failed.

On the other hand, edge resilience is also effective at preventing routing failures

given vertex failures. While not presented, the results for edge resilience look the same

as the results for vertex resilience in Figure 4.2a. This implies that edges resilience

is effective at mitigating both edge and vertex failures, but vertex resilience is only
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Figure 4.3 : CDF of the fraction of failed routes given 64 edges failures on a 1024

host EGFT (B1)

effective given vertex failures. Combining this with a failure study of a production

datacenter network that claims that multiple switches failing at the same time is “ex-

tremely rare” [5], providing edge protection is more desirable than vertex protection.

Because of this, I only consider edge resilience for the rest of this thesis.

Correlated Failures

In practice, I would expect that simultaneous failures are likely to be physically

related. While failures that are due to manufacturing defects or hardware failure

would be expected to be independent, some failures, such as power outages or cutting

a bundle of cables, may affect a localized region of the topology. To evaluate this

case, I randomly selected sets of connected edges for failure (Section 4.7).

To illustrate the effect of correlated and non-correlated failures, Figure 4.3 shows a

CDF of the fraction of routes that failed with both 0-resilience (0-R) and 4-resilience

(4-R) given correlated (C) and non-correlated (NC) failures on a 1024 host EGFT

topology. Interestingly, correlated failures have less impact than non-correlated fail-
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Figure 4.4 : Resilience and Correlated Failures

ures for the 0-R routes, although both still have a significant number of failed routes.

However, with 4-R routes, correlated failures cause more routes to fail than uniform

random failures. This is because 0-R routes fail if even a single edge on its path fails

and correlated failures are likely to touch fewer routes. 4-R routes, on the other hand,

only fail given multiple failures, so about 70% of all 64 edge failures do not even cause

a single routes to fail, while all correlated failures of 64 edges caused some routes to

fail, albeit at between two and four orders of magnitude fewer than without resilient

routes.

Figure 4.4 further illustrates this scenario by showing the average and 99th per-

centile fraction of routes that failed given correlated failures for varying levels of

resilience (*-R) on the 1024-host topologies, with B6 representing a 1 : 6 bisection

bandwidth ratio. Even though correlated failures impact roughly an order of mag-

nitude more routes, Figure 4.4a shows that the probability of failure is still low.

Although smaller topologies are more likely to be impacted by failures, Figure 4.4b

shows that resilience is still effective on the smaller B6 topology, and 6-resilience is
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not all that far from reactive shortest path routing (SP). Lastly, Figure 4.4c, which

looks at the 99th percentile failures, shows that even though the outlying failures

impacted roughly an order of magnitude more routes than the average failures, low

levels of resilience still prevent far more routing failures than no resilience (0-R).

Given that I find low levels of resilience to be highly effective in preventing routing

failures, I am now primarily concerned with feasibly implementing resilience.

4.2 Definitions

In order to describe failure identifying and disjoint tree resilience, I, as before, use a

network model that is extended from that used by Feigenbaum et al. [30]. Formally,

a network is modeled as an undirected graph G = (V,E), where V = {1, . . . , n} and

{u, v} ∈ E. I define Ev = {{u, v} ∈ E;u, v ∈ V } as the set of edges local to vertex

v ∈ V . The powerset 2Ev is a bitmask representing the failure status of the edges in

Ev. E
∗
v is the set of all paths starting at v, and P d

v ⊆ E∗v is the set of all paths from

v to d. D is the set of destinations. Lastly, ATd is a set of arc-disjoint trees rooted

at node d, where an arc is one direction of a bi-directional edge, and ET is a set of

edge-disjoint trees.

In this model, each node v ∈ V has a forwarding function fv(d, ∗, bm) → p that

maps a packet’s destination d ∈ D and addition label as a function of a bitmask

bm ∈ 2Ev of the node’s state to a path p ∈ E∗v . For convenience, I also represent the

forwarding function as fv(d, ∗, Fv, e) → p, where Fv is a set of local edges that must

be failed and e is an edge that must be up, so as to compactly specify a bitmask over

the local incident edges.

While the rest of this chapter is concerned with resilient forwarding functions,

Table 4.1 presents a few non-resilient forwarding functions so as to both provide a
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Network Architecture Forwarding Function Explanation

Non-Resilient

Traditional IP and Ethernet fi : D → Ei Pick a single output edge

per destination.

ECMP fi : D × 2Ei → Ei For each destination, pick

an output edge as a func-

tion of which incident

edges are up

Feigenbaum et al. [30] fi : D × Ei × 2Ei → Ei For each destination,

map incoming edges to

outgoing edges as a func-

tion of which incident

edges are up

Axon [48], SecondNet [49] fi : D → P d
i Pick a single forwarding

path per destination

Table 4.1 : Different non-resilient forwarding functions
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point of comparison and help illustrate the formalism.

4.3 Failure Identifying (FI) Resilience

This section introduces failure identifying resilience (FI). First, this section starts of

by introducing the routing algorithm for FI resilience, and then this section discusses

three different FI resilient forwarding functions.

4.3.1 Forwarding Table Construction

Algorithm 1 – FI Routing for t-resilient forwarding

1. Build default (non-resilient) routes:

2. Iteratively protect routes against any single additional failure each round:

For round i in {1, . . . , t}, do:

(a) Consider every edge e and switch sw that forwards out e in all the paths p built in

round i− 1.

i. Build a backup path for p assuming that edge e failed, if one exists. This path must

not use either e or any edge that p assumes failed.

ii. Install a route at sw that uses p and modifies the packet to add e to the set of failures

identified by the packet.

To build t-resilient forwarding tables for failure identifying resilience, I use Algo-

rithm 1. This algorithm uses a very simple approach to route construction where the

actual path selection is left up to an arbitrary policy. Later, in Section 4.5.3, I show

that this flexibility can be used to implement compression-aware routing. At the

start, Algorithm 1 establishes all-to-all communication by installing a default route

for all source/destination pairs of hosts. Unless one of the edges in the path fails,
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each switch along the route will use a packet’s header to look up an output port in

its forwarding table. The remainder of the routing algorithm iteratively increases

resilience by installing new backup routes to protect the paths built in the previous

round against the failure of any one additional edge. For every edge in the routes built

in the previous round, a backup route that matches the header of packets following

the route but requires the original output port to be down is added to the vertex

local to the edge. Because all possible failures of an additional edge are considered

in each round, by the end of round t, paths have been built that are resilient to all

possible failures of t edges. While the algorithm is presented in terms of edges, the

algorithm can also be used to protect against the failure of vertices, i.e. switches.

Figure 4.5 illustrates the routing algorithm by showing fully resilient routes for

II→Dst. In the figure, routes are represented as arrows and the level of resilience is

shown by the line style and color, using 0-R, 1-R, and 2-R for forwarding patterns that

are resilient to 0, 1, and 2 failures, respectively. Figure 4.5c is particularly interesting

because there are two 2-R entries. This is because failure information is only known

locally by the forwarding hardware, i.e., switches only learn of the failure of local

links, and the 1-R path [II-I, I-Dst ] can fail at either the II-I link or the I-Dst link

when there is still an operational path to Dst. Therefore, if links II-Dst and I-Dst

have failed, switch II will still attempt to forward packets along the [II-I, I-Dst ] path

based on its local information. Only after packets reach switch I will the failed link

I-Dst be observed, at which point the packet needs to be forwarded along the path

[I-II, II-III, III-Dst ]. While this leads to path stretch in this example, the stretch

tends to be minimal in practice and is unavoidable given that I want to provide local

fast failover without any a priori failure knowledge.
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4.3.2 Forwarding Models

The principal difficulty in forwarding packets along the routes built by Algorithm 1

is in identifying which backup route a packet is currently following and what fail-

ures the packet has already encountered. In this thesis, I consider three forwarding

models with two features that are sufficient to support failure identifying resilience:

1) forwarding tables that not only match on packet headers, but also on the local

port status, and 2) packets with a header that identifies the set of failures already

encountered by the packet.

Although no datacenter switches currently implement the first feature in hardware,

the motivation for it is clear: matching on the current port status allows for near

instantaneous use of backup routes in the case of link failure. However, the reason

for the second feature may not be so clear. In particular, for some topologies and

levels of resilience, it is not necessary. Feigenbaum et al. [30] proved that it is always

possible to protect against any single link failure given a forwarding function that

only matches on the destination, the input port, and the current port status. Despite

this, all of the forwarding models I consider in this chapter utilize a packet header to

identify failures. In part, this is because I would like a forwarding function that can

protect against the failure of more than one link; Gill et al. found that only 59% of

failures involve a single edge [5]. If an additional header is not used to identify failures,

Theorem 2.3.1 also proves that there exists a topology for which there exists a level

of resilience that cannot be provided. The intuition behind this result is that, if a

packet encounters multiple failures, a switch cannot determine the exact set of failures

encountered by the packet, which can cause backup routes to form forwarding loops.

With an additional packet header, it becomes possible to build routes that protect
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against any possible set of failures on any topology [25, 50]. Further, routes that use

an additional header are potentially less restricted than those that do not, potentially

leading to improved performance.

The first of these forwarding models, FCP, accumulates the IDs of the failed links

encountered by a packet in a header [25]. More precisely, FCP can either accumulate

edge IDs or use a label to identify a set of failed edges, which can save space.

With MPLS-FRR [26], I use a unique ID for every new route to provide t-resilience,

with the ID assigned to a packet changing when a failure is encountered. In fact, a

given network path may have multiple IDs, because an ID also encodes the route

that was being used by the packet prior to each encountered failure. Thus, the set of

encountered failed edges can be inferred from the ID.

Plinko, the final forwarding model that I consider, is a new model that retains the

full path taken by a packet to identify the set of failures encountered by that packet.

The failures can be identified because the retained path includes the packet’s source

at each hop, and, from a given source–be it the original switch or the switch local

to a failure–there is only one possible path forward given the local failures. This is

due to the resilient routing algorithm, which causes all forwarding table entries for a

packet (reverse path) at a switch to use different paths and protect against a different

set of failures. This implies that the path a packet has taken can be used to infer the

original source, the forwarding table entries used to forward the packet, and thus the

exact set of failures the packet has encountered. (A more detailed proof that Plinko

is t-resilient can be found in a tech report [51].)

In Plinko, the full path taken by a packet is retained by having every switch that

the packet traverses push the packet’s input port number onto a list contained in

the packet header. In effect, this simple action creates a list of ports that identify a
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Network Architecture Forwarding Function Explanation

Exhaustive Resilient

Plinko fi : D × E∗i × 2Ei → {Ei, P
d
i } For each destination,

map the reverse path

to an outgoing edge or

forwarding path as a

function of which inci-

dent edges are up

MPLS-FRR [26] fi : D × P d × 2Ei → {Ei, P
d
i } For each destination,

map the current path

ID to an outgoing edge

or forwarding path as

a function of which in-

cident edges are up

FCP [25] fi : D × 2E × 2Ei → {Ei, P
d
i } For each destination,

map the set of failed

edges already encoun-

tered by a packet to an

outgoing edge or for-

warding path as a func-

tion of which incident

edges are up

Table 4.2 : Different FI resilient forwarding functions
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Forwarding Entries (d, pid, Fv, e)→ p

(Dst, p0, ∅, II-Dst) → p2 ([II-Dst ])

(Dst, p0, {II-Dst}, II-I ) → p5 ([II-I, I-Dst ])

(Dst, p0, {II-Dst, II-I }, II-III ) → p8 ([II-III, III-Dst ])

(Dst, p4, {II-Dst}, II-III ) → p7 ([II-III, III-Dst ])

(Dst, p6, {II-Dst}, II-I ) → p10 ([II-I, I-Dst ])

Table 4.3 : The MPLS forwarding function for Dst at node II.

Forwarding Entries (d,EF, Fv, e)→ p

(Dst, ∅, ∅, II-Dst) → [II-Dst ]

(Dst, ∅, {II-Dst}, II-I ) → [II-I, I-Dst ]

(Dst, ∅, {II-Dst, II-I }, II-III ) → [II-III, III-Dst ]

(Dst, {I-Dst}, {II-Dst}, II-III ) → [II-III, III-Dst ]

(Dst, {III-Dst}, {II-Dst}, II-I ) → [II-I, I-Dst ]

Table 4.4 : The FCP forwarding function for Dst at node II.

Forwarding Entries (d, rp, Fv, e)→ p

(Dst, [ ], ∅, II-Dst) → [II-Dst ]

(Dst, [ ], {II-Dst}, II-I ) → [II-I, I-Dst ]

(Dst, [ ], {II-Dst, II-I }, II-III ) → [II-III, III-Dst ]

(Dst, [II-I ], {II-Dst}, II-III ) → [II-III, III-Dst ]

(Dst, [II-III ], {II-Dst}, II-I ) → [II-I, I-Dst ]

Table 4.5 : The Plinko forwarding function for Dst at node II.



66

path from the current switch back to the source of the packet, i.e., the reverse of the

path taken by the packet. The primary benefits of Plinko are that the same action

is applied to every packet and that packets with common reverse path prefixes may

have encountered the same failures and have the same output path, which allows for

rules to be compressed.

Lastly, I consider versions of all three forwarding models where the output of the

forwarding function is a single edge, which leads to hop-by-hop forwarding, and where

the output of the forwarding function is a full source-route that is added to the packet

in addition to the tags used for resilient forwarding. While this distinction does not

affect resilience, source-routing can require less state.

To formalize the MPS-FRR, FCP, and Plinko forwarding models, Table 4.5 for-

mally specifies the different FI resilient forwarding functions. To provide a concrete

example for all three forwarding models, Table 4.5, Table 4.3, and Table 4.4 show the

forwarding function for node II in Figure 4.5 given MPLS-FRR, FCP, and Plinko,

respectively. Although the forwarding function entries are symbolic, it is also possible

to represent each entry as an opaque blob of bits suitable for matching in hardware.

4.4 Disjoint Tree Resilience

While FI resilience protects against the failure of specific sets of edges or vertices for

a given path, disjoint tree resilience builds disjoint spanning trees that are used to

protect against failures. In this thesis, I consider both EDST resilience, which builds

edge-disjoint spanning trees, and ADST resilience, which builds arc-disjoint spanning

trees.

In both of these forwarding models, when a failure is encountered, the current tree

is marked as failed and a new tree is selected for forwarding. In effect, the failure of
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an edge or arc is treated as the failure of the tree that the edge or arc belongs to.

This failure is then marked in a packet header, and forwarding continues until either

the destination is reached or there are no more trees left.

In contrast with FI resilience, the addition of another disjoint tree protects a given

destination against a single additional failure for all possible sources, while each set of

failures must be considered independently in FI resilience, possibly for each source and

destination pair. On the other hand, the FCP, MPLS-FRR, and Plinko forwarding

functions are capable of t-resilient routing for all values of t, while ADST and EDST

resilience can only protect against k−1 and k/2−1 failures on a k connected topology,

respectively [29].

To be more formal, the Table 4.6 shows the forwarding functions for ADST and

EDST resilience. Although it is crucial in disjoint tree resilience to continue forward-

ing on the current tree until it fails, it may appear odd that the forwarding functions

for ADST and EDST do not match on a packet header than contains the current tree

ID. This is because the input port of a packet can be used to identify the current tree

due to the fact that ADST and EDST use disjoint trees. However, I also consider

variants of both ADST and EDST resilience that also mark the current tree in a

packet header, which can reduce forwarding table state because a switch is likely to

have more than one incident input edge for a given tree.

As with FI resilience, disjoint tree resilience needs a specific routing algorithm.

Routing for EDST tree resilience is conceptually simple. All routes follow the paths

defined by a tree until a failure is encountered, and then any non-failed tree may

be selected for forwarding. On the other hand, ADST tree resilience imposes more

restrictions on routing. This is because the failure of a single edge causes the failure of

two arcs. Specifically, each edge can be traversed in two directions, which are referred
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Network Architecture Forwarding Function Explanation

Disjoint Tree Resilient

ADST [29] fi : D × Ei × 2ATd × 2Ei → Ei For each destination,

pick an outgoing edge

as a product of the in-

put port, which iden-

tifies a tree, a bitmask

of already failed arc-

disjoint trees, and the

current port status

EDST [29] fi : D × Ei × 2ET × 2Ei → Ei For each destination,

pick an outgoing edge

as a product of the in-

put port, which identi-

fies a Tree, a bitmask

of already failed edge-

disjoint trees, and the

current port status

Table 4.6 : The different disjoint tree resilient hardware forwarding functions
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to as arcs, and if an edge fails, it cannot be traversed in either direction. Therefore,

the important property necessary for routing with (t + 1) ADSTs to be t-resilient is

that each failed edge is only visited once. To insure this property, after an edge has

failed, the next ADST that is chosen must be the ADST that a packet that enters

the switch on the failed edge would use, if one exists, and this thesis refers to such

an ADST as a reverse tree. Given this restriction, the packet will either reach the

destination on the reverse tree or it will encounter a failure. Either way, the packet

is guaranteed to never traverse the same failed edge twice.

However, the routing algorithms described for EDST and ADST by prior work [29]

are best suited as on-line software algorithms because packets are modified and then

reprocessed, potentially multiple times. While this works well in software, in hardware

this would require packets be resubmitted through the packet processing pipeline,

which would increase the maximum number of packets per second that a switch must

process, potentially overloading the switch during failures. To solve this problem, this

thesis introduces new routing algorithms for EDST and ADST that are better suited

for hardware.

Algorithm 2 and Algorithm 3 are the new routing algorithms for the EDST and

ADST forwarding functions, respectively. Unlike the software routing algortihms,

the core idea behind these algorithms is to install forwarding entries for all possible

combinations of destinations, input ports, failed tree identifiers, and failed local ports.

This enables correct fault-tolerant routing to be performed in a single pass through

the matching hardware.

One thing that may seem odd about the EDST and ADST routing algorithms is

that the forwarding function specifies a bitmask as a combination of a tree or port

that must be up and a set of trees or edges that must be failed, yet all of the sets of
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Algorithm 2 – EDST Routing
Input: network topology G = (V,E) where V = {1, . . . , n}, and a set of edge-disjoint trees

ET .

Output: a forwarding pattern f = (f1, . . . , fn). ∀v ∈ V , fv(d, ip, t, FT , e, Fv) → (e, FET ),

where d ∈ D is the destination, ip ∈ Ev is the input port, t ∈ ET is a tree label that

must not be failed, FT ⊆ ET is a set of trees that must be marked as failed, e ∈ Ev is

an edge that must not be failed that is also used as the output edge, Fv ⊆ EV is a set

of edges that must be failed, and FET ⊆ ET is a set of trees to mark as failed in the

packet’s header.

1. Build non-failure routes at each vertex for each destination for each input

port tree: ∀v ∈ V , ∀d ∈ D, and ∀ip ∈ Ev, do:

• Let t ∈ ET be the tree that ip is a member of, i.e., ip ∈ t. If t does not exist, continue.

• Let e ∈ t be the output edge on t’s route to d.

• Set fv(d, ip, t,∅, e,∅) := (e,∅)

2. Build failure routes at each vertex for each destination for each input port

tree: ∀v ∈ V , ∀d ∈ D, and ∀ip ∈ Ev, do:

• Let t ∈ ET be the tree that ip is a member of, i.e., ip ∈ t. If t does not exist, continue.

• Let FET := {t} be the set of trees to mark as failed.

• For each alternate tree: ∀at ∈ ET − {t}

– Let e ∈ t be the output edge on at’s route to d.

– Set fv(d, ip, at,∅, e,∅) := (e, FET )

– Let FET := FET ∪ {at}
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Algorithm 3 – ADST Routing
Input: network topology G = (V,E) and a set of arc-disjoint trees AT .

Output: a forwarding pattern f = (f1, . . . , fn). ∀v ∈ V , fv(d, ip, t, FT , e, Fv) → (e, FATd
),

where d ∈ D is the destination, ip ∈ Ev is the input port, t ∈ ATd is a tree label that

must not be failed, FT ⊆ ATd is a set of trees that must be marked as failed, e ∈ Ev is

an edge that must not be failed that is also used as the output edge, Fv ⊆ EV is a set

of edges that must be failed, and FATd
⊆ ATd is a set of trees to mark as failed in the

packet’s header.

1. Build non-failure routes at each vertex for each destination for each input

port tree: ∀v ∈ V , ∀d ∈ D, and ∀ip ∈ Ev, do:

• Let t ∈ ATd be the tree that ip is a member of, i.e., ip ∈ t. If t does not exist, continue.

• Let e ∈ t be the output edge on t’s route to d.

• Set fv(d, ip, t,∅, e,∅) := (e,∅)

2. Build failure routes at each vertex for each destination for each input port

tree: ∀v ∈ V , ∀d ∈ D, and ∀ip ∈ Ev, do:

• Let t ∈ ATd be the tree that ip is a member of, i.e., ip ∈ t. If t does not exist, continue.

• Let FATd
:= {t} be the set of trees to mark as failed.

• Let NATd
:= ATd − {t} be the set of alternate trees to use if t fails

• While there exist alternate trees: While |NATd
| > 0

– Let at ∈ NATd
be an alternate tree.

– Let e ∈ at be the output edge on at’s route to d.

– Set fv(d, ip, at,∅, e,∅) := (e, FATd
)

– Remove at from the alternate trees. Let NATd
:= NATd

− {at}

– Add at to the failed trees. Let FATd
:= FATd

∪ {at}

– Reverse Tree Forwarding: If e is an input port for any tree rat ∈ NATd
:

∗ Let re ∈ rat be the output edge on rat’s route to d.

