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Abstract markedly depending on which pair of languages is
_ . _ selected, and without labeled data it is unclear how
We investigate the problem of unsupervised g determine which supplementary language is most
part-of-speech tagging when raw parallel data  p o156, |n this paper, we show that it is possi-
is available in a large number of languages. C .
ble to leverage all aligned languages simultaneously,

Patterns of ambiguity vary greatly across lan- o )
guages and therefore even unannotated multi- achieving accuracy that in most cases outperforms

lingual data can serve as a learning signal. We ~ €ven optimally chosen bilingual pairings.
propose a non-parametric Bayesian model that Even in expressing the same meaning, languages
connects related tagging decisions across lan-  take different syntactic routes, leading to variation
guages through the use of multilingual latent -, 4t of-speech sequences. Therefore, an effec-
variables. Our experiments show that perfor- o 1 itilingual model must accurately model com-
mance improves steadily as the number of lan- . N . .
guages increases. mon linguistic structure, yet remain flexible to the
idiosyncrasies of each language. This tension only
. becomes stronger