∗ Set fv(d, e, rat,∅, re,∅) := (re, FATd
)

∗ Remove rat from the alternate trees. Let NATd
:= NATd

− {rat}

∗ Add rat to the failed trees. Let FATd
:= FATd

∪ {rat}
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trees and ports necessary to be down are null sets. This is because the rules need to

cover all possible cases of packets, including those that have seen no failed trees, and

those that have seen all but one tree marked as failed. Similarly, it is possible for any

switch to see the failures of all of the possible spanning trees due to just local link

failures. Thus, the reason that the null failed sets are explicitly part of the forwarding

function is because all possible permutations of failed trees and edges must be able

to be forwarded.

Further, when converted to bitmasks, these algorithms install overlapping rules in

the forwarding function. These algorithms operate under the assumption that earlier

entries are not overwritten by subsequent entries. In effect, this means that earlier

entries have a higher priority than later entries, which, in the context of the algorithm,

means that the forwarding function specifies an order in which to try alternate trees

in the event of a failure.

When the next forwarding tree is not specified by the routing algorithm, as it may

sometimes be in ADST resilience, the next forwarding tree in the case of a failure

may be any non-failed tree. Because the choice of tree does not impact resilience, I

use a shortest-tree first routing policy in the interest of performance.

As a performance optimization, multiple shortest path trees can be also built for a

given destination in addition to the disjoint spanning trees that are build for resilience

in both ADST and EDST. Although the shortest path trees do not necessarily provide

additional resilience and packets would need to carry a current tree label if the shortest

path trees are not disjoint from the resilient trees, they are useful because they can

be used to implement random shortest path first routing. In this case, disjoint tree

resilient should only incur stretch and impact performance only when there are failures

in the network.
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I II III

1-T 2-T

Dst

Figure 4.6 : EDST resilient routes for Dst

Forwarding Entries (d, ip, t, FT , e, Fv)→ (e, FET

(Dst, self, 1-T, ∅, II-Dst, ∅) → ([II-Dst ], ∅)

(Dst, self, 2-T, ∅, II-I, ∅) → ([II-Dst ], {1-T})

(Dst, III-II, 2-T, ∅, II-I, ∅) → ([II-I ], ∅)

(Dst, III-II, 1-T, ∅, II-Dst, ∅) → ([II-Dst ], {2-T})

Table 4.7 : The EDST forwarding function for Dst at node II in Figure 4.6.
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I II III

SP 1-T 2-T

Dst

Figure 4.7 : ADST resilient routes for Dst

To illustrate the EDST routing algorithm, Figure 4.6 shows a topology and two

edge-disjoint spanning trees, and Table 4.7 shows the forwarding function of node II

in Figure 4.6 if Algorithm 2 was used for routing. In the topology shown in Figure 4.6,

the nodes are the sources of traffic, so traffic originating at a given node are marked

as coming from the self input port in Table 4.7. In practice, most traffic originates

from hosts, which have their own input ports, and traffic that does originate from the

switch control plane also has it’s own input port.

Similar to Figure 4.6, Figure 4.7 shows a topology and two arc-disjoint spanning

trees, and Table 4.8 shows the forwarding function of node II in Figure 4.7 if Algo-

rithm 3 was used for routing. As before, packets that originate at a switch are marked

as coming from the self input port. Also, because there are only two possible arc-

disjoint spanning trees given the topology in Figure 4.7, the reverse tree forwarding

required in ADST resilience is also the only possible alternate tree.

Figure 4.7 includes an extension to ADST resilience not included in Algorithm 3.
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Forwarding Entries (d, ip, t, FT , e, Fv)→ (e, FATd
)

(Dst, self, SP, ∅, II-Dst, ∅) → ([II-Dst ], ∅)

(Dst, self, 1-T, ∅, II-III, ∅) → ([II-III ], {SP})

(Dst, self, 2-T, ∅, II-I, ∅) → ([II-I ], {SP, 1-T})

(Dst, I-II, 1-T, ∅, II-III, ∅) → ([II-III ], ∅)

(Dst, I-II, 2-T, ∅, II-I, ∅) → ([II-I ], {1-T})

(Dst, III-II, 2-T, ∅, II-I, ∅) → ([II-I ], ∅)

(Dst, III-II, 1-T, ∅, II-III, ∅) → ([II-III ], {2-T})

Table 4.8 : The ADST forwarding function for Dst at node II in Figure 4.7.

In addition to the arc-disjoint spanning trees, routing can start out on a default short-

est path spanning tree that is not arc-disjoint from the other trees. In Figure 4.7, this

tree is labeled SP. Because the SP tree is not arc-disjoint from the other trees, ADST

routing with a default shortest path tree is not guaranteed to increased resilience.

However, if the shortest path tree uses arcs not present in any of the arc-disjoint

trees, as is the case at node II in Figure 4.7, shortest path routing can increase the

number of tolerable failures for some of the possible sets of failures.

4.5 Compression

This section first motivates the need for forwarding table compression for resilience

forwarding tables. Next, it describes my new forwarding table compression algorithm.

Lastly, it introduces compression-aware routing.
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10GbE Switch Release Year TCAM Exact Match

HP Procurve 5400zl 2006 285 Kbit 918 Kbit

Intel FlexPipe (FM6000)? 2011 885 Kbit 5 Mbit

BNT G8264 2011 ∼1.15 Mbit ∼5.6 Mbit

Metamorphosis? 2013 † 40 Mbit 370 Mbit

Table 4.9 : 10 Gbps TOR Switch Table Sizes. A ? indicates that the switch is

reconfigurable, and a † indicates that the switch is academic work and not a full

product.

4.5.1 Motivation

Because both FI and disjoint tree resilient forwarding install more forwarding table

entries than non-resilient forwarding would, it is desirable to try to compress resilient

forwarding tables so as to reduce some of the impact of fault tolerant forwarding.

However, disjoint tree resilience, unlike FI resilience, uses a routing algorithm that

installs overlapping entries where the order of the entries is important for perfor-

mance. In order to compress these forwarding tables, the entries would need to be

reordered, which could hurt performance. Further, state in disjoint tree resilience is

only proportional to the number of trees squared, which implies there is little need to

compress disjoint tree resilient forwarding tables. Because of this, I do not consider

compressing disjoint tree resilience.

On the other hand, FI resilience builds forwarding tables with non-overlapping

entries and the number of forwarding table entries is roughly exponential with respect

to the level of resilience, so compressing forwarding tables will not impact performance
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Figure 4.8 : TCAM Sizes for 6-Resilience

and may be necessary to implement FI resilience on realistic topology sizes. Thus, this

section focuses specifically on compressing FI resilient forwarding tables, exploring the

validity of the assumption made in prior work that the state explosion in FI resilience

would limit hardware it to all but the smallest networks or uninteresting levels of

resilience [25]

To that end, I built 6-resilient FI routes between all host-pairs in a network for a

range of different sized full bisection bandwidth fat tree topologies to understand the

exact state requirements of resilience (see Section 4.7 for the details of my methodol-

ogy). To see if the state requirements are prohibitive, I compare the results against

the TCAM sizes found in existing and proposed datacenter switches, which I present

in Table 4.9. The results of this experiment, shown in Figure 4.8, confirm the as-

sumptions of previous work. Providing 6-resilience requires over 40 Mbit of TCAM

state on a network with just two thousand hosts, more state than is available in any

switch, so this result clearly motivates forwarding table compression.

However, as was previously mentioned, modifying packets in transit is necessary
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for t-resilience. Unfortunately, only forwarding table rules that share the same output

and packet modification action can be compressed, which is problematic for FCP

and MPLS-FRR. To illustrate this, Figure 4.8 shows the total state required for

only the modifying entries after applying network virtualization to also reduce state

(Section 4.6) in the “(Lower Bound)” lines in the figure.

As Figure 4.8 illustrates, tagging packets to identify the set of failures they have

already encountered in MPLS-FRR and FCP can lead to a large number of unique

packet modification actions. For example, when moving from (t − 1) to t-resilience

in MPLS-FRR, roughly |D|2 ∗ apt/|V | of the |D|2 ∗ ap(t+1)/|V | total extra forwarding

table entries added to each switch modify a header field to a unique tag, i.e. one for

every link in all of the (t−1) resilient routes, and these entries cannot be compressed.

Also, although FCP tags packets differently than MPLS-FRR, the compressibility of

FCP is similarly limited.

On the other hand, Plinko applies the same modification to each packet—pushing

the input port onto a list in the packet—so there is no such limitation. Surprisingly,

this subtle architectural difference is crucial to enabling forwarding table compression.

With all optimizations combined, I frequently saw a reduction in state of over 95%,

which is shown in Figure 4.8 as the line “Compressed Plinko.”

Although MPLS-FRR uses unique IDs for each route, it may seem reasonable to

try to adapt FCP so that it applies the same action to each packet. One way to do

this would be to have a switch mark a packet with all local failures instead of just

the failures specific to forwarding the packet, i.e., the specific set of local failures

the forwarding table entry protects against. However, this causes a few problems.

First, t-resilient routes must now be built to match on any of many possible different

failures marked in a packet’s headers by the switches the packet traverses, causing
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an explosion in the number of entries. While it is then reasonable to try to compress

these entries, allowing for each switch to independently mark the failures of all of its

edges leads to prohibitively large packet headers.

4.5.2 Forwarding Table Compression

TCAMs can be used to reduce forwarding table state. As long as two forwarding table

entries have the same output and packet modification operations, wildcard matching

can be used to combine multiple forwarding table entries into a single TCAM entry by

masking off the bits in which the entries differ. Such forwarding table compression is

particularly powerful because TCAMs allow for overlapping entries, with the priority

of an entry determining which entry actually matches a packet. This introduces

an optimization problem: given a set of non-overlapping forwarding table entries,

find a smaller set of potentially overlapping TCAM entries and priorities that are

functionally equivalent. If the state reduction from compressing a resilient forwarding

table is greater than the increase in TCAM state from matching on the resilient tag

(or reverse path), then it is better to perform matching with a TCAM.

My work is not the first to discuss this use of TCAMs, and this optimization

problem has been well studied in the context of packet classifiers. However, most

of the existing work is not applicable to resilient forwarding, because it is designed

for prefix classifiers [52], whereas the port bitmask in resilient forwarding is not a

prefix rule. Simiarly, XPath [53] requires being able to assign labels to each path,

which does not fit with matching on a path in Plinko because assigning a label

to each route simply devolves into MPLS-FRR if applied to Plinko. To the best

of my knowledge, Bit weaving [52] is the only compression algorithm applicable to

Plinko. Unfortunately, it did not result in significant compression when applied to
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resilient forwarding tables, most likely because Bit weaving was designed for packet

classifiers, whose table entries are different than those for resilience. Thus, I developed

a new TCAM packing heuristic, which performs well in my experiments. While

other effective compression algorithms potentially exist, their existence would only

complement and strengthen my arguments.

Specifically, my new TCAM packing heuristic is based on two observations. First,

higher priority entries in a TCAM have to be finer in granularity so as to avoid

matching packets intended for a lower priority entry. Second, there is a greater

chance for state reduction by choosing to aggregate the largest set of rules that share

a common output path first. Based on these observations, the algorithm first sorts

the rules in descending order based on the size of the set of rules that share the same

output path and action. In other words, for each (output, action) pair in the old table,

the algorithm builds the set of entries that use the pair then considers each entry in

each set, starting with the largest set. Because the earlier an entry is considered

for compression the more likely it is to be compressed in my algorithm, this order

ensures that the entries with a larger potential for reducing forwarding table size are

considered first.

Given this processing order, my algorithm then greedily attempts to merge entries,

i.e. masking off the bits in which they differ, into rules in a new TCAM, which I

initialize as empty. To do so, I maintain a working set of new TCAM entries for each

(output, action) pair, which I also initialize as empty. For each old entry in order,

the working set is greedily searched for a new entry to merge with the old entry such

that the resulting merged entry does not overlap with any committed TCAM entry.

In other words, if any of the already considered forwarding table entries with different

(output, action) pairs would match the new entry, then the merge is not performed,
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but, if there is no conflict, then the merge is performed, updating the entry in the

working set. However, if all entries in the working set cause conflicts, then the current

old entry is added as-is to the working set. Lastly, once all entries for an (output,

action) pair are considered, the entries in the working set are committed to the new

TCAM at a priority higher than that of any entry currently committed to the new

TCAM.

4.5.3 Compression-Aware Routing

Forwarding table compression will always be constrained by the number of unique

output paths in the forwarding table. However, my resilient routing algorithm allows

for arbitrary paths, and, on datacenter topologies, the algorithm frequently chooses

between multiple equivalent paths. To exploit this property to improve compress-

ibility, I propose compression-aware routing, which attempts to choose routes that

increase the compressibility of the forwarding tables.

The compression-aware routing heuristic first checks if any of the existing routes

for the current destination avoid the failures that the current route being built protects

against. If so, the most common of such paths is chosen. If no such path exists, non-

compression-aware routing continues and chooses a new path that avoids the necessary

failures.

Because each backup route depends on the paths used by previous routes, the

order in which the routes are chosen can have an impact on compression. There

are two reasonable orderings, which are akin to BFS and DFS graph traversal: the

BFS ordering builds all possible t-resilient routes before building any (t+ 1)-resilient

routes, while the DFS ordering recursively protects the first unprotected hop of the

most recent route until the desired level of resilience is achieved.
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I chose to use the BFS ordering for two reasons. First, lower-level resilient routes

are more important for performance. Given, t failures, there are likely to be more

routes that hit i < t failures than those that hit exactly t failures. Further, the

0-resilient routes are especially important to network performance because these are

the default routes. Second, there are likely to be more (t + 1)-resilient routes than

there are t-resilient routes, so considering them later may open up more opportunities

for reusing existing routes.

4.6 Implementation

In this section, I discuss how to implement the MPLS-FRR, FCP, Plinko, EDST,

and ADST forwarding functions given a reconfigurable (RMT) switch, such as either

Metamorphosis [31] or FlexPipe [43]. I take care to note how to implement the

forwarding functions while maintaining end-host transparency, which is necessary for

general applicability. Next, I discuss the implementation of source routing, which, in

addition to reducing forwarding table state, is necessary to retain the full path taken

by a packet in Plinko. After that, I also discuss network virtualization, a network

feature that, as a side effect, reduces forwarding state [54]. Lastly, I discuss how

to safely implement network updates. To the best of my knowledge, this section is

the first description of a method for implementing arbitrary fast failover groups for

Ethernet networks in hardware.

4.6.1 Resilient Logical Forwarding Pipeline

Recent developments have led to switches with both reconfigurable packet parsers and

reconfigurable match tables that support a multitude of generic packet matching and

modification actions (RMT [31] and FlexPipe [43]). Given reconfigurable switches,
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Table Input Fields Match

Ac-

tions

Modified

Fields

Explanation

Island In

Table

InPort Drop ∅ Distinguish between packets based on

whether the input port is internal or not

Security

Table

* Drop Security Tag Perform arbitrary packet matching to

either drop packets or add a security tag

Encap/

MPath

Table

Dst ∅ VDst, ECMP

ID, ResTag,

RevHop-

Count

RevHops

Add the necessary default packet

headers to external packets. Optionally

converts overlay/end-host addresses into

underlay addresses, selecting among

multiple possible paths if applicable

SrcFwd/

Local

Table

((Dst × VDst) |

FwdHop[0]) ×

bm

OutPort FwdHopCount,

FwdHops

Source routing: checks to see if the

current next hop is operational. If not,

discard the forward source route

Network Virtualization: Checks to see if

the virtual destination is local and the

port of the physical destination is up

ResFwd

Table

(VDst | Dst) ×

(RevHops |

ResTag) × bm

× SecTag

OutPort,

Drop

FwdHopCount,

FwdHops,

ResTag

Choose an output edge or path as a

function of the destination, the

resilience tag or reverse path, and the

port status bitmask

SrcUpdate

Table

∅ ∅ Fwd/Rev

Source Route

Pop off the current FwdHop and Push

on the new RevHop

Island

Out

Table

OutPort ∅ Entire new

header

Decapsulate packets that leave the

island

Table 4.10 : Description of the tables in Figure 4.10.
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Fwd Hop Count Fwd Hops Rev Hop Count Rev Hops Version Dst MPath ID Res Tag Sec Tag Eth Frame CRC

Source Routing                                   !Plinko Routing Virt FCP and MPLS-FRR

Figure 4.9 : A Packet Header for Resilient Forwarding

Mandatory Optional

Island In 
Table 

SrcFwd/
Local
Table 

ResFwd 
Table 

SrcUpdate
Table 

Island Out
Table 

Security
Table 

Encap/
MPath
Table

Figure 4.10 : A Example Resilient Forwarding Pipeline

implementing our forwarding models should be simple. However, these models are

not limited to reconfigurable switches and could also be implemented on an FPGA

or ASIC.

Although, implementing local fast failover at the hardware level requires a for-

warding table that can match on the current port status of the local switch, I am not

aware of a switch that currently allows for matching on the port status as a p-bit value,

given a p-port switch. However, I believe that this change is easily implementable.

In particular, this port bitfield would be maintained based on PHY information and

used as an input to the forwarding table pipeline, where it is then best suited for

matching with a TCAM.

While matching on the current port status could also use exact match memory,

doing so would cause a prohibitive explosion in state. Most forwarding table entries
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protect against a handful of failures and do so regardless of the state of the other

ports on the switch. If a single 1-resilient backup route is built that requires one edge

to be up and one to be down on a 64-port switch, ignoring the other 62 ports, using

a bitmask with wildcards can specify this match in a single TCAM entry, while using

exact match would require 262 separate entries to cover all possibilities.

Given a port bitmask for matching, it is simple to implement resilient FCP and

MPLS-FRR. In its basic form, the switch pipeline would consists of a single table

that uses exact match memory to match on the destination and resilience tag and a

TCAM for matching on the port bitfield. Each entry would then specify an output

port and, if a failure was encountered, write the new resilience tag to the packet.

Matching on the ADST and EDST forwarding functions is similar to matching

on the FCP and MPLS-FRR forwarding functions. However, the ADST and EDST

forwarding functions match on two different bitmasks: the current status of the local

ports and the status of the failed trees encountered by the packet. As with FCP and

MPLS-FRR, exact match memory is not well suited for matching on either bitmask.

Thus, both bitmasks require a TCAM for matching both the port and tree status

bitmasks used in ADST and EDST.

The rest of this section focuses on additional features for implementing Plinko

and reducing forwarding table state. While these features incur a slight bandwidth

overhead due to increased packet header overhead, the added benefit outweighs the

cost. To be concrete, Figure 4.9 presents an example packet header for resilient

forwarding. Further, Figure 4.10 presents an example resilient packet processing

pipeline, and Table 4.10 describes the functionality of each table in the pipeline,

referencing fields in the packet header, a packet’s input port InPort, its output port

OutPort, and the port bitmask of the switch bm. Together, Figure 4.10 and Table 4.10
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are similar to P4’s Table Dependency Graphs (TDGs) [55].

While I think that these are a reasonable point in the design space, other variants

assuredly exist. For example, it may also be desirable to add length and type fields

to the packet header to simplify packet processing for networking monitoring tools

and to allow for dynamically switching between packet formats without interrupting

forwarding, respectively. Further, the header includes a version field that, while not

strictly necessary, is important for enabling simple, consistent network updates [56].

However, I believe that my example forwarding pipeline and packet header illustrate

the differences between key points in the design space, regardless of alternate imple-

mentations.

4.6.2 Source Routing

Source routing, where packets contain a full path in a header, can reduce forwarding

table state in FI resilience. In disjoint tree resilience, every switch must contain

routes for every destination on every tree, which is then guaranteed to provide all-to-

all routes because the trees are spanning trees. Because of this, the output at a switch

for a given tree can just be a single edge as every switch must have a rule for this tree.

However, in FI resilience, routes are installed for every individual source/destination

pair. If the path chosen for a given (backup) route for a source/destination pair is

more than one edge long, then forwarding table entries need to be installed on multiple

switches for this route in FI resilience if the output of the forwarding function is just

an output edge. If source routing is used, then only one forwarding table entry is

needed per route. This reduces forwarding table state in proportion to the average

path length of the network topology because forwarding table state is no longer stored

at the intermediate switches along a packet’s path.
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However, this reduction in forwarding table state comes at the cost of increased

packet header overhead. To reduce this overhead, I reuse an existing architecture

for source-routed Ethernet that typically incurs an overhead of less than 1–2% [48].

While some other implementations of source routing use global switch or link ids to

describe routes, Axons significantly reduce packet header overhead on large networks

by labeling each next hop with a label that is local to the switch that forwards along

the hop. In effect, an Axon source route is a list of switch port numbers, one for

each switch along the path. Thus, an Axon source route is only meaningful given a

starting switch for the route. Further, Axons accumulate a reverse route in a packet

header as forwarding occurs, i.e., a list of port numbers that, when followed from

the current switch, lead back to the source of the packet. Because Plinko matches

on the reverse path of a packet to provide resilience, Plinko benefits from the Axon’s

compact source route not just from reduced packet header overhead but also from

reduced forwarding table state.

Although Axons were originally implemented in an FPGA, implementing the Axon

protocol with a reconfigurable switch is possible by using two small additional logical

tables, which are labeled as the SrcFwd and SrcUpdate tables in Figure 4.10. These

tables attempt to forward via the source route and update the source route, respec-

tively. The SrcFwd table matches on the next forward hop in the source route and

the current port status. This table is small, containing just one entry per switch port.

Each entry simply checks to see if the output port specified by the source route is

operational. If it is, then it is used. Otherwise, the forward source route is discarded,

and packet matching continues in the resilient forwarding table to find an alternate

route. The SrcUpdate table is even simpler as it applies the same increment, decre-

ment, push, and pop operations required to modify the forward and reverse source
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routes to all packets.

Given transparent source routing, the principal difficulty in implementing a Plinko

switch is then in efficiently implementing the Plinko forwarding function. As with

FCP and MPLS-FRR forwarding functions, Plinko’s destination and label, which

is a reverse path, could be implemented with exact match tables. However, table

state is a limiting factor on scalability, and forwarding entries with reverse paths

with overlapping prefixes and the same output path can be compressed into a single

TCAM entry. If the state reduction from compression is greater than increase in

TCAM state from matching on the reverse path, then it is better to match on the

reverse path with a TCAM, which, in practice, is the case.

4.6.3 Network Virtualization

Network virtualization can also be used to reduce state [54]. Most hosts are only

attached to one or two switches, while top-of-rack (TOR) switches connect to many

hosts and many switches. This leads to the switch level topology being smaller than

the host level topology. However, using multiple paths is especially important when

forwarding on the switch topology so as to prevent all hosts on a switch from using

the same path. Thus, encapsulating packets from (virtual) end-hosts and routing on

the switch topology reduces state proportional to the number of (virtual) hosts per

switch divided by the degree of multipathing.

The forwarding table pipeline in Figure 4.10 includes two tables to support net-

work virtualization: the Encap/MPath table and the Local table. The Local table is

responsible for checking whether the virtual destination (VDst) is the local address

and, if it is, forwarding the packet to the correct local port. When source routing and

virtualization are used together, source routing takes priority, and the Local table is



89

only used when there are no hops left in the source route (Fwd Hop Count == 0).

The Encap/MPath table is responsible for the other half of virtualization, encapsu-

lation. The table matches on an unencapsulated packet’s physical destination and

converts it into a virtual destination (VDst), optionally adding a tag for multipathing

(MPath Tag). Although this table can be implemented as part of the TOR switch, I

expect that it would commonly be implemented as part of a virtual switch.

4.6.4 Network Updates

Finally, it is important that software be able to perform its own reconvergence while

maintaining correct forwarding and avoiding interfering with ongoing hardware re-

silience. For example, it may be desirable to install new routes after failures to reduce

stretch, perform traffic engineering, or, in the worst case, reestablish connectivity if

the hardware suffers from a routing failure. However, if the software route update

can cause a loss of connectivity, or even worse, forwarding loops, then the benefits of

hardware resilience have been negated.

To ensure the correctness of software updates, this thesis takes advantage of ex-

isting work on consistent network updates [56]. Briefly, all new routes are installed

under a different version tag (VLAN), and the rules that change the routing label

at the edge are only installed after all of the forwarding rules have been installed.

As long as forwarding table updates are locally atomic, i.e., packets are only ever

matched against the table before the update or after it, performing a consistent up-

date guarantees correct forwarding.
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4.7 Methodology

This section presents a methodology for evaluating forwarding table resilience, fo-

cusing on two key properties: the state required to implement the routes, and the

effectiveness of the resilient routes, both in terms of preventing routing failures and

in terms of the performance of the routes for both failure identifying and disjoint

tree resilience. To understand these properties, I performed simulations of both FI

and disjoint tree resilient routing on realistic datacenter topologies. First, all-to-all

routes are computed and the forwarding tables are for each switch for the different

forwarding models. These forwarding tables can then be used to determine the state

requirements. Next, I use the computed forwarding tables in conjunction with a work-

load to compute three metrics: the fraction of active routes that experienced failure

given the level of resilient routing, the stretch of active routes that avoided failures,

and the throughput achieved by the all of the flows.

Computing the forwarding tables assumes a network where all routes are installed

when hosts are discovered. Specifically, routes are built such that every switch in

the network contains a route for every destination host, or, in the case of e-way

NetLord-style ECMP, contains e routes for every destination switch. All-to-all routes

are assumed to be installed in the network because this provides the worst case state

for routing. In networks where not all hosts are allowed to communicate or routes are

installed reactively, the state results are expected to be reduced proportional to the

number of routes that are actually installed. While all of the evaluated forwarding

functions support arbitrary paths, choosing to build random shortest paths in the

evaluation to not increase the state per switch or skew the stretch results. In practice,

using random shortest paths leads to routes that are well distributed across the links
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in the network and provides a reasonable baseline. Optimizing resilient routes is left

to future work.

This thesis assumes that all of the forwarding functions require a 72-bit wide

exact match entry. This is the width of an Ethernet MAC address and a VXLAN

tag. The largest number of bits required for the exact match labels used in MPLS

and FCP was 17-bits, so it is safe to assume that using 24-bits is sufficient to mark

packets so as to identify failures. Because the evaluation assume 64-port switches,

each every forwarding entry other than Plinko requires 64 bits of TCAM state for the

port bitmask, and each Plinko entry requires 64 bits for the port bitmask plus 8 bits

per hop in the reverse path. When the TCAM is compressed, each reverse path must

be as long as the longest unpacked entry that will match the compressed entry.

To remain independent from a single specific switch implementation, e.g. Meta-

morphosis [31] or the Intel FM6000 [43], this thesis assume that the variable width

Plinko forwarding table entries require no overhead. In practice, internal fragmen-

tation leads to additional state overhead, but prior work has pointed out that the

additional cost is small [31]. Additionally, when considering state, only the maxi-

mum state required by any switch in the network is reported. Current datacenter

topologies, including the two that I consider, are designed to be implemented with

(close to) identical TOR switches, and reporting the maximum captures the required

state given identical switches.

The performance evaluation of the computed forwarding tables computes the frac-

tion of routes that do not have a valid route due to failures, the stretch of routes that

successfully routed around failures, and the throughput achieved by all of the flows

that did not fail given a workload and a set of edges or vertices that have failed.

These computations are repeated at least 100 times for each size of failed edges or



92

vertices presented. Unless otherwise specified, the resilient routes used in the for-

warding tables are capable of being implemented with Plinko or MPLS. The stretch

for the failed routes are computed as the ratio of the forwarding table path to the

shortest path given the set of failed elements, and the throughput of the flows with

valid routes are computed using Algorithm 2 from DevoFlow [57]. Only the stretch of

the routes that encountered a failed network element yet still had a valid forwarding

pattern route are presented because routes that did not avoid a failure are guaranteed

to have a stretch of 1.0 and would unfairly bias the results. The throughput results

are normalized to the maximum aggregate load on the topology, which is the number

of hosts multiplied by the line rate.

Currently, this thesis has implemented two different models for selecting the set of

failed network elements. The first model uniformly chooses edges or vertices to fail.

The second model, which attempts to mimic correlated failure, iteratively builds a set

of failed edges or vertices by first selecting a single random element and then choosing

elements that are neighbors or the already selected edges or vertices. Additionally,

edge failures do not include any edges between hosts and switches because they cause

unrecoverable failures.

During the performance evaluation, a uniform random (uRand) workload is used

to select the set of active flows. When computing the effect of failure, I use a uRand

workload of degree 36, which is where each host connects as a source to 36 random

destinations, to match the median degree of communication measured in a production

datacenter [6]. Not all of the connections between servers carry bulk data, so the

degree of communication is changed to four when computing the throughput results.

In the evaluation of FI and disjoint tree resilience, I use two data center topolo-

gies: the EGFT (extended generalized fat tree) [22] and the Jellyfish [47]. All of the
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topologies are built using 64-port switches and are sized for a 1 : 1 bisection bandwidth

ratio. Unlike the fat tree, the EGFT supports a large range of topology sizes by al-

lowing for parallel links and the number of switches at each layer to vary. Utilizing

prior work [58], the specific EGFT topology instances are chosen algorithmically to

require the fewest possible number of switches given a number of hosts, and the Jel-

lyfish instances are sized according to the asymptotic bisection bandwidth of Jellyfish

topologies.

Although this thesis uses two different datacenter topologies, it is important to

note that the experiments in this thesis are not intended as a topology comparison.

Instead, the evaluation uses two topologies to demonstrate that the results hold across

different realistic datacenter topologies. For a comprehensive topology comparison, I

refer readers to recent research by Abdu Jyothi et al. [59].

4.8 Evaluation

There are a few important questions regarding the resilient forwarding models that

I intend to answer. What is the cost of resilience? How effective are the opti-

mizations (source routing, network virtualization, forwarding table compression, and

compression-aware routing) at reducing the cost of resilience? Do any of the optimiza-

tions hurt performance, either by reducing throughput or increasing the probability

of routing failure? By how much does disjoint tree resilience impact performance by

restricting routing? In what scenarios, if any, would it be desirable to use FI resilience

instead of disjoint tree resilience, and visa versa?

From my experiments, I have arrived at the following answers. I find that the

cost of the naive implementation of resilience, e.g. hop-by-hop routed FCP, may be

prohibitively high. For example, providing 4-resilience on a 2048-host EGFT or a
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4096-host Jellyfish given this model requires roughly 10Mbits of TCAM state. On

the other hand, the optimizations to reduce forwarding table state for MPLS and

FCP are effective, achieving an 84% or greater reduction in forwarding table state.

However, Plinko significantly outperforms both of them due to the added benefits of

forwarding table compression and compression-aware routing. With all optimizations

combined, Plinko frequently achieves over a 95% reduction in forwarding table state,

requiring only 1Mbit of TCAM state to implement 4-resilience on all of the 8192-host

topologies. On the other hand, I find that the state requirements of disjoint tree

resilience may be in fact prohibitive. For example, even with network virtualization,

4-resilient routes for both ADST and EDST require 40Mbit of TCAM state on the

8192-host topologies I considered. I discuss this further in Section 4.8.1.

I also found that none of the optimizations had any noticeable impact on the

probability of routing failure or stretch. Further, only network virtualization im-

pacted forwarding throughput, and this impact disappeared as long as 8-way or

larger multipathing was used, which I discuss in Section 4.8.2. This implies that

compression-aware routing significantly reduces forwarding table state without com-

promising on the goals of effectively protecting against failures and maintaining high

network throughput.

As FI resilience uses minimal paths, I find that it often performs quite similar to

reactive shortest path routing in terms of both stretch and throughput. As disjoint

tree resilience restricts forwarding paths, I expected it to impact performance. While

I did find this to be true, disjoint tree resilience often reduces forwarding throughput

by as little as 7%. I discuss this further in Section 4.8.2.

As part of this project, I have evaluated protecting against both edge failures

(edge-resilience) and vertex failures (vertex-resilience). However, I only present the
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results from edge-resilience given edge failures for two reasons. First, Gill et al. found

that multiple switches failing at the same time in a datacenter is “extremely rare” [5],

so providing edge-resilience is more desirable than vertex-resilience. Second, I found

that low levels of both edge and vertex resilience (2-R) were as effective as reactive

routing given vertex failures, but vertex-resilience did not provide any significant

protection against edge failures. This result is particularly interesting because it

challenges assumptions made in previous work on fault tolerance [60].

4.8.1 State

While I have demonstrated the effectiveness of resilience in Section 4.1.1, if the state

necessary to implement the forwarding tables is too large, the applicability of these

results is limited. I first present the state requirements of FI resilience, and then I

present the state requirements of disjoint tree resilience.

FI Resilience State

In presenting the state requirements of FI resilience, I first present results on the

proportional usefulness of the different optimizations for reducing state, and then I

focus specifically on forwarding table compression. Lastly, I present the specific state

requirements of the different forwarding models.

Figure 4.11 presents the percent reduction in forwarding table state over naive hop-

by-hop routing (HBH) achieved by the different implementation variants, including

8-way multipathing network virtualization (NV), source routing (Src), and forwarding

table compression with (CR) and without (C) compression-aware routing. Although

source routing reduces state without compression, HBH routing surprisingly matches

the performance of source routing with compression due to a proportional increase in
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Figure 4.11 : 4-R Jellyfish (B6) Compression Ratio

compression for HBH routing. Another interesting point is that network virtualization

and source routing on their own achieve a compression ratio between 84% and 92%.

However, the addition of compression and compression-aware routing achieves up to

a 99% reduction in state.

Although source routing and network virtualization are largely independent of the

level of resilience, forwarding table compression is dependent on the level of resilience,

a dynamic that is not captured in Figure 4.11. To illustrate this effect, I present Ta-

bles 4.11 and 4.12, which show the compression ratio achieved given Plinko with

compression-aware routing and varying levels of resilience (*-R) on EGFT and Jelly-

fish topologies with a varying number of hosts (*-H). Besides showing that forwarding

table compression is effective, these tables show two important trends: forwarding ta-

ble compression increases with both increases in resilience and topology size. These

trends are important because state is more likely to be a limiting factor given either

larger networks or applications that desire increased resilience.

So far, I have yet to present results on the total state requirements of the three
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512-H 1024-H 2048-H 4096-H 8192-H

(S/H) (S/H) (S/H) (S/H) (S/H)

0-R 1.00/1.23 1.00/1.43 1.00/2.37 1.00/1.18 1.00/1.19

1-R 1.23/1.89 1.21/3.29 1.21/3.60 1.04/2.33 1.06/2.52

2-R 2.40/2.55 2.28/4.05 2.87/7.01 3.09/4.47 3.36/5.34

4-R 3.28/4.26 5.36/10.93 12.82/26.86 16.17/22.53 20.29/

6-R 4.63/7.00 17.88/24.51 54.48/96.47 63.93/

Table 4.11 : EGFT (B1) Compression Ratio

512-H 1024-H 2048-H 4096-H 8192-H

(S/H) (S/H) (S/H) (S/H) (S/H)

0-R 1.02/1.02 1.00/1.34 1.00/1.84 1.00/2.01 1.00/2.11

1-R 1.02/1.45 1.18/2.03 1.43/2.70 1.53/3.17 1.56/3.41

2-R 1.32/1.95 1.63/3.01 2.05/4.28 2.28/4.80 2.42/5.27

4-R 2.47/4.01 4.02/8.96 5.51/11.20 6.31/13.57 6.47/

6-R 5.27/9.29 11.79/22.13 16.40/33.20 17.58/

Table 4.12 : Jellyfish (B1) Compression Ratio
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forwarding models. Figures 4.12 and 4.13 address this by presenting the computed

state requirements required to implement varying levels of resilience (*-R) on Jellyfish

and EGFT topologies of differing size, respectively. Although these figures have many

lines, I maintain two invariants to simplify interpretation. First, only Plinko results

use solid lines, while FCP and MPLS, which perform very similarly, both use different

styles of dashed lines. Second, the legend is sorted in decreasing order of the state

required by each variant. Further, I omit the results from the Jellyfish (B1) and

EGFT (B6) topologies because, surprisingly, the state requirements were almost the

same as the other bisection bandwidth variant of the topology. Although I would

expect state to increase due to the increase in the average path lengths of the B1

topologies, this increase in state is balanced by an increase in the number of switches

in the network over which the state is distributed.

The most important trend that is visible in Figures 4.12 and 4.13b is that Plinko

requires significantly less forwarding table state than FCP and MPLS, which require

roughly similar forwarding table state, although FCP tends to perform better than

MPLS as topology size increases. For example, 6-R Plinko consistently required less

state than 4-R FCP or MPLS, and 4-R Plinko requires roughly the same amount of

state as 2-R FCP and MPLS. I have previously seen that increasing resilience signif-

icantly reduces the probability of a routing failure (Figure 4.1), so this implies that

Plinko is either able to provide significantly more routing protection given the same

amount of state or the same level of protection on far larger topologies. Combining

all optimizations, I expect that Plinko would be able to easily support 4-R routing

on networks with tens of thousands of hosts within the 40 Mbit of TCAM available

in Metamorphosis [31].
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Figure 4.14 : Jellyfish TCAM Sizes for Disjoint Tree Resilience

Disjoint Tree Resilience State

To illustrate the state requirements of disjoint tree resilience, Figure 4.14 and Fig-

ure 4.15 show the state requirements of disjoint tree resilience on the Jellyfish topology

(B6) and the EGFT topology (B1), respectively. Because both EDST and ADST re-

silience require the same amount of state, these figures capture the state requirements

of both forwarding models. In these figures, forwarding tables built with (t+ 1) dis-

joint trees are marked as t-R as that is their level of resilience. If a line is marked

with a (D), this implies that the forwarding function also includes a single default tree

that is not disjoint from the other trees. As a non-resilient baseline, I also include the

“0-R (D)” line, which represents a forwarding function that only includes a default

tree and no disjoint trees for resilience.

These figures show that the state impact of using default trees for performance

is minimal, which is expected because rules are not installed that use the default

tree to build backup routes in the case of failures, unlike the disjoint trees that
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Figure 4.15 : EGFT TCAM Sizes for Disjoint Tree Resilience

are used for resilience. However, these figures also show that, surprisingly, the state

requirements of implementing disjoint tree resilience may be prohibitive. For example,

on topologies with 2048 hosts, 4-resilient FCP with hop-by-hop routing and without

network virtualization requires less than 2× more state than 4-resilient disjoint tree

resilience, and, with all optimizations applied, then 4-resilient disjoint tree resilience

requires more than 2× more state than 4-resilient FCP. This implies that, Even

without compression failure identifying resilience is more scalable than disjoint tree

resilience at the topology sizes that I evaluate.

This may be because the average path length on the topologies I have evaluated

is small, typically less than three, so a small number raised to the fourth power may

still be smaller than a larger number squared. Without forwarding table compres-

sion, disjoint tree resilience should eventually require less forwarding table state than

failure identifying resilience. However, with forwarding table compression, this is less

clear, especially because the slopes of the state requirement lines for both compressed

Plinko and disjoint tree resilience are roughly equivalent. Regardless, what is clear is
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that, with all optimizations combined, FI resilience requires significantly less state to

implement the same level of resilience as disjoint tree resilience on all of the topologies

I evaluated.

4.8.2 Performance Impact

Because some of the optimizations that are applied to failure identifying resilience

may impact performance, and disjoint tree resilience restricts the allowed forwarding

paths, both FI resilience and disjoint tree resilience can hurt performance. This

section presents my evaluation of the performance impact of both of these approaches

to resilience.

FI Resilience Performance

Because compression-aware routing and network virtualization can potentially hurt

performance, I look at two related metrics to evaluate the performance of resilient

routes: stretch and throughput. Note that this section does not present performance

results for source routing and forwarding table compression because they do not

impact path choice.

First, I found that compression-aware routing did not have any significant impact

on throughput or resilience, despite significantly improving compression. Because of

this, I omit figures on the impact of compression-aware routing.

Stretch is an important metric for evaluating resilient routes because 1) rerouting

is only performed locally in response to failures and 2) excessive stretch can negatively

impact both throughput and state. In my evaluation I found that resilience incurs

little stretch. In all of the cases I evaluated, the median stretch was 1.0, and the tail

of the stretch distribution is similarly small. When I considered the 99.9th percentile
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Number of Failures

Resilience 1-F 4-F 16-F 64-F 256-F

(nc/c) (nc/c) (nc/c) (nc/c) (nc/c)

2-R 1.0 / 1.0 1.0 / 1.5 1.5 / 1.5 1.5 / 1.5 1.5 / 1.5

4-R 1.0 / 1.0 1.5 / 1.5 1.5 / 2.0 2.0 / 2.0 2.0 / 2.0

6-R 1.0 / 1.0 1.5 / 1.5 1.5 / 2.0 2.0 / 2.0 2.5 / 2.5

Table 4.13 : 99.9th %tile Stretch on a 1024 Host EGFT (B1)

stretch given both random and correlated failures, the stretch ranged from 1.0–2.5,

with stretch increasing with topology size and resilience.

To be more specific, Table 4.13 shows the 99.9th percentile stretch given random

(nc) and correlated (c) failures given a number of failures (*-F) and a level of edge

resilience (*-R). Although these results are for a 1024 host EGFT (B1), the stretch

of the other topologies was quite similar. Further, the median stretch is omitted

because in all cases it was 1.0. One interesting aspect of the stretch results is that

stretch increases with the level of resilience. This is because higher levels of resilience

may require backtracking after encountering multiple failures, where lower levels of

resilience would just lead to packets being dropped.

Because of these stretch results, I would expect that the throughput impact of

resilience is also small. Figure 4.16a shows the normalized aggregate throughput

given a uniform random workload on a 1024 host EGFT for both no-latency reactive

shortest path routing (SP) and varying levels of hardware resilience (*-R). This figure

validates our expectation. I see that even low levels of resilience achieve almost the
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Figure 4.16 : EGFT (B1) Throughput Impact

same throughput as no-latency reactive routing.

However, unlike varying levels of resilience, moving to varying degrees of multi-

pathing between endpoints given switch-level network virtualization can have a no-

ticeable impact on throughput. Figure 4.16b shows the effect of varying degrees of

random multipath (*-E) routing on the normalized throughput of a 1024 host EGFT

topology, with the results holding for all of the forwarding models. In this figure,

SP stands for reactive shortest path routing, and No-E refers to routing indepen-

dently for each host as was performed in Figure 4.16a. From the throughput results,

I see that 8-way ECMP reduces throughput by just under 5%, 4-way ECMP reduces

throughput by under 10%, and 2-way ECMP reduces throughput by about 15%.

Disjoint Tree Resilience Performance

Unlike FI resilience, disjoint tree resilience may potentially use non-minimal routing,

which can increase stretch and reduce throughput. I now quantify the performance

impact of disjoint tree resilience by first showing the stretch of ADST and EDST

resilience and then showing the forwarding throughput of ADST and EDST resilience.
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Number of Failures

Resilience 1-F 4-F 16-F 64-F 256-F

(nc/c) (nc/c) (nc/c) (nc/c) (nc/c)

1-R 2.5/ 3.0/3.0 3.0/3.0 3.0/3.0 3.0/3.0

1-R (D) 2.5/3.0 3.5/3.0 3.5/3.32 3.5/3.5 3.5/3.5

2-R 2.5/2.5 2.5/3.0 2.5/3.5 /3.5 /3.5

2-R (D) 2.19/2.0 /2.5 3.0/3.5 3.5/3.5 3.5/3.5

4-R /2.0 /2.5 2.5/3.0 3.5/3.5 3.5/4.0

4-R (D) 2.18/ 2.0/2.5 2.5/ 3.0/3.5 4.0/4.0

Table 4.14 : 99.9th %tile ADST Stretch on a 1024 Host EGFT (B1)

Number of Failures

Resilience 1-F 4-F 16-F 64-F 256-F

(nc/c) (nc/c) (nc/c) (nc/c) (nc/c)

1-R 5.0/4.5 5.5/5.0 5.846/5.5 4.5/4.5

1-R (D) 4.5/4.5 6.0/5.0 6.5/6.5 6.5/6.5 5.5/5.0

2-R 4.5/4.0 5.65/6.0 6.5/6.5 6.5/7.0 /5.0

2-R (D) 3.5/3.7 /5.0 5.5/6.0 6.5/7.0 5.5/5.5

4-R 3.0/3.5 4.21/4.0 4.5/5.0 6.5/7.0 6.0/6.0

4-R (D) 3.0/3.0 3.5/3.5 /4.5 6.0/6.0 6.0/6.0

Table 4.15 : 99.9th %tile EDST Stretch on a 1024 Host EGFT (B1)
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Figure 4.17 : EGFT (B1 1024-H) Throughput Impact

First, when failures were not encountered, which is not shown in the tables, the

stretch of the forwarding models with default trees was 1.0, as expected, while the

stretch of the models without default trees was 1.5. Similarly, the median stretch of

the routes that encountered a failure was typically 1.5 for ADST resilience while less

than 4-R EDST resilience typically had a stretch of between 2.0–2.5, which reduced

to 1.5 for when EDST is used to provide 4-resilience or greater. Further, in the

outlying failures, as Table 4.14 and Table 4.15 show, ADST resilience outperforms

EDST resilience. While the 99.9th percentile stretch of ADST in these tables mostly

falls in range of 2.5–3.5, the EDST stretch falls in range 3.5–6.5.

Next, I consider the performance impact of disjoint tree resilience. To do so,

Figure 4.17a and Figure 4.17b show the aggregate throughput of different variants of

both ADST and EDST resilience on 1024-H EGFT (B1) topologies. As with median

stretch, the aggregate throughput of both ADST and EDST resilience are nearly

identical. Further, the aggregate throughput of all of the considered variants that use

a default tree are both the best performing variants and also similar in performance.
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Additionally, the forwarding models without default trees perform better the higher

the resilience, which is because all of the trees may be used for default routes, and

adding more trees increases path diversity. However, unlike FI resilience, even the

best performing variants still impact performance, reducing throughput by 7% in the

best case, and by 23% in the worst case given 256 failures.

4.8.3 Disjoint Tree Resilience Fault Tolerance

Because disjoint tree resilience restricts routing, I also repeat the analysis of the

probability of routing failure shown in Section 4.1 for disjoint tree resilience. The

results of these experiments are shown in Figure 4.18, with forwarding tables that use

default trees being marked with (D), as before.

The first aspect of these figures worth noting is that both ADST and EDST

resilience protect against a similar number of failures, although ADST resilience does

protect against more failures, especially as resilience increases, which is most likely

due to ADST resilience having lower stretch than EDST resilience. Additionally,

adding in default trees not only improves performance but also increases resilience.

This is because the (B1) networks I evaluated had over 20 EDSTs and 40 ADSTs,

so the default trees may be partially disjoint from the trees used for resilience. As

expected, the extra fault tolerance provided by default trees diminishes as resilience

increases, although it is still significant.

Surprisingly, even though disjoint tree resilience restricts routing, I find that it

is actually likely to prevent slightly more failures than failure identifying resilience.

Most noticeably, the 0-R routes protect against significantly more failures than the

FI 0-resilient routes. For example, roughly 0.1% of flows are likely to fail given one

link failure and 0-R FI resilience, but only roughly 0.0001% of flows are likely to fail
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Figure 4.18 : Expected Effectiveness of Disjoint Tree Resilience
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given one link failure and 0-R disjoint tree resilience. This may be because restricting

routes for a destination to a single default tree implies that not all edges are equally

likely to be in use, as in FI resilience. Although less noticeable, disjoint tree resilience

still is less likely to experience routing failure than FI resilience for routes that are

resilient as well. For example, given 64 edges failures, about 10−5 of the total flows

are likely to fail given 4-R FI resilience, while less than 10−6 and 10−7 of the total

flows are likely to fail given 4-R EDST and ADST resilience, respectively. One reason

for this increase in fault tolerance in disjoint tree resilience is because routes different

trees are entirely disjoint, which is not guaranteed in failure identifying resilience.

4.9 Discussion

While, so far, I have presented failure identifying and disjoint tree resilience as com-

peting and orthogonal, this is not strictly the case. If some traffic is either higher

priority or more important than other traffic, then it could be desirable to combine

resilience. Even if disjoint tree resilience is used for most traffic on a network, if

performance of some traffic is more critical, then it could be desirable to explicitly

route this traffic with FI resilience. Similarly, if a network provides FI resilience for

most traffic, but has some traffic that needs to be more fault tolerant, such as control

traffic, then, on some topologies, it may be desirable to install routes that follow all

possible disjoint trees for the important destinations to reduce forwarding table state.

While Figure 4.8 shows the number of unique (output, action) pairs given MPLS-

FRR or FCP, it may still be possible to lower this bound. Although each backup route

is identified with a unique ID, if there are two routes with different encountered failures

that are guaranteed to never try to traverse an edge the other route may eventually

encounter as failed regardless of the network failures, and if the forwarding table
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entries for these routes use the same output edge at a switch, then the routes may

share the successive IDs which would allow for them to be compressed in a forwarding

table, similar to how compression is performed in XPath [53]. Although it is not clear

that this will reduce forwarding table state beyond that of my compression algorithm

applied to Plinko, I leave an evaluation of this to future work.

While Section 4.8.1 shows that the state requirements of disjoint tree resilience

may be limiting, this does not necessarily imply that disjoint tree resilience is not

scalable to data center networks with tens of thousands of hosts. Instead, this im-

plies that disjoint tree resilience is not scalable to such large networks given current

forwarding table sizes and an implementation of disjoint tree resilience that relies on

the match operations provided by current data center switches [31, 43, 36]. Given cus-

tom packet processing hardware that could search search for the first non-failed tree,

I would expect that disjoint tree resilience could possibly be reduced to |D| ∗ (t+ 1).

This means that rules would only have to be installed for every destination for every

tree, not for from every tree to every other tree. By designing the forwarding pipeline

specifically for disjoint tree resilience, the forwarding hardware could be able decide

the correct forwarding tree given both packets that identify the current tree and the

failed trees and a forwarding table mapping each destination to an output port for

each tree. I also leave an evaluation of this to future work.

4.10 Summary

In this chapter, I explore the feasibility of implementing local fast failover groups in

hardware, even though prior work assumes that state explosion would limit hardware

resilience to all but the smallest networks or uninteresting levels of resilience [25].

Specifically, I consider implementing t-resilient variants of the Plinko, FCP, MPLS-
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FRR, ADST, and EDST forwarding models. Although the ADST and EDST for-

warding models are not t-resilient for all values of t, I found that all of the topologies

that I evaluated were at least able to support 6-resilient routes and most were able

to support far higher levels of resilience. All things considered, I find both FCP and

disjoint tree resilience require roughly the same amount of state to provide the same

level of expected fault tolerance, with ADST resilience being a bit more fault tolerant

than EDST resilience. Specifically, 4-resilient FCP, ADST, and EDST require about

10Mbit, 40Mbit, and 40Mbit of TCAM state to implement 4-resilience on a 1 : 1 bi-

section bandwidth ratio EGFT with 8192 hosts, and ADST and EDST resilience are

a little bit more fault tolerant on average than FCP.

However, this is because of the limited compressibility of the FCP and MPLS-

FRR forwarding table entries. With my new forwarding table compression algorithm

and compression-aware routing, Plinko can provide the same fault tolerance as FCP,

MPLS-FRR, and ADST and EDST resilience with less forwarding table state. I find

that, with compression-aware routing and Plinko, which is designed to apply the

same action to every packet, my compression algorithm achieved compression ratios

ranging from 2.22× to 19.77× given 4-resilient routes on Jellyfish topologies.

I have also considered using source routing and network virtualization to reduce

forwarding table state. While source routing and network virtualization are effective

on their own, reducing forwarding table state by as much as 92% on one topology,

adding in forwarding table compression and compression-aware routing leads to a

reduction of up to 99% on the same topology. Putting this all together, I expect that

4-resilient and 6-resilient Plinko will easily scale to networks with tens of thousands

of hosts. In contrast, I expect that fully optimized FCP, MPLS-FRR, and ADST and

EDST resilience could provide 4-resilience for topologies with 8192 hosts.
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Lastly, I find that even seemingly low-levels of resilience are highly effective at

preventing routing failures, with 4-resilience providing four 9’s of protection against

16 random edge failures on all of the topologies I evaluated.
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CHAPTER 5

Combining Lossless Forwarding and Fault-Tolerant

Routing

In Chapter 3, I first motivated using lossless Ethernet in data centers and then dis-

cussed solutions to the problems caused by enabling lossless Ethernet. In Chapter 4,

I first motivated building resilient forwarding tables and then discussed and evaluated

a number of different approaches to implementing resilient forwarding, namely failure

identifying resilience and disjoint spanning tree resilience. However, the solutions to

each of these problems are not orthogonal. Because lossless forwarding can cause

deadlocks, all routing, let alone rerouting, needs to ensure deadlock freedom. Even

though it would be desirable to simultaneously provide lossless forwarding and local

rerouting, none of the resilient forwarding functions from Chapter 4 are deadlock-

free, so they cannot be combined with TCP-Bolt. In this chapter, I consider how to

implement deadlock-free variants of both failure identifying (DF-FI) resilience and

disjoint spanning tree resilience.

For DF-FI resilience, this involves restricting routing so as to avoid self-cycles

and then using a heuristic-driven algorithm to assign resilient path branchings to

virtual channels to guarantee deadlock freedom. In addition to considering the virtual

channel assignment algorithm from DFSSSP [20], I also introduce a new variant of this
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algorithm that uses an existing fast heuristic for solving the feedback arc set problem

of Eades et al. [32] to find the set of paths in each virtual channel. Although this

variant does not outperform the algorithm presented by DFSSSP, this algorithm is

at least interesting because it shows that the algorithm presented by DFSSSP, which

does not discuss the feedback arc set problem, even though it presents a solution to

it, matches the performance of a well known solution to the feedback arc set problem.

To allow for deadlock-free variants of disjoint spanning tree resilience, I contribute

a proof that EDST resilience is deadlock-free as long as the graph of the transitions

between trees is itself acyclic. Restricting tree transitions creates a trade-off between

resilience and and forwarding throughput, and I discuss the implications of the tree

transition graph and evaluate a handful of different tree transition graphs (TTGs).

Because EDST resilience is inherently deadlock-free, I use virtual channels to improve

throughput as before. However, I show that not even all of the available virtual

channels provided by DCB are required for providing high throughput, deadlock-free,

resilient forwarding, and this result is important for enabling hybrid lossy and lossless

networks.

In effect, the first approach, DF-FI resilience, should not impact performance but

is limited by the number of available virtual channels, while the second approach

is not limited by the number of virtual channels or topology size, but may hurt

performance and limit resilience. As with forwarding table compression, I show that

compression-aware routing also sometimes reduces the number of required virtual

channels, although the impact is less pronounced. To improve the performance of

the second approach, I introduce a number of heuristics for choosing which trees are

included in the acyclic TTG, where these trees are placed, and how the forwarding

table entries are
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Ultimately I conclude that, if it is viable, DF-FI resilience is preferable to DF-

EDST resilience because DF-FI resilience does not impact performance. However, the

virtual channel requirements of FI resilience can be quite limiting. Even 2-resilience

on a 1024-host topology requires more than 8 virtual channels for some topologies.

Clearly, this is not a scalable solution.

On the other hand, I show that even a 0-resilient variant of DF-EDST can im-

prove fault tolerance without reducing throughput when there are no failures when

compared with using EDSTs for deadlock free routing. This is because, in 0-resilient

DF-EDST, all of the EDSTs available on the topology can be used for forwarding

traffic that does not encounter failures, as in using EDSTs for non-resilient deadlock-

free routing, and only traffic that is forwarded along the one tree in the TTG that

does not have a successor is not guaranteed to be tolerant against at least a single

link failure. Further, on data center topologies, there are often 10–20+ EDSTs. In

this case, reserving a few trees for an increase in the total number of arbitrary edges

failures that may be tolerated per reserved tree is reasonable, especially when the

edges on the trees reserved for fault tolerance are likely to be used by the initial trees

on the EDSTs in the TTGs used on other virtual channels. This means that the per-

formance impact of resilience is often small, often < 5–10%. Additionally, I show that

each increase in resilience against a single arbitrary link failure leads to a significant

increase in fault tolerance given a large number of link failures. For example, roughly

an order of magnitude fewer routes fail for each single arbitrary link failure that is

protected against given 64 edge failures on the topologies that I evaluated. In effect,

this is the same as using EDSTs for non-deadlock-free fault tolerance with all of the

tree transitions that cause cyclic dependencies removed.

Further, all of these results apply to arbitrary topologies and without needing to
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modify packet headers. However, if a tree topology is used, then it is possible to

do even better with respect to throughput. With a tree topology, minimal routing

subject to any arbitrary traffic engineering scheme may be used on one virtual channel

and still be guaranteed to support deadlock-free lossless forwarding. Then, to provide

fault tolerance, it is possible to build backup routes with DF-EDST resilience that use

the other available virtual channels because DF-EDST does not require all available

8-virtual channels, and these backup routes are likely to prevent routing failures given

a large number of arbitrary edge failures while still providing both lossless forwarding

and only a small impact on forwarding throughput. In effect, subject to a ceiling of

k/2−1, the only limit on fault tolerance is forwarding table state, and even forwarding

table state can be reduced with custom designed forwarding pipeline.

Specifically, the key contributions of this chapter are as follows:

• Proving a sufficient condition for EDST resilience to be deadlock-free and

analysing the state and resilience implications of this result.

• Improving upon the result presented by Feigenbaum et al. [30] by showing that

there always exists a max(1, k/2 − 1) forwarding function on a k-connected

topology even if packets are not modified.

• Evaluating the performance and throughput trade-offs of different variants of

different TTGs for implementing DF-EDST resilience. I find that even on ar-

bitrary topologies that it is possible to both provide high throughput lossless

forwarding and to provide forwarding where only 1e-7 of the routes in the net-

work are likely to fail given 16 arbitrary edge failures.

In the rest of this section I discuss DF-FI resilience in Section 5.1. After that, I

introduce DF-EDST reslience in Section 5.2. This includes proving that DF-EDST is
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both deadlock-free and resilient in Section 5.2.1 and discussing a number of different

TTGs that are deadlock-free in Section 5.2.2. After that, I discuss my methodology

in Section 5.3, and then evaluate DF-FI and DF-EDST resilience in Section 5.4. After

that, I discuss some of the implications of the evaluation in Section 5.5. Finally, I

summarize the chapter in Section 5.6.

5.1 Deadlock-free FI Resilience

In this section, I discuss implementing a deadlock-free variant of FI resilience. Because

routing in the three FI resilient forwarding functions is similar, I only consider a DFR

variant of Plinko, where applicable.

Because FI resilience does not consider cyclic channel dependencies when building

routes, a set of resilient routes could easily form a cyclic dependency, which, according

to Theorem 2.2.1, can lead to deadlock. However, in FI resilience, a resilient route

could even be deadlocked on itself if it ever traverses the same link in the same

direction twice, and for some topologies and sets of failures, traversing the same arc

twice may be necessary for Algorithm 1 to provide resilience.

Although this potential self-cyclic dependency could be broken by using a different

virtual channel when the arc is traversed a second time, I instead chose to restrict

the FI resilient routing algorithm presented in Algorithm 1 so that the new backup

routes do not use an arc the packet has already been forwarded over. I made this

choice because allowing for a packet to transition between virtual channels creates

a potential channel dependency between multiple of the layers of virtual channels,

and this limits the virtual channel assignment algorithm. However, this also has the

implication that Algorithm 1 is no longer guaranteed to produce t-resilient routes.

However, in practice I find that it is still t-resilient on the topologies I evaluated.
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Although this change avoids self-cycles, routes with different sources and destina-

tions could easily form cyclic channel dependencies. In order to break these cycles,

I chose to assign different resilient routes to different virtual channels, ensuring that

all of the routes on each virtual channel are deadlock-free. In order to do this, I

adapted the virtual channel assignment algorithm from DFSSSP [20], the better of

two non-resilient deadlock-free routing algorithms for arbitrary routes, to apply to FI

resilience. Although other non-resilient deadlock-free routing algorithms exist that do

not require virtual channels, they all restrict routing [18], and one of the motivations

behind FI resilience is to provide unrestricted routing.

Further, I also introduce FAS-VC, a new virtual channel assignment algorithm

which is a variant of the algorithm used by DFSSSP [20] (Section 2.2.2). As with

DFSSSP, all routes in FAS-VC are assigned to the first virtual channel, all of the

cycles in channel dependency graph for this virtual channel are broken by removing

edges, and then all of the paths that induced the edges are moved to the next virtual

channel, starting the process over again. The key difference is that FAS-VC uses a

weighted variant of the smallest feedback arc set algorithm introduced by Eades et

al. [32] to compute which edges are to be removed from the CDG for a virtual channel,

with each edge being weighted by the number of paths that induce the edge in the

channel dependency graph. As DFSSSP breaks cycles in the channel dependency

graph, it is essentially computing a feedback arc set. Although this algorithm can

also run in linear time, there are no bounds on how many edges will be removed by

this algorithm. On the other hand, the algorithm by Eades et al. is the only known

algorithm for solving the FAS problem that runs in linear time and guarantees that

less than |E|/2 edges will be removed. Because of this, I expected that FAS-VC would

find assignments that require either the same or fewer virtual channels than DFSSSP.
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While FAS-VC found assignments with roughly the same number of virtual channels

in practice, it did not find significantly better assignments.

However, fault-tolerant routing complicates both of these virtual channel assign-

ment algorithms because packets may be in flight following multiple different routes

for a single source and destination immediately after a failure, and any route with

in-flight packets can cause a deadlock. To handle this, I assign route branchings to

different virtual channels instead of routes, with a route branching being the graph of

routes that a packet can follow after it has been forwarded by a TOR switch across

a port. Because hosts in data center networks do not forward traffic, the links that

connect a host to the TOR switch cannot ever cause a cyclic dependency. Even if

traffic is forwarded from a host to a switch and then back, which has been used before

for virtual machines [61], a cycle could only occur if packets are also routed from the

network through hosts. However, as soon as a packet is forwarded across its first link

into the network, potential dependencies arise. A path branching then represents all

of the possible routes that can be in use for a given source and destination as soon

as a packet leaves a TOR switch.

Although using path branchings is sufficient for avoiding deadlocks, it may not be

necessary. Due to the result from Schwiebert [17], if the configuration that forms a

cycle is unreachable, then there can never be a deadlock. In the case of resilient routes,

it is clear that some of the routes can never be simultaneously in use. Specifically, a

route that requires a set of F edges to be failed can never be simultaneously in use

at the same time as any route that forwards over any edge in F .

However, utilizing this property to reduce the number of virtual channels is dif-

ficult because only routes that cannot simultaneously have packets in flight can be

allowed to form a cycle in the channel dependency graph. Unfortunately, in the mo-
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ment after a failure, packets may still be in flight downstream following routes that

use any of the F failed edges, and these packets can still cause deadlocks. Currently,

it is unclear whether there exist routes that can never simultaneously have in-flight

packets, and, until such a guarantee can be made, it may not be possible to improve

upon route branchings.

Finally, I note that not using the same arc twice is not sufficient to guarantee

that a route branching’s channel dependency graph is acyclic. However, it is unclear

whether such a cycle could ever possibly have packets in flight so as to cause a

deadlock. This is because, after in-flight packets have drained from the network, only

one route in the branching is ever in use, and not using the same arc twice is sufficient

to guarantee that this one path has an acyclic channel dependency graph. However,

in practice, none of the route branchings resulting from applying Algorithm 1 to the

topologies I evaluated contained cycles, which, as an aside, would lead to the graph

not technically being a branching.

5.2 Deadlock-free Spanning Tree Resilience

On the other hand, if routing is restricted, then it should be possible to provide

deadlock-free local rerouting without the use of virtual channels. However, the prin-

ciple difficulty in doing so is in providing a useful level of routing fault tolerance as

well as high throughput forwarding.

As I have already noted, EDSTs have previously been used to provide both

deadlock-free routing [35] and fault tolerant routing [28, 29], so EDSTs seem like

a promising solution to providing deadlock-free local rerouting. However, using ED-

STs for deadlock-free routing relies on the property that packets never transition

between spanning trees, and EDST resilience relies on packets transitioning between
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spanning trees in ways that could potentially cause a deadlock. Thus, using EDSTs

to provide deadlock-free resilience is not trivial.

To solve this problem, I introduce DF-EDST resilience. In DF-EDST resilience,

routing is not only restricted to use paths defined by the EDSTs, but the graph

of allowed tree transitions is restricted to be acyclic, which I prove is sufficient to

guarantee deadlock freedom while also providing fault tolerance. In contrast, a packet

may start forwarding on any EDST or even on a minimal default tree in EDST

resilience, and then a packet may transition from any tree to any other tree when a

failure is encountered. This freedom in tree transitions is what could cause EDST

resilience to suffer from deadlocks. However, if the graph of allowed tree transitions is

acyclic, as it is in DF-EDST resilience, then a network’s channel dependency graph is

guaranteed to also be acyclic, which is sufficient for deadlock freedom (Theorem 2.2.1).

In the rest of this section, I first present a proof that DF-EDST resilience is

deadlock-free and then analyze its resilience and state requirements. After that, I

discuss the inherent trade-off between performance and resilience that is introduced

by restricting tree transitions and introduce several different tree transition diagrams

(TTGs).

5.2.1 DF-EDST Analysis

In DF-EDST resilient routing, all routes follow the paths defined by any one of a set

of EDSTs until a failure is encountered. Once a failure is encountered, a packet may

only transition to the paths defined by the trees that are successors of the current

tree in a tree transition graph (TTG). Given this forwarding model, I would like to

prove the following theorem.

Theorem 5.2.1 DF-EDST resilient routing is deadlock free if the TTG is acyclic.
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In order to prove this theorem, I use two lemmas. The first lemma is as follows.

Lemma 5.2.2 If there exists a total ordering of channel dependencies, then the rout-

ing function is deadlock-free.

Lemma 5.2.2 follows from Dally and Seitz [10] who showed that if a channel

dependency graph D is acyclic then the routing function is deadlock-free. If there

exists a total ordering of channel dependencies, then the channel dependency graph

is acyclic, and thus the routing function is deadlock-free.

The second lemma is as follows.

Lemma 5.2.3 There exists a total ordering of channel dependencies within an

EDST.

The proof of Lemma 5.2.3 is similar to the proof that Up*/Down* routing is

deadlock-free [21]. The channels in an EDST, two for each edge, can be divided into

two groups. The up channels belonging to a tree that route towards the root of the

tree, and the down channels that belong to a branching directed away from the root

of the tree. Because the up channels belong to a tree and the down channels belong

to a branching, there exists a topological ordering of both the up and down channels.

Because there only exists one path from any source and destination on a tree that

first routes up the tree then down, the set of up channels is ordered before the down

channels. Thus, there exists a total ordering of channels cu1 < . . . < cu(n−1) < cd1 <

. . . < cd(n−1) in a spanning tree of a network with n vertices.

Given Lemma 5.2.2 and Lemma 5.2.3, proving Theorem 5.2.1 is straightforward.

Given a set of EDSTs T , every channel c ∈ C is guaranteed to be a member of

only one tree. Let Ct be the set of all channels for a given tree t ∈ T . Because

packet transitions between trees are restricted by a TTG, which is a DAG, there
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exists a topological ordering of the trees. Thus, there is a topological sorting of the

set of channels belong to trees C1 < . . . < Ck/2 on a k-connected topology. Because of

Lemma 5.2.3, then there must exist a total ordering of channels c1u1 < . . . < c1d(n−1) <

. . . < c(k/2)u1 < . . . < c(k/2)d(n−1) on a k-connected topology with n vertices. Due to

Lemma 5.2.2, this implies that the DF-EDST routing function must be deadlock free.

Further, the DF-EDST resilience does not need to modify packet headers, either

to mark the current tree or tree failures in a packet header. Because each input edge

only belongs to a single EDST, the input edge of a packet identifies the current EDST.

Unlike prior work on EDST resilience [28, 29], DF-EDST does not need to mark trees

failures in packet headers. Because the TTG is acyclic, a packet is guaranteed to be

either reach its destination or be dropped as it transitions between trees. In the event

of a partition, a packet will eventually reach a leaf tree that does not have a valid

transition to any other EDST.

Because of this, Theorem 5.2.1, to the best of my knowledge, is the first to improve

upon the result from Feigenbaum et al.. In Theorem 2.3.1, Feigenbaum et al. proved

that there always exists a 1-resilient forwarding pattern given a forwarding function

that does not modify packets. This implies the following theorem.

Theorem 5.2.4 If a network’s forwarding function is fv(d, ev, bm) → e then there

always exists a (k/2− 1)-resilient forwarding pattern on a k-connected topology.

Consider a TTG that is a line. Because a k-connected topology contains k/2 ED-

STs, there are k/2 nodes in the TTG. Because EDSTs are spanning trees, regardless

of which link in the tree fails, it will always be possible to transition to another tree.

Because a packet will only transition from EDST ti to tj when it encounters a single

edge failure, a packet must encounter k/2 − 1 failures before it is forwarded along
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TTG tk/2. If a packet encounters a failure when forwarding along TTG tk/2, then

it will be dropped because there are no more subsequent trees. Thus, DF-EDST re-

silience with a line TTG clearly provides (k/2−1)-resilience. This result implies that

there is always a max(1, k/2− 1)-resilient forwarding function given any k-connected

topology.

While Theorem 5.2.1 proves that DF-EDST resilience is deadlock-free, DF-EDST

resilience also impacts resilience and state when compared with normal EDST re-

silience. The rest of this section analyzes the resilience and state implications of

DF-EDST resilience. Specifically, the following two theorems provide an upper and

lower bound on the fault tolerance of DF-EDST.

Theorem 5.2.5 Let h(t) be the height of an EDST t in the TTG. Let IT be the

set of trees that a packet may start forwarding over. Given DF-EDST resilience, the

minimum number of failures that a packet must encounter before it is dropped due to

routing failure is mint∈ITh(t)− 1.

Theorem 5.2.6 Given DF-EDST resilience with a TTG with |TTG| trees, A packet

can encounter |TTG| − 1 failures and still reach the destination.

Given that a packet may start forwarding over any of the trees in IT , Theo-

rem 5.2.5 must be true. If a packet starts forwarding on one of the EDSTs whose

height is h in the TTG, which there is guaranteed to be at least one of, then it must

encounter h− 1 failures before it is forwarded on a leaf tree of the TTG, and at least

h failures before it is dropped.

Because Theorem 5.2.5 shows the minimum number of tolerable failures of DF-

EDST resilience, and packets in DF-EDST resilience are guaranteed to be dropped

because the TTG is acyclic, Theorem 5.2.5 also captures the resilience of DF-EDST
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resilience. This implies that, if packets may start forwarding over any tree in the

TTG, in other words, if IT = VTTG, the set of all EDSTs, as in EDST resilience, then

DF-EDST resilience is 0-resilient.

However, Theorem 5.2.6 may be less obvious. To understand why Theorem 5.2.6 is

true, consider a TOR switch with |TTG|−1 failed links. Because EDSTs are spanning

trees, an edge belonging to a spanning tree is guaranteed to provide a path to the

destination as long as no more edges are failed. Because a packet is not assigned to a

TTG until it is forwarded out a port of the TOR switch because host-to-TOR edges

cannot cause deadlocks, the TOR switch may forward the packet over the EDST that

does not have any failed edges regardless of its location in TTG.

Although Theorem 5.2.6 may seem like a trivial solution, the following theorem

is true even in none of the edges of a TOR switch are failed.

Theorem 5.2.7 Let reachable(t) be the EDSTs that are reachable from an EDST

t ∈ TTG given DF-EDST resilience. A packet can encounter maxt∈TTGreachable(t)

failures without being dropped due to routing failure.

To understand Theorem 5.2.7, consider a packet that is forwarded along tree l =

argmaxt∈TTGreachable(t) and encounters a non-TOR switch that has reachable(l)

failed edges. When the packet encounters the switch, there is still guaranteed to be

at least one EDST without a failed edge connected to the switch, and the tree that

it belongs to must be either l or reachable from l in the TTG.

5.2.2 DF-EDST Implementation

In this section, I describe how to actually implement DF-EDST resilience. First,

I describe a number of different potential TTGs and compare and contrast them.
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After that, I discuss the routing algorithm needed for DF-EDST resilience. Lastly,

this chapter finishes with a discussion.

TTGs

In addition to Section 5.2.1 proving that DF-EDST resilience is deadlock-free, it

also hints at the reason why implementing routes that provide both high throughput

forwarding and a useful level of resilience can be difficult. If IT , the set of trees that

a packet may initially be forwarded over, is too large, then not enough resilience may

be guaranteed. However, if IT is too small, then the default routes may not provide

enough path diversity to provide high throughput forwarding. Thus, the choice of

TTG for use in a network presents a trade-off between performance and resilience.

In this thesis, I consider multiple variants of a handful of different TTGs to explore

the trade-off between performance and fault tolerance. Because TTGs that provide

the same level of resilience, may, on average, tolerate a different number of routing

failures, I compare these TTGs both in terms of resilience and in terms of the expected

probability of routing failures, which capture worst and average case fault tolerance,

respectively. Specifically, I consider 8 different TTGs, which I describe, compare, and

contrast next.

The first TTG I consider is NoRes. This TTG is the non-resilient TTG that

was introduced by Stephens et al. for providing deadlock-free routing on Ethernet

networks. Because packets cannot transition between trees, this TTG provides no

fault tolerance, either average or worst case. This also implies that the TTG is trivial.

As Figure 5.1 illustrates, the TTG contains no edges. Also, because the NoRes TTG

is not fault tolerant, there is no trade-off between resilience and performance, so

packets are allowed to start forwarding over any tree in the TTG (IT = VTTG),
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Figure 5.1 : A Non-Resilient TTG

which Figure 5.1 illustrates by marking all of the vertices with double circles, with

each vertex representing a different EDST in the TTG. Although this TTG is not

resilient, it provides a baseline from which to compare the performance impact of

DF-EDST resilience.

The second TTG I consider is NoDFR. This is the TTG that comes from imple-

menting non-deadlock-free EDST resilience as discussed in Chapter 4. As is shown

in Figure 5.2, the NoDFR TTG is a fully connected bi-directional graph, where, just

like the NoRes TTG, packets may start forwarding over any EDST. Unlike the other

TTGs, where the routes for all of the destinations in the network must be based on

the same TTG with the same set of EDSTs, which is necessary for deadlock freedom,

the NoDFR TTG can use a different set of EDSTs for each destination, which in-

creases path diversity. Although the NoDFR TTG is not deadlock-free, I consider it

because it bounds the fault tolerance achievable given EDST resilience.

The first TTG that I consider that is both fault tolerant and deadlock-free is the

Line TTG. As Figure 5.3 illustrates, the Line TTG choses a single EDST as the
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Figure 5.2 : A Non-Deadlock-Free TTG

Figure 5.3 : A Line TTG
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Figure 5.4 : A “T” TTG

starting EDST for all packets and then connects all of the EDSTs together in a line.

However, this TTG is still not practical. Because all forwarding starts off on a single

spanning tree, performance will be as limited as traditional Ethernet with a single

spanning tree that is built by RSTP. However, I consider this TTG because it bounds

the fault tolerance achievable given DF-EDST resilience.

The first TTG that I consider that could be practical is the T TTG. In the T

TTG, all of the initial trees are arranged into layer-0, and the remaining trees are

arranged in a line, with all of the trees in layer-0 connecting to the first tree in the

line. This is illustrated in Figure 5.4. In this TTG, there is a clear trade-off between

performance and resilience. If there are not enough layer-0 trees, then the routes will

be too restricted and performance will be impacted. On the other hand, the number

of trees left over for the subsequent layers is equal to the resilience of forwarding



130

functions built given the TTG.

It is worth noting that, even though, some of the trees are used for resilience in the

T TTG, this does not necessarily imply that the edges in these trees will be unused

most of the time. Because a different set of EDSTs may be used for each virtual

channel, a edge that is member of a tree that is used for resilience in one virtual

channel may be a member of an initial tree on another virtual channel. However, if

there are not enough initial trees in each virtual channel, then some edges may go

unused entirely given no failures.

Further, the T TTG helps illustrate how a TTG with the same level of resilience

as another may be able to, on average, protect against more failures. If the trees in

layer-0 are themselves connected in a line, as Figure 5.4 shows with dotted lines, then

packets that start forwarding on some of the initial trees may be able to survive more

failures than others, even though the overall resilience of the forwarding function

is not increased. In this thesis, I consider the T TTG both with and without the

self-connected layer-0 because using the default trees for added fault tolerance could

impact performance.

Because the T TTG may limit performance by routing all traffic that has encoun-

tered the same number of failures over the same spanning tree, I also consider layered

TTGs that, like the T TTG, provide similar resilience for all traffic, but, unlike the

T TTG, have multiple EDSTs at layers other than layer-0. Although a tree topology

would fit this criteria, I do not consider any tree TTGs because, while the resilience

would be the same, the average fault tolerance could be improved by allowing trees

to have multiple parents. Instead, I look at layered DAGs that may have multiple

trees at any layer with every tree in layer i having a link to every tree in i+ 1, which

improves expected fault tolerance. Figure 5.5 illustrates such a TTG. As with the
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Figure 5.5 : A Layered TTG

T TTG, I also consider layered TTGs with and without intra-connected layers. The

trade-off created by the layered TTG is dependent on the number of trees per layer,

so I considered two different layered variants. One where the size of subsequent layers

is decreased multiplicatively by two, MLayer, and one where the size of each layer is

decreased by two, ALayer.

Unlike the T, MLayer, and ALayer TTGs, I also consider two TTGs that poten-

tially allow for larger variation in fault tolerance between trees but also for potentially

more initial trees. Specifically, I consider the Rand and Max TTGs, which are pre-

sented in Figure 5.6 and Figure 5.7. In the Rand TTG, the initial trees start out in

a fully connected TTG, then cycles are randomly broken until the TTG is a DAG

similar to how cycles are broken in the deadlock-free routing algorithm of Domke et

al. [20]. As with the T TTG, the non-initial trees may also be connected to a line to

provide some guaranteed resilience. The Max TTG also arranges the non-initial trees
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Figure 5.6 : A Random 2-resilient TTG

in a line, but, in the Max TTG, the initial trees form a maximally-connected DAG.

Specifically, the Max TTG has an adjacency matrix where the upper triangle is all

ones which implies that there exists a tree ordering such that for every tree i and j

such that i < j, there is a directed link from i to j.

Routing

Just as the fault tolerance of DF-EDST resilience is different that EDST resilience,

DF-EDST also requires a different amount of state when compared with non-deadlock-

free EDST resilience. However, unlike the resilience of the routing function, which

may be worse than EDST resilience, DF-EDST resilience may require less state than

EDST resilience. This is due to the routing algorithm of DF-EDST resilience, which
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Figure 5.7 : A Max 2-resilient TTG

is a generalized version of Algorithm 2, the routing algorithm for EDST resilience.

The only difference in the routing algorithm for DF-EDST resilience is that, in

Step 2 of Algorithm 2, rules built to withstand failures are installed for every tree

reachable in the TTG from the current tree instead of simply installing tree-transition

rules for every other EDST. Because, at each switch, each tree has entries for any tree

that is reachable, this implies that, in effect, a packet may transition between many

tree layers without ever being forwarded out a port. This also implies that even if all

of the trees on a single layer are failed, a packet may still be forwarded out a tree in

a higher layer, if one exists.

Given this generalization of Algorithm 2, Equation 5.1 captures the state require-

ments of DF-EDST resilience if the current tree is marked in a packet’s header.
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∀v ∈ V, |fv(d, t, ev, bm)| = |D| ∗
∑

t∈TTG

reachable(t) + 1 (5.1)

Equation 5.1 is due to the fact that DF-EDST resilience installs a rule from each

tree in the TTG to both itself and every tree that is reachable from the tree for

every destination at every switch in the network. It is worth noting that every tree

is reachable from any tree in the TTG of EDST resilience, so Equation 5.1 is general

form of the EDST resilience state equation.

If the current tree is not marked in a packet’s header, then the forwarding table

state for each tree is increased proportional to the number of edges in the EDST that

connect to the current vertex minus one. When evaluating state, I consider building

forwarding tables both with and without the current EDST marked in packet headers.

However, because default trees cannot be used to improve performance as they

can in EDST resilience, the choice of initial forwarding tree for a packet is key to

providing high throughput. Because the path lengths of each tree for a destination

may vary by a factor of 2–3× or more at a switch, naively choosing one of the virtual

channels and one of the initial trees from the TTG for the virtual channel at random

leads to low aggregate throughput. Instead, I use the same random top-k approach

taken by prior work on using EDSTs for deadlock-free routing [35]. For every switch

and destination, the initial trees across all of the virtual channels are sorted by path

length. If the best tree is within a factor of 1.35× of the shortest path distance, then

forwarding table entries are installed such that a packet starts forwarding randomly

over any of the up-to top-8 initial EDSTs whose path length is within a factor of

1.35×. Otherwise, default rules are installed that randomly route over any of the

trees with a path length equal to that of the best initial EDST.

Additionally, trees in the TTG that are earlier are more likely to be used and are
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thus more important for performance. To take advantage of this, I sort the EDSTs

by average path length across all source and destinations and then assign trees to

vertices in the TTG in topological order starting with the trees with smaller average

path lengths.

As with EDST resilience, every destination may have a different ordering of backup

trees at every switch. Although a rule will be installed for every reachable tree, the

order the backup routes will be tried to be used is dependent on the order priorities

they are installed with in the forwarding table. However, unlike EDST resilience

where trees may be ordered from shortest to longest path without impacting resilience,

the ordering of reachable alternate trees creates a potential trade-off between fault

tolerance and throughput. If a tree that is higher up the TTG is chosen as an alternate

tree because it has the shortest path instead of another tree that is lower in the TTG,

then the resilience of the forwarding function would be reduced, and, as the packet

continues to be forwarded, it will likely be able to tolerate fewer failures on average.

In order to evaluate this trade-off, I evaluate two different intra-layer tree order-

ings. The first ordering, which I refer to as perf, sorts the trees in a layer according

to shortest path distance across the tree given the current switch and destination.

The second ordering, which I refer to as res, sorts the trees according to the partial-

ordering defined by the TTG, breaking ties randomly. However, the different TTGs

themselves are chosen to illustrate the trade-off between resilience and performance,

and, if trees are allowed to be reordered inter-layer according to path length, the

resilience of the forwarding function is no longer guaranteed. Because of this, I only

reorder trees for performance or fault tolerance within a layer. Specifically, all of the

initial trees in the TTG are considered to be layer-0, and all of the trees reachable

from layer-i but not in layer-i are considered to be part of layer-(i+ 1).
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Discussion

One reason that EDST resilience has limited applicability on ISP networks is due

to the network’s low connectivity. However, using EDSTs for resilience can suffer

from the opposite problem on data center networks. There are at least 20 EDSTs on

the 1 : 1 bisection bandwidth ratio topologies I evaluate, even after applying network

virtualization, and installing rules for all 20 EDSTs on a 2048-host topology can

require more than 10 Mbit of TCAM state for many of the TTGs I evaluate. Because

these state requirements can be limiting, I also consider reducing the forwarding table

state. Specifically, forwarding table can be reduced by reducing the number of used

virtual channels, which can impact performance, or forwarding over a subset of the

TTG for each destination, which can impact performance or fault tolerance.

Reducing the number of virtual channels, in other words, reducing the number

of independent TTGs and sets of EDSTs, is simple to implement and reduces state

proportional to the reduction in virtual channels. On the other hand, installing

forwarding table rules for each destination that only use a subset of the trees in the

TTG is more complicated. For example, if only the initial trees are selected, then

the forwarding table could be 0-resilient. Further, unlike sorting the trees, which, as

previously mentioned, may be done independently for each switch, all switches must

use the same TTG subset for a given destination so that rules for the entirety of a

spanning tree are installed. However, if the subset of the TTG avoids the trees with

the longest paths for the destination, then state may be reduced without significant

impact to performance. In effect, even though each destination is using a subset of

the TTG, all of the trees in the TTG are likely to be in use as each destination will

uses its own subset, and each subset can be chosen to use the trees best for the given
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destination.

Given trade-off between throughput and performance in choosing a subset of the

TTG for a destination, I chose the trees with the shortest average path length for the

destination, subject to the resilience constraints of the TTG. Specifically, the NoRes

and NoDFR TTGs have the same resilience regardless of which subset is chosen, so,

when forwarding over a subset, only the shortest path trees are chosen. Similarly, I

choose the shortest trees for the destination on the Line TTG, using the topologically

first tree in the subset of the TTG as the initial tree and then order the forwarding

table entries topologically as well. Because different destinations will have different

sets of trees, this implies that the line topology may not be an impractical TTG when

each destination uses a different subset. On the T, MLayer, and ALayer TTGs, I use

the shortest trees subject to a minimum number of trees that must be in layer-0, with

this number of trees presenting a trade-off between resilience and fault tolerance. On

the Rand and Max TTGs, I include all of the non-initial trees to ensure resilience

and then choose the shortest trees for the remaining trees in the subset.

If forwarding over a subset of the TTG for each destination, the differences between

some of the TTGs becomes more subtle. In particular, Line TTG then becomes

similar to the Max TTG. However, the resilience of all routes in the Line TTG is

guaranteed to be the size of the subgraph minus one, while routes have varying

resilience in the Max TTG at a potential increase in performance. This is because

the less fault tolerance initial trees in the Max TTG will only be chosen by the top-k

routing algorithm if they are shorter for a given switch and destination.

Lastly, if some traffic is less important than others, it could start out forwarding

on a tree that is not a leaf of the TTG. This reduces the fault tolerance for this traffic,

but could be used to improve network utilization. Similarly, TTGs where some trees
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have more fault tolerance than others could be explicitly used for high priority or

important traffic.

5.3 Methodology

This section presents my methodology for evaluating DF-FI resilience and DF-EDST

resilience. As both of these deadlock-free forwarding models are extensions of the

forwarding models presented in Chapter 4, it is only reasonable that my methodology

for evaluating these deadlock-free forwarding models is also built upon the method-

ology I have already discussed in Section 4.7, which includes using all of the same

topologies.

Specifically, to evaluate DF-FI resilience, I modify the FI resilient routing algo-

rithm (Algorithm 1) so that packets in it will never traverse the same arc twice,

and then built Plinko resilient routes using this algorithm both with and without

compression-aware routing for the same topologies discussed in Section 4.7. After

that, I then implemented a variant of the virtual channel assignment algorithm pre-

sented in DFSSSP that considers path branchings instead of just paths as well as

implemented FAS-VC, a variant of DFSSSP that uses the algorithm of Eades et

al. [32] to the feedback arc set problem to choose which path branchings to place in

each virtual channel. Given these two virtual channel assignment algorithms, I then

evaluate how many virtual channels are required for the DF-FI Plinko routes given

varying topology sizes, levels of resilience, and degrees of multipathing.

To evaluate DF-EDST resilience, I build upon the methodology I presented in

Section 4.7 for evaluating EDST resilience. As before, I use the same randomized

algorithm for finding a set of EDSTs on arbitrary topologies. However, because the

total number of available virtual channels on DCB is 8, installing routes based on
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different EDSTs for each destination is not possible. While routes for each end-host

can be built based on one of the 8 sets of EDSTs, one on each virtual channel, this

instead easily lends itself to using network virtualization and e-way NetLord-style

network virtualization multipathing to reduce forwarding table state given that the

number of virtual channels already limits the degree of multipathing to 8-way, at best.

Because of this, I only present state results assuming NetLord-style network virtual-

ization. However, because extra virtual channels can be used for other purposes, I

also evaluated using 4 virtual channels, 4 EDSTs, and 4-way NetLord-style ECMP.

Given this small difference in multipathing, I then build forwarding tables that are

both resilient and deadlock-free based on different variants of the TTGs I introduced

in Section 5.2.2. With these forwarding tables, I then use simulations to compute the

aggregate throughput achieved and the expected probability of routing failure. As

before, I use a URand workload with a degree of four combined with Algorithm 1

from DevoFlow [57] to compute the forwarding throughput of the routes. To compute

the probability of routing failure, I use a URand workload with a degree of four and I

randomly select sets of edges of different sizes for failures. After evaluating the impact

of at least 80 different sets of failed edges, I then report at the average number of

routes in the network that experienced a routing failure. Although I did also look at

correlated failures and the 99.9th likelihood of routing failure, as before, I omit these

results because they showed the same trends as I have previously reported. Further, to

provide an upper bound on throughput, I also compare DF-EDST resilience against

ideal deadlock-oblivious reactive shortest path routing. Although not necessarily

realistic, it provides a useful point of comparison.

When considering the state requirements of deadlock-free TTGs, I assume that

each entry requires 64-bits of TCAM state. This is just the state required for the
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port bitmask. This is unlike the width of each TCAM entry of the NoDFR TTG or

disjoint tree forwarding models in Chapter 4, which needs to be 64-bits plus the total

number of trees installed for each destination. This is because the TTGs in these

cases are not acyclic, and thus an extra bitfield must be used to mark tree failures

and guarantee that packets are dropped. However, in acyclic TTGs, this bitfield is

no longer necessary, and so state is reduced, albeit by a small amount.

5.4 Evaluation

In this section, I first present the results from my analysis of DF-FI resilience and

then present my evaluation of DF-EDST resilience. Specifically, I find that all but the

smallest topologies and low levels of resilience require more virtual channels that are

available on today’s networks. However, this just further motivates my analysis of DF-

EDST resilience. In my evaluation of DF-EDST resilience, I find that it can improve

fault tolerance by roughly an order of magnitude without impacting performance at all

when compared with using EDSTs for deadlock-free routing on arbitrary topologies.

Further, with a small impact on aggregate forwarding throughput, often <5–10%, the

expected probability of routing failure given even tens of link failures can be reduced

by 3–4 orders of magnitude.

5.4.1 DF-FI Resilience

Because DF-FI resilience does not restrict default routing at all, it should not perform

any different than I have already characterized in Section 4.8.2. However, DF-FI

resilience does require a variable number of virtual channels. In my evaluation of

DF-FI resilience, there is one key question that I would like to answer: how many

virtual channels are required to implement DF-FI resilience? If the answer to this
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question is that DF-FI resilience needs more virtual channels than are provided by

the underlying network hardware for a topology size and level of resilience, which

is 8 in the case of DCB and up to 16 in the case of Infiniband, then this would

implies that DF-FI would not be implementable for this topology size and level of

resilience. Moreover, because larger topologies and higher levels of resilience should

always require the same or more virtual channels, this further implies that DF-FI

resilience would not be implementable on any larger topologies or higher levels of

resilience.

In order to reduce the number of virtual channels required by DF-FI resilience, I

have evaluated two different virtual channel assignment algorithms, one from DFSSSP

and one that is inspired by DFSSSP, FAS-VC. Additionally, I have also posited that

compression-aware routing could also reduce the required number of virtual chan-

nels. Given this, there are two more questions that I would like to answer: Does

compression-aware routing reduce the number of required virtual channels. Is the

virtual channel assignment algorithm from DFSSSP or FAS-VC more effective?

While I answer these questions in more detail in the rest of this section, my answers

to these questions can be summarized as follows. First, I find that compression-aware

routing can provide a modest reduction in the number of required virtual channels.

Secondly, I found that both the DFSSSP virtual channel assignment algorithm and

FAS-VC perform similarly, with neither algorithm significantly dominating the other.

Because of this, I only show the number of virtual channels required by algorithm

from DFSSSP. Lastly, I have also found that the number of virtual channels required

by DF-FI resilience is in fact prohibitive. For example, all variants of 4-resilience

that I evaluated require 10 or more virtual channels even on 1024-host topologies,

and even 10 is more virtual channels than are provided by DCB.
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512-H 1024-H 2048-H

1-E/2-E/4-E/8-E 1-E/2-E/4-E/8-E 1-E/2-E/4-E/8-E

0-R 1/1/1/1 1/1/1/1 1/1/1/1

0-R (CR) 1/1/1/1 1/1/1/1 1/1/1/1

1-R 1/1/1/? 1/?/?/? 4/7/11/?

1-R (CR) 1/1/?/1 1/1/1/? 3/5/?/?

2-R 1/1/1/1 3/5/7/11 9/16/29/?

2-R (CR) 1/1/1/1 3/4/6/10 7/12/21/?

4-R 2/3/5/? 9/17/31/? 27/51/?/?

4-R (CR) 2/3/4/? 7/14/25/? 18/?/?/?

Table 5.1 : Number of VCs Required for Resilient on (B1) EGFTs

512-H 1024-H 2048-H

1-E/2-E/4-E/8-E 1-E/2-E/4-E/8-E 1-E/2-E/4-E/8-E

0-R 1/1/1/1 1/1/1/1 1/1/1/1

0-R (CR) 1/1/1/1 1/1/1/1 1/1/1/1

1-R 1/1/1/1 1/1/1/? ?/10/?/28

1-R (CR) ?/1/?/1 1/?/1/1 5/?/12/?

2-R 1/1/1/1 1/1/1/1 15/26/48/89

2-R (CR) 1/1/1/1 1/1/1/1 10/18/34/62

4-R 1/1/1/? 9/16/27/? 49/?/?/?

4-R (CR) 1/1/1/? 7/13/21/? 31/?/108/?

Table 5.2 : Number of VCs Required for Resilient on (B6) EGFTs
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To be more specific, Table 5.1 and Table 5.2 show the required number of virtual

channels on the (B1) and (B6) EGFT topologies, respectively, for varying topology

sizes (*-H), levels of resilience (*-R), and degrees of multipathing (*-E). First, these

tables show that the virtual channel assignment algorithm always finds an assignment

for 0-resilience that only requires one virtual channel, which is expected as prior work

has shown that minimal routing on fat trees is deadlock-free [23]. Although expected,

this at least verifies my implementation of the channel assignment algorithm.

These tables also show that compression-aware routing can reduce the number

of required virtual channels, frequently requiring 1–3 fewer virtual channels than

without compression-aware routing. Although compression-aware routing starts to

significantly reduce the number of virtual channels when DF-FI resilience already

requires tens of virtual channels, often requiring 5–20 fewer virtual channels, this

result is not that significant because DF-FI resilience with compression-aware routing

still requires far more trees than are currently available in these cases.

Next, these tables show that the number of virtual channels required by DF-FI

resilience is in fact prohibitive. Providing even 8-way ECMP and 4-resilience required

10 or more virtual channels even on all of the 1024-host topologies I evaluated. Sim-

ilarly, 4-way ECMP and 1-resilience requires 10 or more trees on all of the 2048-host

topologies I evaluated, and 1-way ECMP and 2-resilience is barely implementable on

the 2048-host topologies I evaluated, typically requiring 8 virtual channels. These

results imply that DF-FI resilience does not scale given the currently available num-

ber of virtual channels to networks larger than 2048-hosts or levels of resilience larger

than 1–2, even if performance is compromised by reducing the degree of multipathing.

To illustrate that these results hold on other topologies, Table 5.3 shows the num-

ber of required virtual channels on the (B1) Jellyfish topologies. Although minimal
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512-H 1024-H 2048-H

1-E/2-E/4-E/8-E 1-E/2-E/4-E/8-E 1-E/2-E/4-E/8-E

0-R 1/1/1/1 1/1/2/2 2/2/3/4

0-R (CR) 1/1/1/1 1/1/2/2 2/2/3/5

1-R 1/?/?/? ?/?/4/7 5/7/11/?

1-R (CR) ?/1/2/2 ?/?/?/6 4/6/10/?

2-R 2/3/3/6 5/7/12/19 9/16/?/?

2-R (CR) 2/3/4/5 4/6/10/18 8/14/?/?

4-R 5/7/12/? 13/23/39/? ?/?/?/?

4-R (CR) 5/7/12/? 11/20/35/? 23/?/?/?

Table 5.3 : Number of VCs Required for Resilient on (B1) Jellyfish

routing on the Jellyfish topology is not guaranteed to be deadlock-free, I at least find

that 0-resilient routing requires less virtual channels than are available, with 8-way

multipathing on a 2048-host topology requiring a total of four virtual channels. How-

ever, as soon as fault tolerance is provided, the Jellyfish topologies, like the EGFT

topologies, are also not expected to scale to networks larger than 2048-hosts or levels

of resilience larger than 1–2.

5.4.2 DF-EDST Resilience

With my interest in DF-EDST resilience being further motivated by Section 5.4.1,

which shows that DF-FI resilience is not implementable on topologies larger than

2048-hosts, this section now evaluates DF-EDST resilience and the numerous TTGs
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that I have introduced. Unlike EDST resilience, DF-EDST resilience presents a clear

trade-off between performance and fault tolerance. Given this, the key question that

I would like to answer in this chapter is as follows: What exactly does the trade-

off between performance and resilience look like? Further, because it is likely that

more than a small performance reduction when compared with reactive shortest path

routing (< 10–15%) would be unacceptable in data center networks, I would also

like to answer the following question: What is the highest level of resilience and the

smallest expected probability of routing failure that can be provided by DF-EDST

resilience without significantly impacting forwarding throughput?

To answer these questions, I evaluate the aggregate throughput, stretch, expected

probability of routing failure, and forwarding table state requirements of different

variants of all of the TTGs discussed in Section 5.2.2. Specifically, there is only one

variant of the NoRes, NoDFR, and Line topologies, even if only a subset of the TTG is

installed for each destination. However, there are multiple variants of the T, ALayer,

MLayer, Rand, and Max TTGs that I evaluated.

All things considered, I conclude that even if no further impact on throughput is

tolerable, then fault tolerance can still be improved by about an order of magnitude,

although such a forwarding table is 0-resilient. However, even providing 3-resilience

routing often has a total reduction in forwarding table from shortest path routing of

between 5–10%, and 3-resilience can prevent 3–4 orders of magnitude fewer routing

failures given 16 edge failures than non-fault-tolerant routing.

The variants of the T, ALayer, and MLayer TTGs that I evaluate have varying

layer-0 widths, with the number of trees in layer-0 determining the number of trees in

the remaining layers in each of these topologies. Because I frequently need to install

a subset of the TTG for each destination, I also vary the maximum number of trees in
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the subset that may be in layer-0. Together, these two variables determine the trade-

off between performance and throughput on these TTGs, which leads to the following

question: what is the best value for these variables on the topologies I evaluate? I also

look at variants of these topologies that include intra-layer connections, and I look

at two different intra-layer tree orderings, “res” and “perf”. By how much do these

connections increase fault tolerance, and by how much do they hurt performance, if

any? Are the “res” and “perf” orderings noticeably different, and if so, which is more

desirable? Lastly, all of these TTGs are just variants of layered TTGs. Is one of these

TTGs obviously better than the others, or do different variants of each TTG present

desirable points in the design space?

I find that, to provide the best performance, only at most a quarter to a third the

total EDSTs in these TTGs should be set aside for resilience and not included in layer-

0 as an initial tree. To provide some context, the topologies that I evaluated have

between 10–22 trees available, with the number of trees decreasing with bisection

bandwidth. The reason only a handful of EDSTs should be set aside is because

reserving more trees starts to have a significant impact on throughput. Further, I find

that using a self-connected layer-0 improves fault tolerance without any noticeable

impact on forwarding throughput. Similarly, I find that neither the “res” or “perf”

ordering outperforms the other, either in terms of performance or fault tolerance.

Lastly, I find that the T TTG is clearly superior to either the ALayer or MLayer

TTGs.

The variants on the Rand and Max TTGs I evaluate have different levels of guar-

anteed resilience as well as two different orderings of the remaining trees, “res” and

“perf”. At what point does providing more guaranteed resilience hurt the performance

of forwarding? Is this point different for the two different orderings, and which order-
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ing is more desirable? Does the likely lower connectivity of the Rand TTG increase

performance or hurt resilience when compared with the Max TTG, and which TTG

is more desirable?

From my evaluation, I find the following. If all trees in the Rand and Max TTGs

are initial trees, then fault tolerance is improved without even impacting performance.

However, even reserving a single tree for resilience in these TTGs begins to have a

noticeable, albeit slight impact on throughput. I also find that neither the “perf”

or “res” orderings nor the Rand or Max TTG differ significantly from one another

in terms of throughput, expected probability of routing failure, or forwarding table

state.

The Line and layered TTGs and the Rand and Max TTGs represent different

points in the TTG design space with regards to guaranteed resilience and expected

fault tolerance. Ultimately, is one of these TTGs more desirable than the others? In

response to this question, I ultimately conclude that the self-connected T TTG and

the Rand and Max TTGs are all equally desirable as the best performing variants of

all of these lead to TTGs that are similar or isomorphic.

Finally, forwarding table state may be reduced by either reducing the size of the

TTG subset for each destination or by reducing the number of different TTGs on

different virtual channels used to increased forwarding throughput, i.e., reducing the

degree of multipathing. Is one of these methods more desirable than another?

With respect to this question, I find that neither is inherently better than another.

For example, I found that using 12 trees per destination and 4-way multipathing (4

virtual channels) had aggregate forwarding throughput and forwarding table state

and only slightly reduced probability of routing failure when compared with using

8 trees per destination and 8-way multipathing (8 virtual channels). This result is
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particularly interesting because it implies that not all of the available virtual channels

are required for high performance and fault tolerant deadlock-free routing.

In the rest of this section, I first present my results from the NoRes, NoDFR, and

Line TTGs. After that, I present my results from each of the individual layered TTGs

and then compare the layered TTGs against each other. Similarly, I need present my

results from the Rand and Max TTGs and then compare them. After that, I compare

and discuss the best variants of the TTGs that were previously presented.

NoRes, NoDFR, and Line TTGs

In this section, I first look at the probability of routing failure, throughput, and state

requirements of the NoRes, NoDFR, and Line TTGs. While none of these TTGs

are practical for providing high throughput deadlock-free and fault-tolerant routing.

However, they are still interesting, nonetheless as the NoRes TTG provides a lower

bound on both fault tolerance and forwarding table state, the NoDFR TTG provides

an upper bound on both fault tolerance of tree resilience and forwarding table state,

and the Line TTG provides an upper bound on the fault tolerance achievable given

deadlock-free routing.

Further, these TTGs also illustrate that the forwarding table state required by

naively using all available trees per destination and all available virtual channels in

DF-EDST resilience requires too much forwarding table state. Two ways to reduce

this state are by reducing the size of the subset of the TTG installed per destination

or by reducing the degree of multipathing, and I use the NoRes, NoDFR, and Line

TTGs to illustrate the pros and cons of both approaches. Specifically, I find that, in

addition to increasing resilience and fault tolerance, increasing the number of trees

per destination can also improve performance. This is because the number of initial
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trees are increased as well, although this effect reaches a plateau eventually because

the shortest trees, averaged across all switches, are chosen for the subset of the TTG.

For example, the NoRes and NoDFR TTGs with 8-trees and 8-way multipathing are

not far off of the throughput of reactive, deadlock-oblivious shortest path routing.

On the other hand, multipathing does not impact fault tolerance, but decreasing the

degree of multipathing by half almost reduces aggregate throughput by half as well.

Because of these results and because DF-EDST resilience is intended for data center

networks, where performance is critical and routing over EDSTs already has a small

impact on performance [35], I only consider variants of the other TTGs that have the

maximal possible degree of multipathing, 8, which is equal to the number of virtual

channels.

To concretely illustrate the state requirements of DF-EDST resilience, Figure 5.8

and Figure 5.9 show the state requirements of variants of the NoRes, NoDFR, and Line

TTGs with different number of trees installed per destination (*-T) and degrees of

multipath (*-E) given different topologies, topology sizes, and bisection bandwidths

(B*). Although there are more than 20 EDSTs in the TTG for the 1 : 1 bisection

bandwidth topologies, this figure shows that even with only 8 trees per destination and

8-way multipathing, the largest possible, that the NoDFR requires 40Mbit of TCAM

even on hosts with between 2048–4096 hosts. However, the NoDFR TTG requires

more state than any deadlock-free TTG, with the 8 trees and 8-way multipathing

on the Line TTG requiring 40Mbit of TCAM for networks with between 4096–8192

hosts. On the other hand, because NoRes does not install rules to allow packets to

transition between trees, it requires the least forwarding table state and should scale

to at least 10K hosts given 40Mbit of TCAM state, 8-trees per destination, and 8-way

multipathing.



150

210 211 212

Number of Hosts

104

TC
AM

 S
iz

e 
(K

b)

Line 16-T 8-E
NoDFR 8-T 8-E
Line 12-T 8-E
Line 16-T 4-E

NoDFR 8-T 4-E
Line 12-T 4-E
Line 8-T 8-E
NoDFR 4-T 8-E

Line 8-T 4-E
NoRes 8-T 8-E
NoDFR 4-T 4-E
Line 4-T 8-E

NoRes 8-T 4-E
NoRes 4-T 8-E
Line 4-T 4-E
NoRes 4-T 4-E

(a) Network Virtualization (B1)

210 211 212 213

Number of Hosts

103

104

TC
AM

 S
iz

e 
(K

b)

Line 16-T 8-E
NoDFR 8-T 8-E
Line 12-T 8-E
Line 16-T 4-E

NoDFR 8-T 4-E
Line 12-T 4-E
Line 8-T 8-E
NoDFR 4-T 8-E

Line 8-T 4-E
NoRes 8-T 8-E
NoDFR 4-T 4-E
Line 4-T 8-E

NoRes 8-T 4-E
NoRes 4-T 8-E
Line 4-T 4-E
NoRes 4-T 4-E

(b) Network Virtualization (B2)

Figure 5.8 : Jellyfish TCAM Sizes for the NoRes, NoDFR, and Line TTGs
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Figure 5.9 : EGFT TCAM Sizes for the NoRes, NoDFR, and Line TTGs
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Figure 5.10 : Jellyfish Probability of Routing Failure for the NoRes, NoDFR, and

Line TTGs

Further, these figures also show that reducing the number of trees per destination

reduces forwarding table state by more than reducing the degree of multipathing. For

example, Line 4-T 8-E reduces the forwarding table state of Line 8-T 8-E by about

twice as much as Line 8-T 4-E. However, this is expected state in DF-EDST resilience

is still super-linear with respect to the number of trees, while forwarding table state

clearly changes linearly with respect to changes in the degree of multipathing.
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Figure 5.11 : EGFT Probability of Routing Failure for the NoRes, NoDFR, and

Line TTGs
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Next, Figure 5.10 and Figure 5.11 show the probability of a routing failure given

Jellyfish and EGFT topologies, respectively, different numbers of hosts and bisection

bandwidths (B*), size of the TTG subset installed for each destination (*-T) and

degrees of multipathing (*-E). As before, the lines in the legend are sorted from least

fault tolerant to most.

The first thing that these figures show is that, as expected, using more or less

TTGs on different virtual channels does not impact fault tolerance. Because the

routing functions of each TTG are independent and the TTGs themselves are identical

for each virtual channel, the exact number of virtual channels used should only impact

state and forwarding throughput, as, to increased path diversity, the EDSTs used for

each virtual channel are selected so that they are all different.

Next, these figures also show that changing the size of the subset of the TTG

installed for each destination does impact fault tolerance, which, again, is expected.

Except for the NoRes TTG, which does allow for packets to transition between trees,

the more trees there are, the higher the fault tolerance.

Perhaps surprisingly, these figures show that, across a range of topologies and

bisection bandwidths, the NoDFR TTG consistently achieves higher fault tolerance

than the comparable Line TTG, even though both TTGs provide the same guaranteed

resilience. This is because the NoDFR may, for each switch, destination, and failure,

chosen the shortest non-failed tree while the Line TTG must use the next non-failed

tree in the TTG when a failure is encountered. This leads to longer paths, in practice,

and the longer path a packet is forwarded over, the more likely it is then to encounter

a failure. This is especially notable in Figure 5.11a, where NoDFR with 8-trees

per destination is slightly more fault tolerant than the Line TTG with 16-trees per

destination, although, given either correlated failures (Figure 5.11b) or lower bisection
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Figure 5.12 : Jellyfish Throughput for the NoRes, NoDFR, and Line TTGs

bandwidth networks (Figure 5.11c and Figure 5.11d), variants of the Line TTG with

more trees than a variant of the NoDFR TTG begin to out-perform the NoDFR

variant.

Next, Figure 5.12 and Figure 5.13 present the throughput of the Jellyfish and

EGFT topologies, respectively, given different topology sizes, numbers of failures (*-

F), bisection bandwidths, and variants of the NoRes, NoDFR, and Line TTGs.

First, these figures show that the NoRes TTG provides high aggregate throughput
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Figure 5.13 : EGFT Throughput for the NoRes, NoDFR, and Line TTGs
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that begins to gradually fall off of the throughput of shortest path routing (SP) as

topology size increases, which agrees with previous work [35]. Similarly, these figures

also show that the aggregate throughput of the NoDFR TTG is very similar to that

of the NoRes TTG on all of the topologies and number of failures I considered.

On the other hand, these figures also illustrate the key problem with the Line TTG.

Even if only a subset of the TTG is installed for each destination, and the subset of

the shortest trees is chosen for a destination, there is still not enough path diversity

provided by the set of initial trees to ensure high throughput forwarding even when

there are no failures. In these figures, the aggregate forwarding throughput achieved

by the Line TTG was typically almost half that of shortest path forwarding. Although

this performance impact is reduced on networks with lower bisection bandwidths, such

as Figure 5.13d, the performance impact is still significant. Further, these figures have

the surprising trend that the fewer the number of trees installed for each destination,

the higher the throughput. This is because all forwarding starts at the topologically

first tree in the TTG, so the larger the subset, the smaller the number of initial trees.

These figures also show the second half of the trade-off between reducing the

number of trees installed per destination or reducing the number of virtual channels

used for multipathing. While I have already shown that increasing the number of

trees not only increases resilience but also has a significant impact on fault tolerance,

these figures show that reducing the degree of multipathing has a significant impact

on performance. However, these figures also show that the number of trees can impact

performance. For example, both the “4-T 8-E” and “8-T 4-E” variants of the NoDFR

and NoRes reduced forwarding throughput by the same amount. This is because both

variants reduce the number of initial forwarding trees by the same amount. However,

decreasing the number of trees on the Line TTG, which increases the number of initial
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trees, has less impact on throughput than reducing the degree of multipathing.

Layered TTGs

Next, I look at the T, ALayer, and MLayer TTGs, which together form the layered

TTGs. I consider these TTGs because they provide similar resilience for all initial

trees yet have more initial trees than the Line TTG so as to provide better forwarding

throughput. In this evaluation, I first consider variants of the T TTG, which clearly

illustrates the trade-off between performance and resilience as it either uses a tree as

an initial tree for good throughput or reserves it for resilience as part of a line. In

addition to evaluating the aggregate throughput, probability of routing failure, and

forwarding table state required by the T TTG, I also evaluate whether allowing for

the first layer to be self-connected hurts performance of significantly improves fault

tolerance, finding that it improves fault tolerance without hurting performance. After

that, I then see if variants of either the ALayer or MLayer TTG outperform the T

TTG in terms of either fault tolerance or forwarding throughput, and the answer

to this question is clear. The ALayer and MLayer TTGs perform nearly identically

to the T TTG, yet provide less fault tolerance. This implies that the performance

of backup routes is not crucial to overall performance, and so that non-initial trees

should be arranged in a line so as to provide the best fault tolerance.

To start off, Figure 5.14 and Figure 5.15 show the probability of routing failure

given the T and ALayer TTG, the the MLayer TTG being omitted because it fell

somewhere inbetwen the two. To allow for comparisons between different variants

of the TTGs, I fix the both the number of subtrees per destination and degree of

multipathing at 8 in these figures. In these figures, I vary both the width of the layer-

0 of the TTG ({T,AL}-*) and the maximum number of trees in the subset of the
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Figure 5.14 : Jellyfish Probability of Routing Failure for the T and ALayer TTGs
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Figure 5.15 : Probability of Routing Failure for the 1024-host (B1) EGFT Topology

and the T TTG

TTG for each destination (*-ML0) as well as consider variants of the TTG that use

a self-connected layer-0 with rules sorted for both performance (SL-P) or resilience

(SL-R). In effect, the width of the layer-0 of the TTG sets a global limit on the

number of initial trees and resilience while the maximum number of trees per subset

sets a limit on fault tolerance of each subset to avoid trivially choosing a subset that

is only composed of initial trees and thus not different from the NoRes TTG.

First, I note that the probability of routing failure on the ALayer TTG was always

either equal or greater than on the T TTG. This is expected because the T TTG is

likely to have a larger height than an equivalent variant of the MLayer or ALayer

TTG, and thus is likely to be more resilient.

Next, I note that, while allowing for a self-connected layer-0 can noticeably im-

prove fault tolerance, neither variant of sorting the rules in the self-connected layer
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dominated the other. This may be because I sort the initial trees of the TTG by path

length averaged over all switches and destinations before connecting them, so both

orderings may be similar. Because of this, I only show the results from the resilient

sorting (SL-R). Additionally, these figures show the overall trend that reducing either

the layer-0 width or the maximum number of layer-0 cause similar increases in fault

tolerance. Although the difference between each individual variant may not be that

large, the probability of routing failure on the 1024-host topologies in Figure 5.14a

Figure 5.15 differ by almost two orders of magnitude given 64 edge failures. How-

ever, except for the variants that have a layer-0 width of 16 on the (B2) topologies

(Figure 5.14c and Figure 5.14e), which is roughly the total number of EDSTs, all

of the variants provide a significant increase in fault tolerance when compared with

non-fault-tolerant routing (NoRes), although none of them match the performance

of the NoDFR TTG, which did not experience any routing failures given 64 edges

failures on the 1024-host topologies.

Next, Figure 5.16 and Figure 5.17 show the aggregate throughput achieved by

different variants of the T and ALayer TTGs on the Jellyfish and EGFT topology,

respectively. Most importantly, these figures show that, unlike the line TTG, the T

and ALayer TTGs have enough initial trees to provide high throughput forwarding.

In these figures, the throughput of the best performing T TTGs is often within a

factor of 10% of that of reactive, deadlock-oblivious shortest path routing, which I

note already achieves a little bit higher forwarding throughput than using EDSTs for

deadlock-free routing (NoRes) [35]. Although the forwarding throughput falls off of

that of shortest path routing as the number of failures increases (> 32), this is likely

acceptable as the liklihood of this many edges failing at once is low [5].

Next, these figures show that there is little benefit to the ALayer or MLayer TTGs.
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Figure 5.16 : Jellyfish Throughput for the T and ALayer TTGs
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Figure 5.17 : EGFT Throughput for the T TTG

While the ALayer TTG did achieve higher throughput in some cases, namely a large

number of failures, such large failures are not frequently expected in data center

networks [5], and said benefit does not outweigh the loss of fault tolerance previously

discussed.

Further, Figure 5.16a and Figure 5.17a show that self-connecting the initial layer

does not have a significant impact on forwarding throughput. This, combined with

the increase in fault tolerance, shows that, even though self connecting the layers in

these TTGs does not increase resilience, doing so improves fault tolerance without

hurting throughput. Although using a tree that may be used for forwarding default

traffic for fault tolerance instead of one of the backup trees could be expected to

impact performance, in practice, these figures show that this is not the case. This is

most likely because using multiple virtual channels for improve performance can lead

to all of the links in the network being utilized, and moving either to another initial

tree or a tree reserved for resilience is still likely to use edges used by other flows.

However, this result on self-connected layers begins to undermine the motivation for
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Figure 5.18 : TCAM Sizes for the T TTG
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the layered TTGs, which is to provide similar fault tolerance for all of the initial trees.

The variants of the T TTG with self-connected layers that provide high throughput

allow for significant variation in the fault tolerance between different initial trees

while still providing some guaranteed resilience, which begins to resemble the Rand

and Max TTGs.

Next, I also look at the state requirements of the T TTG to ensure that the state

requirements are as expected given the state requirements of the NoRes, NoDFR,

and Line TTGs (Figure 5.8 and Figure 5.9). To do so, I present Figure 5.18, which

shows the TCAM state required by different variants of the T TTG. Additionally, I

also include the state requirements of the NoRes and NoDFR TTGs, which provide

a lower and upper bound on state, respectively. In this figure, which only shows the

(B1) bisection bandwidth because this is the topology variant that requires the most

state, the state requirements of the T TTG fall squarely inbetween that of the NoRes

and NoDFR TTGs, as expected..

Rand and Max TTGs

As the best performing variants of the T TTG begin to resemble the Rand and Max

TTGs, which allow for a wide range of resilience depending on which initial tree is

selected for forwarding in exchange for using many of the EDSTs as initial trees, it

is then interesting to see what the aggregate throughput and probability of routing

failure are for these TTGs. In this section, I find that the performance impact of

1–3 resilience on the Rand and Max TTGs has a small impact on performance, often

< 10%–15%, and that the average probability of routing failure decreases by roughly

an order of magnitude with each additional tree used for resilience. Also, I find that

the Rand and Max TTGs behave almost identically. Lastly, I revisit the trade-off
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between size of the subset per destination and number of virtual channels used for

multipathing, showing that, surprisingly, variants of the Rand and Max TTGs with

either 12-trees per destination and 4-way multipathing behave almost identically to

using 8-trees per destination and 4-way multipathing, only with a slight increase in

fault tolerance. This result is particularly interesting for hybrid networks because

it implies that lossless forwarding does not need to use all of the available virtual

channels for performance so that the remaining virtual channels could be used for

lossless forwarding, if desired.

To start off, Figure 5.19 and Figure 5.20 show the throughput achieved by variants

of the Rand and Max TTGs with varying resilience (*-R), number of trees per des-

tination (T-*), degrees of multipathing (*-E), and sorting the initial trees either for

performance (P) or resilience (R) on variants of the Jellyfish and EGFT topologies,

respectively, with varying numbers of hosts and bisection bandwidths (B*). The first

thing that these figures show is that the throughput of both the Rand and Max TTGs

closely tracks that of deadlock-oblivious reactive shortest path routing (SP), especially

given no or relatively few failures. To some extent, this is expected. Because the 0-R

variants allow for all trees to be used as initial trees, these variants behave identically

to the NoRes TTG given no failures. Although increasing guaranteed resilience in

the other *-R variants disallows a number of trees from being initial trees equal to

the level of resilience, the impact of this on performance is also relatively small. For

example, given no failures on the (B1) 1024-host EGFT topology, the Rand 0-R TTG

reduced forwarding throughput by 6.5% when comapared with SP, while the Rand

3-R TTG only reduced forwarding throughput by 10.9%. While this impact increases

with topology size, the impact is still small, with the Rand 0-R TTG on a 2048-host

(B2) EGFT reducing forwarding throughput by 6.7%, the Rand 3-R TTG reducing
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Figure 5.19 : Jellyfish Throughput for the Rand and Max TTGs
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Figure 5.20 : EGFT Throughput for the Rand and Max TTGs
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throughput by 14.3%, and the other TTGs falling somewhere in-between.

These figures also show that neither the Rand or Max TTG dominates the other in

terms of performance, and, similarly, neither the “res” or “perf” ordering dominated

the other. Across the topologies considered in these figures, neither the Rand or Max

TTGs or the “res” or “perf” orderings had an obvious predictable improvement over

the other, even slight. Instead, the performance of the different variants were similar,

and the better performing variant differs across topology instances.

Further, these figures illustrate what is an interesting point in the trade-off be-

tween reducing either the number of virtual channels or the subset of the TTG in-

stalled for each destination to reducing forwarding table state. Surprisingly, the “T-8

8-E” and “T-12 4-E” TTG variants provide near-identical forwarding table through-

put across a range of number of failures, topologies, and bisection bandwidths. How-

ever, the “12-T 8-E” and “16-T 8-E” TTG variants, while not shown, had forwarding

throughput even closer to that of SP. This shows that, if more forwarding table state

or custom forwarding hardware can be dedicated to DF-EDST resilience, then the

impact of forwarding throughput can be even further reduced.

Given that the Rand and Max TTGs do not have a significant impact on forward-

ing, it is then worth asking how likely it is for routes in the Rand and Max TTGs to

experience a routing failure. To answer this questions, Figure 5.21 and Figure 5.22

show the average fault tolerance of different variants of the Rand and Max TTGs

on a range of Jellyfish and EGFT topologies, respectively. These figures show that

a 3-resilient Max TTG can reduce the probability of routing failure by about three

orders of magnitude when compared with non-resilient forwarding (NoRes). This is

an important result because I have previously shown that this TTG only reduces the

full load aggregate throughput of the network by about 5–10%. While only reducing
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Figure 5.21 : Probability of Routing Failure for the Rand and Max TTGs on the

Jellyfish Topology
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Figure 5.22 : Probability of Routing Failure for the Rand and Max TTGs on the

EGFT Topologies
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throughput by 5–10% can reduce the probability of routing failure by as much as 4

orders of magnitude given 16 edges failures.

Additionally, these figures also show that even the 0-resilient variants of the Rand

and Max TTGs are more fault tolerant that the NoRes TTG. Across a wide range of

failures and topologies, the 0-resilient variants of the Rand and Max TTGs experience

roughly an order of magnitude fewer routing failures than the NoRes TTG on average.

This is important because, given 0 failures, the 0-resilient Rand and Max TTGs

behave identically to the NoRes TTG. However, the big difference is that the 0-

resilient Rand and Max TTGs use a TTG that allows for improved fault tolerance by

allowing packets to transition between initial trees, as long as the resultant TTG is

acyclic. While this does not guarantee even 1-resilience, as there will be at least one

tree initial tree that, if chosen, cannot transition to any other tree, the fact that this

improves fault tolerance is important because this implies that fault tolerance can

be improved when EDSTs are used for deadlock-freedom without further reducing

forwarding throughput.

However, unlike with throughput, which was nearly equal for the 8-T 8-T variants

and the 12-T 4-E variants, the 12-T 4-E variants are slightly more fault tolerant.

While is is expected, what is surprising is that the 8-T 8-E and 12-T 4-E variants

largely track each other in terms of average probability of routing failure. Because

I have already shown that multipathing does not impact fault tolerance, this lack

of a large difference in fault tolerance on most of variants the 8-T and 12-T TTGs

may not be expected. However, this is because not all initial trees in the Rand and

Max TTGs provide the same level of resilience. What has a larger impact on fault

tolerance than increasing the total number of trees is by increasing the number of

trees set aside for guaranteed resilience, and the number of set aside trees is equal in
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the 8-T and 12-T variants with the same resilience.

Further, the results for the probability of routing failure are similar to that for

the variants of the T TTG that I evaluated. For example, given a 1024-host (B1)

EGFT topology and 64-failures, the T TTGs that I evaluated, which ranged from

2-resilient to 4-resilient, saw that, on average, a fraction of between 1.5e-5 and 4.2e-7

of the flows failed, with the best 3-resilient variant (T-8 5-ML0) having 6.9e-7 of the

flows fail (Figure 5.15). For a point of comparison, Figure 5.22b shows 0-resilient to

3-resilient variants of the Rand and Max TTGs given a 1024-host (B1) EGFT. Given

64 failures, this figure shows that these fraction of failed flows is in between 2.8e-5

and 1.3e-6. Although the best 3-resilient T TTG experiences fewer failures than the

best 3-resilient Rand or Max TTG, this is expected. In the 3-resilient Rand and Max

TTGs, only 3 out of the total of 20 EDSTs on this topology are reserved for resilience

and are not used as initial trees. On the other hand, 12 out of the 20 EDSTs in the

best performing 3-resilient TTG are reserved for fault tolerance. While the forwarding

function is only 3-resilient per destination in the end, having more trees to choose

between allows for trees with shortest paths to be chosen, and trees with shorter path

lengths are less likely to encounter a failed link because they encounter fewer total

links. However, as expected, while decreasing the number of initial trees improves

fault tolerance, doing so also has a more noticeable impact on fault tolerance.

Lastly, these figures also show that, as with aggregate throughput, neither the

Rand nor Max TTG dominates the other and neither the “perf” or “res” sorting

dominates the other.

Next, I evaluated the state requirements of different variants of the Rand and Max

TTGs, which are presented in Figure 5.23. While this figure covers both the EGFT

and Jellyfish topologies and (B1) and (B4) variants, the results may be summarized
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simply. All of the evaluated variants of the Rand and Max TTGs required nearly

the same amount of forwarding table state for a given topology, size, and bisection

bandwidth, including both Rand and Max TTGs and the “12-T 4-E” and “8-T 8-E”

variants. Additionally, the state required by these TTGs falls right in-between the

NoRes and NoDFR TTGs, which should be expected because the Max TTG should

have exactly half the number of edges as the NoDFR TTG. Similarly, the Rand TTG

should have roughly half the edges as the NoDFR TTG.

Although initially surprising, the nearly identical state requirements of all of the

variants helps shed some light on their similar throughput and probability of routing

failure. All things combined, all of these variants lead to about the same total num-

ber of trees and tree transitions, which is evident by their similar state. As with the

NoDFR and NoRes TTGs, it appears to not be of much significance how the trees are

ordered or derived. As long as the TTG is well connected, then the forwarding func-

tion can provide both high aggregate throughput and can be far more fault tolerant

than non-resilient forwarding.

Finally, all of the state requirements in this section assume that packets may be

marked with the current forwarding tree. If packets may not be modified, then the

state requirements of DF-EDST resilience should increase proportional to the average

degree of the EDSTs. To illustrate this increase in state, Figure 5.24 presents the

state requirements of the Rand and Max TTGs if packets are not modified at all.

This figure shows that both the EGFT and Jellyfish topologies require more 40Mbit

of TCAM state for topologies with (B1) topologies with 2K hosts. Further, I found

that the (B2) and (B4) topologies required more than 40Mbit of TCAM state for

topologies with 3K hosts.
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Overall TTG Comparison

Given that Section 5.4.2 shows that some of the variants of the layered TTGs provide

2–4-resilience with only a small impact on performance and that Section 5.4.2 shows

the same for the Rand and Max TTGs, this raises an obvious question. Which of the

TTG variants is the best? To answer this question, I would compare the best variants

of the T, ALayer, MLayer, Rand, and Max TTGs with either the “perf” or “res”

layer orderings for a range of different degrees of multipathing and number of trees

per-destination, deciding an ultimate winner that provides the best fault tolerance

within a set percent impact on forwarding throughput, for a range of forwarding

throughputs. However, instead of answering this question, I ask a different question.

Are the best variants of the T TTGs, the Rand TTG, and the Max TTG given either

of the two different layer orderings even that different from each other? Ultimately,

I conclude no, which implies that the results in Section 5.4.2 already illustrate the

complete trade-off between resilience and fault tolerance, showing that, at best, extra

fault tolerance can be provided without any impact on performance, and, at a small

extra impact to performance, often < 5%, 2–4 more failures are guaranteed to be

tolerated and the average likelihood of a routing failure can be reduced by 2–4 orders

of magnitude.

The reason for this conclusion is because the T TTG clearly dominates the ALayer

or MLayer TTGs, and the best performing variant of the T TTG uses a self-connected

layer-0. In this case, this TTG is essentially the same as the Max TTG. Both have

initial trees that are connected in a line, and then remaining trees in both TTGs

are themselves arranged into a line for resilience. Further, the Rand TTG leads to a

TTG where all of the initial trees are highly connected, which is also quite similar.
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Similarly, the “perf” and “res” sortings do not lead to subsets of the TTG that would

be expected to behave that differently. The trees are sorted according to shortest

average path length across all destinations before assigning then to nodes in the

TTG, so these orderings may be the same for some destinations.

5.5 Discussion

The result that the “12-T 4-E” variants of the Rand and Max TTGs match the

performance of “8-T 8-E” variants, in addition to showing that DF-EDST resilience

is flexible, has an useful implication. If the 4-E variant is used, then not all of the

virtual channels need to be dedicated just to lossless forwarding. Instead, lossless

forwarding of varying levels of QOS can use the other half of the available virtual

channels in any of a number of ways [62, 34]. In this case, the performance impact

of lossless forwarding is even less important as lossy background flows can consume

all of the remaining bandwidth.

Further, because this shows that not all virtual channels need to be used, on tree

topologies, fault tolerance can be provided without impacting default performance

at all if all default traffic uses minimal routing or, even further, just uses routing

that first travels up the tree then down. If all of the default traffic is forwarded on

its own, virtual channel, then it is still deadlock-free, and if a packet encounters a

failure, it may then transition between virtual channels and follow DF-EDST resilience

and, again, still be deadlock-free. In this case, the only drawback to providing fault

tolerance is forwarding table state.

Although the results of Section 5.4.1 that DF-FI resilience is not a scalable solution

to providing both fault tolerance and deadlock-free routing, they do show that naively

using minimal routing and enabling lossless forwarding with reactive fault tolerance,
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similar to many of today’s networks 0-resilient, does in fact fit within the number of

available virtual channels, even on topologies that are not trees. This implies that

even if it is not acceptable to restrict routing, as in instead using the NoRes TGG,

then it should be possible to enable lossless forwarding on today’s networks, which

already support DCB.

At initial consideration, my result that a line TTG can be used to improve up

the result from Feigenbaum et al., showing that there always exists a max(1, k/2−1)

forwarding pattern that does not modify packets may not seem practical as it provides

poor forwarding throughput when implemented for deadlock-free routing as all initial

forwarding paths use the same tree, a la Ethernet with RSTP. However, even in

deadlock-free routing, this implies that important and mission critical data may have

fault tolerance that is equal to the length of the longest line in the TTG minus one,

regardless of the fault tolerance that is provided for other traffic. Moreover, this result

also has further implications given non-deadlock-free routing, where each destination

may use a different TTG. Although default trees may not be used in this case because

the forwarding function needs to be able to uniquely map the input port to the current

forwarding tree, the initial forwarding tree(s) for each destination may be chosen to

be the shortest of the EDSTs for the destination. This implies that existing networks

where introducing new packet formats is not allowed but that still allow for fault

tolerant forwarding, such as IP-FRR [63] and, arguably, OpenFlow [64], can build a

forwarding function that is (k/2− 1)-resilient.

Given that Theorem 5.2.4 uses EDSTs to improve up the main result of Feigen-

baum et al. (Theorem 2.3.1), it is tempting to try to use ADSTs to further improve

upon this result. Just as with EDST resilience, if, for each destination, ADST re-

silience uses a line TTG, then 1) there exists a total ordering of channels for each
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destination, so the forwarding function is acyclic even without marking tree failures

in packet headers and 2) input ports can still be used to identify the current ADST

if default trees are not used, so the current tree does not also need to be marked in

packet headers. However, this forwarding model presents one large problem for im-

proving upon Theorem 5.2.4. The proof that ADSTs can be used to protect against

up k−1 failures relies on the property that the tree that is chosen after an arc failure

must be the tree that uses the opposite arc of the failed arc, but this tree ordering

may be different for each switch and set of failures. While I use a routing algorithm

that respects this ordering in Chapter 4, doing so requires marking failed trees in a

packet header. Given a line TTG, this ordering may not be respected. Thus, such a

forwarding function is not guaranteed to be (k− 1)-resilient. Although the resilience

of such a forwarding function may be in fact greater than k/2 − 1, it is currently

unclear what the resilience of such a forwarding function would be given an arbitrary

topology. However, in the worst case, there may exist a topology such that regardless

of the tree ordering, there exists a source and destination and set of failures such

that the reverse tree ordering is never respected. In this case, only as many as half

of the trees may not be useful for providing resilience because there are only two

arcs per edge, so, even in this worse case, ADSTs should be at least able to provide

(k/2 − 1)-resilience. Thus, such an ADST forwarding model should at least be able

to match the resilience of a comparable EDST forwarding model. Further, such a

scenario would most likely be rare, so the expected fault tolerance could be improved

over that of EDSTs.

However, this discussion about using ADSTs to improve upon the result of Feigen-

baum et al. has further implications. Could ADSTs also be used to provide both

deadlock-free and fault tolerant routing? Just as with EDSTs, if the same set of
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ADSTs is used for every destination, and the allowed transitions between trees are

acyclic, then the forwarding function of the network would be deadlock-free because

there exists a total ordering of all of the channels in the network. However, this solu-

tion is not without its problems. Unlike EDSTs, every ADST is directed on rooted at

a destination, so a path is not guaranteed not exist for every source and destination

on each ADST. Given that the existing algorithm for computing ADSTs [44] ensures

that each ADST is rooted at the same destination, this will likely lead to poor con-

nectivity and performance for some destinations, although, if an algorithm is used

that builds ADSTs that are rooted at either random or strategic locals, then it may

be possible to improve connectivity on highly connected data center topologies. How-

ever, because all switches must use the same subset of the TTG for each destination

to provide fault tolerance, there may still not be enough ADSTs that contain a route

from all or enough sources to a given destination. Although this is an interesting

approach to providing deadlock freedom and fault tolerance, I leave an evaluation of

this to future work.

5.6 Summary

In summary, I have introduced and evaluated two different approaches to implement-

ing both deadlock-free and fault-tolerant forwarding for data center networks, DF-FI

resilience and DF-EDST resilience. Despite introducing a new algorithm for assign-

ing paths to virtual channels, FAS-VC, I found that 1) FAS-VC does not find better

assignments than an existing virtual channel assignment algorithm and 2) DF-FI re-

quires far more virtual channels than are currently available to implement resilient

forwarding on data center topologies with 2048-hosts or more. Until further advances

are made on the topic of guaranteeing that some configurations of backup routes are
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never possible and thus could never form deadlocks, DF-FI resilience is not entirely

practical.

However, this result also further motivates DF-EDST resilience. To enable DF-

EDST resilience, I first prove that DF-EDST resilience is deadlock-free as long as the

TTG is acyclic. This result itself is interesting as it is the first to improve upon the

main result from Feigenbaum et al. [30], showing that there always exists a max(1,

k/2 − 1)-resilient forwarding function that does not modify packet headers given

any aribtrary topology. Further, I also discuss the fault tolerance properties that is

implication that DF-EDST requires acyclic TTGs requires, including noting that the

resilience of the forwarding function is equal to the shortest height of any of the initial

trees minus one. However, this introduces a clear trade-off between performance and

resilience.

Given this trade-off, I then evaluated the aggregate throughput, average prob-

ability of routing failure, and forwarding table state requirements of a number of

different TTGs. I show that, with DF-EDST resilience, fault tolerant forwarding can

be provided on any arbitrary well-connected data center topology without impacting

throughput beyond that of existing approach to using EDSTs to provide deadlock-

free routing for lossless forwarding. In effect, the only extra cost of fault tolerance is

additional forwarding table state. Moreover, if even three of the total EDSTs in the

topology, of which there are often 10–20, are reserved for fault tolerance and guar-

anteed resilience (3-resilience), then the probability of routing failure can be reduced

by 3–4 orders of magnitude with only minimal impact on forwarding throughput

(5–10%).

Additionally, I also show that not all of the virtual channels are needed to provide

high throughput forwarding. This is important because all of the aforementioned
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results apply to any arbitrary data center topologies, including the Jellyfish [47] and

HyperX [65]. If a data center network instead uses a tree topology, then it is possible

to do even better. If a single virtual channel is set aside, then all of the minimal

paths in the entire topology may be installed and any arbitrary traffic engineering

scheme may be used to balance the default traffic across these paths, a la XPath [53],

and the resultant forwarding function is still guaranteed to be deadlock-free. Further,

when this default traffic encounters a failure, it may transition to another virtual

channel that uses DF-EDST to build backup routes, and the forwarding function is

still guaranteed to be deadlock-free. In effect, the only limits on resilience even given

lossless forwarding on a tree topology are forwarding table state and the connectivity

of the underlying topology. The performance of traffic that does not encounter failures

should not be harmed.

Lastly, even though tree resilience requires 40Mbit of TCAM state to implement

DF-EDST with 12-trees per destination and 4-way multipathing on a 1 : 1 bisection

bandwidth ratio Jellyfish topology with about 3K hosts and a 1 : 1 bisection band-

width ratio EGFT topology with about 5K hosts, I do not consider these forwarding

table state requirements to be limiting. First off, given a 1 : 1 bisection bandwidth

ratio, these topologies are still fairly large for flat layer-2 networks. Additionally,

DF-EDST resilience requires far less forwarding table state as bisection bandwidth

is reduced. I would expect DF-EDST resilience to scale to 1 : 4 bisection bandwidth

networks with close to 10K hosts. Further, because of the clear trade-off between

fault tolerance and forwarding table state, these state requirements do not imply to

DF-EDST resilience is not possible given larger topologies. Instead, only fault tol-

erance needs to be reduced, which is an especially reasonable compromise if there

are multiple classes of traffic in the network. Lastly, these results just further moti-



184

vate building switches with forwarding table hardware specifically designed for tree

resilience. I believe that, given a custom implementation, the forwarding table state

requirements of the resilient TTGs could be reduced to match that of using EDSTs

for non-fault-tolerant but deadlock-free forwarding.
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CHAPTER 6

Related Work

In this section, I discuss related work in more detail. For the sake of discussion, I first

discuss related work on congestion control and then I discuss related work on fault

tolerant routing.

6.1 Congestion Control and Avoidance

My discussion of related work focuses on efforts to reduce flow completion times in

the data center.

Like TCP-Bolt, zOVN [40] observes that enabling DCB can reduce flow completion

times. However, their primary focus is enabling DCB support in vSwitches. Further,

they use standard TCP variants, which I have shown can perform poorly, and they

do not explore the possibility of disabling slow start.

Also like my work, DeTail [9] reduces the tail of flow completion times in data

centers with a new network stack that uses DCB and packet spraying to balance

network load. However, unlike my work, DeTail continues to use the default TCP

initial congestion window on top of DCB and does not address deadlock free routing.

Complementary to my work are transport protocols that introduce mechanisms to

prioritize traffic [39, 66, 67, 68]. These protocols approach reducing flow completion

times by applying either a shortest-flow-first, an earliest-deadline-first, or a least-
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attained-service schedule.

Remy [69], a new TCP variant, uses machine learning to design TCP congestion

control algorithms. I expect that extending Remy to support ECN could automati-

cally generate a congestion control algorithm that outperforms DCTCP, which would

improve the performance of TCP-Bolt.

Two other recent proposals for achieving faster flow completion times are notable:

TDMA in the data center [70] and HULL [33]. The former uses the pause-frame

primitive to implement a TDMA packet schedule for low latency [70]. However, as

the authors acknowledge, it is unclear whether an effective centralized controller can

be built to handle arbitrary topologies and workloads. HULL [33] reduces latency at

the cost of total network throughput but does not attempt to improve overall flow

completion times.

While this thesis uses virtual lanes to enable or improve DFR, RC3 [71] introduces

another use for the virtual lanes provided by DCB. In RC3, virtual lanes are assigned

to different priorities and are used to safely start transmitting at line rate. While this

is also a property provided by TCP-Bolt, RC3 uses a different mechanism to avoid

congestion failure. Rather than relying on DCB to avoid dropping packets, RC3

follows normal TCP slow-start dynamics on the highest priority queues and achieves

line-rate transmissions by speculatively sending traffic on the lower priority queues.

In the case of congestion, the lower priority speculative traffic should be dropped

first, so TCP performance should never be any worse than without RC3. While it is

unclear exactly how RC3 performance compares with TCP-Bolt, RC3, unlike TCP-

Bolt, does not solve the incast problem and can drop packets after they have already

consumed otherwise usable bandwidth upstream in the network.
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6.2 Fault Tolerant Forwarding

While I have mainly discussed MPLS-FRR, FCP, and the work of Feigenbaum et

al. [30] that formalized resilience, there is other significant work on resilience. Due to

the extent of the approaches to resilience and forwarding table compression, I limit

my discussion to a few closely related projects.

XPath [53] introduces a new forwarding table compression algorithm so as to allow

for all desired paths to be preinstalled in a network. XPath’s algorithm operates

by first grouping paths into path sets, then it assigns labels to path sets so that,

considering all forwarding tables, entries that share outputs at switches have labels

that share prefixes so they can be compressed. Because MPLS-FRR and FCP have

assignable labels, XPath can compress them, subject to the previously discussed

lower bound. Because Plinko uses a path instead of a label, XPath is not applicable

to Plinko.

Next, I have yet to consider some related work on routing failures for a variety for

reasons. For example, ECMP, IP Fast Re-route [63], and Fat Tire [72] offer limited

resilience. Packet re-cycling [73] and Borokhovich et al. [74] use inefficient paths.

R-BGP [75] and F10 [60] rely on graph-specific properties. DDC [76] guarantees

connectivity but at least temporarily incurs significant stretch and can suffer from

forwarding loops, although an IP TTL may terminate the forwarding of a packet, and

KF [77] also allows loops.

Packet Re-cycling (PR) [73] introduces a new algorithm for pre-computing for-

warding tables that are fully resilient and only require and additional log2(|D|) bits

of data in a packet’s headers. However, PR cannot use arbitrary paths, and path

lengths in PR are typically far from minimal in the presence of failures, unlike the
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discussed forwarding models. This is because PR routes around failures in a manner

akin to solving a labyrinth by the right-hand rule.

DDC [76], or data-driven connectivity, provably provides ideal forwarding-

connectivity, which only guarantees that a packet will reach its destination as

long as the network remains physically connected. DDC achieves ideal forwarding-

connectivity by performing provably safe link-reversals in response to incorrect for-

warding. If the forwarding function initial forms a DAG, then reversing the direction

of all of a switch’s links in the forwarding function at once is guaranteed to produce

another DAG. DDC repeats link-reversal operations until the forwarding DAG con-

verges to a “destination-oriented” DAG, which, for n switches, is guaranteed to occur

after O(n2) reversal operations.

The key differences between DDC and the evaluated forwarding models are that

DDC can temporarily incur significant stretch, and, in DDC, packets on the side

of a partition that is not connected to the packet’s destination will persistently be

forwarded in loops until either the control plane detects the partition and deletes

routes, a TTL in the packet, if any, expires, or the packet is dropped due to congestion.

In contrast, the models evaluated in this thesis all guarantee that packets will be

dropped in the event of a partition.

Although these projects do not meet my goal of implementing efficient OpenFlow

fast failover, they can be complementary. For example, DDC [76], or data-driven

connectivity, is a complementary project. On one hand, DDC can temporarily incur

significant stretch, and, in the case of a partition, packets will be looped until a TTL

expires, so Plinko is preferable for routing failures it can prevent. On the other hand,

DDC will always converge to a route given the destination is not partitioned, so if

Plinko experiences a routing failure, it may be desirable to fall back on DDC for
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important traffic.

Keep Forwarding (KF) [77] also works towards building t-resilient forwarding ta-

bles. However, KF, also does not build routes that meet the definition of resilience

because it does not guarantee loop freedom, even when the destination is not discon-

nected from the source. Like DDC, KF relies of TTL fields, which is not suitable for

Ethernet and can lead to periods of congestion failure in IP networks.

Lastly, DF-EDST resilience can be thought of as a new variant of Up*/Down*

routing [21, 18] for well connected topologies. While Up*/Down* builds a single tree

and assigns directions to all links based on this tree, DF-EDST builds multiple trees

and assigns directions to links based on the tree they are a member of. If only a

single EDST exists, then Up*/Down* should perform better than DF-EDST because

Up*/Down* allows for all of the links in the network, even ones that are not a member

of an EDST. However, on highly connected data center topologies, Up*/Down* leads

to highly restricted routing when compared with DF-EDST.
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CHAPTER 7

Conclusions

Given both the size of today’s data center networks and the bursty traffic patterns of

many data center applications, at any point in time there is likely to be packet loss due

to some kind of network failure. In this thesis, I present new approaches to handling

common and disrupting network failures, improving the performance of the network.

Specifically, this thesis focuses on simultaneously addressing the two most common

kinds of failures in data center networks: congestion failures and routing failures.

To handle congestion failures, this thesis introduces TCP-Bolt, which utilizes DCB

to reduce flow completion times. To handle routing failures, this thesis introduces

Plinko, a new forwarding model for local fast failover that provides better performance

and requires less forwarding table state than EDST resilience. Unfortunately, enabling

DCB for TCP-Bolt makes a new kind of failure, deadlock, possible. To enable the use

of DCB with local fast failover, this thesis introduces the first ever approaches to local

fast failover that guarantee deadlock-free routing for arbitrary network topologies,

deadlock-free Plinko (DF-FI resilience) and DF-EDST resilience.

Specifically, TCP-Bolt combines DCB with data center congestion control with

bandwidth-delay product sized initial congestion windows to achieve shorter flow

completion times. Three aspects of TCP-Bolt are demonstrated in the course of

this thesis: I show the existence of fairness, head-of-line blocking, and bufferbloat
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problems with DCB on real network hardware. I show that, despite the associated

pitfalls, it is practical to enable DCB in a fully converged network because of TCP-

Bolt. Lastly, I show that doing so provides flow completion time benefits. Using

DCB and disabling TCP’s conservative initial congestion window on an uncongested

network can reduce flow completion times by 50 to 70%. Under a realistic workload,

TCP-Bolt reduces flow completion times by up to 90% compared to DCTCP for

medium flow sizes, while simultaneously matching the performance of DCTCP for

short, latency-sensitive flows.

To solve routing failures, this thesis explores the feasibility of implementing local

fast failover groups in hardware, even though prior work assumes that state explosion

would limit hardware resilience to all but the smallest networks or uninteresting lev-

els of resilience [25]. Specifically, this thesis presents a number of practical advances

that increase the applicability of hardware resilience. First, I have introduced a new

forwarding table compression algorithm. Because forwarding table compression is

limited by the number of unique (output, action) pairs in the table, I also introduced

two ways to lower this bound. In order to increase the number of common output

paths in a forwarding table, I introduce the concept of compression-aware routing,

and I find that it is highly effective when combined with my compression algorithm,

achieving compression ratios ranging from 2.22× to 19.77× given 4-resilient routes

on Jellyfish topologies. In order to reduce the number of unique actions, which lim-

its compression in both MPLS-FRR and FCP, I introduce Plinko, a new forwarding

model that applies the same action to every packet. Everything combined, I expect

that 4-resilient and 6-resilient Plinko will easily scale to networks with tens of thou-

sands of hosts. In contrast, I expect that fully optimized FCP, MPLS-FRR, and

ADST and EDST resilience could provide 4-resilience for topologies with 8192 hosts.
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However, solving congestion failures with TCP-Bolt is not orthogonal from local

fast failover, as DCB requires that all routes, including backup routes, must be dead-

lock free. Although it would be desirable to enable both TCP-Bolt and Plinko, doing

so could lead to deadlock, which can render the entire network unable to forward

traffic. Because of this, Plinko and the other deadlock-oblivious local fast failover

schemes considered in this thesis should only be used on networks whose operators

are unwilling to enable DCB. Instead, local fast failover should be provided by ei-

ther one of two deadlock-free approaches to local fast failover on arbitrary network

topologies introduced in this thesis because doing so allows local fast failover to be

combined with TCP-Bolt.

Specifically, this thesis introduces and evaluates two different approaches to im-

plementing both deadlock-free and fault-tolerant forwarding for arbitrary data cen-

ter networks, DF-FI resilience and DF-EDST resilience. First, I find that DF-FI

resilience, which includes deadlock-free Plinko, is more desirable than DF-EDST re-

silience because of higher aggregate forwarding throughput and lower forwarding table

state requirements. However, DF-FI resilience is not applicable to all networks. DF-

FI resilience requires more virtual channels than are currently available in DCB to

implement resilient forwarding on data center topologies with more than 2K hosts.

Until further advances are made on the topic of guaranteeing that some configura-

tions of backup routes are never possible and thus could never form deadlocks, DF-FI

resilience is not a scalable solution.

However, this result also further motivates DF-EDST resilience, which this the-

sis proves is deadlock-free. With DF-EDST resilience, fault tolerant forwarding can

be provided on any arbitrary well-connected data center topology without impacting

throughput beyond that of using EDSTs to provide deadlock-free routing. In effect,
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the only extra cost of fault tolerance is additional forwarding table state. Moreover,

if even three of the total EDSTs in the topology, of which there are often 10–20, are

reserved for fault tolerance and guaranteed resilience (3-resilience), then the proba-

bility of routing failure can be reduced by 3–4 orders of magnitude with only a small

impact on forwarding throughput. Although DF-FI is more desirable, these results

on DF-EDST resilience imply that high performance, fault tolerant, deadlock-free

routing is still possible on networks larger than the networks DF-FI resilience can be

implemented on.

In summary, with the addition of both new ways of using existing hardware mech-

anisms and the proposal of new hardware mechanisms, I show that the ways in which

data center networks handle failures can be made significantly more effective while

still operating fast enough and efficiently enough so as to avoid impacting perfor-

mance. Ultimately, this means that it is possible to significantly improve both flow

completion times and fault tolerance.

7.1 Future Work

I see three main avenues for future work to improve upon the research in this thesis.

The first is to reduce the state requirements of FCP. The second is to increase the

scalability of DF-FI resilience. The third is to increase the path diversity of DF-EDST

resilience.

Unlike Plinko, the compressibility of FCP routes is limited by the number of

unique output actions in the forwarding table. However, it may be possible to reduce

this limit by modifying the FCP routing algorithm. If packets are tagged with an ID

that represents a superset of the failures that a packet has encountered, then more

forwarding table entries could share a common action, improving compressibility.
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However, it is unclear that such a forwarding function would be more compressible

than Plinko routes.

The primary factor that limits the scalability of DF-FI resilience is the number

of virtual channels that it requires. There are two ways in which the scalability of

DF-FI resilience could be improved. The first way is to design a new switch that

supports more virtual channels. The second approach is to reduce the number of

virtual channels required by DF-FI resilience. This could be done by improving the

virtual channel assignment algorithm. However, some configurations of backup routes

are never possible and thus could never form deadlocks. If this could be used to allow

for cycles in the channel dependency graph, then the virtual channel requirements of

DF-FI resilience could also be reduced.

Lastly, it may be possible to increase the path diversity of the routes in DF-EDST

resilience. Routing on edge disjoint spanning trees is sufficient but not necessary to

provide deadlock-free routing. On some topologies, such as oversubscribed topologies,

it may be possible that edges can be allowed to be shared between some trees so as to

increase the total number of trees. While this would not increase resilience, it could

increase average fault tolerance and path diversity. However, this approach is only

possible if it can be proven that the resulting forwarding function still leads to a total

ordering of channel requests.
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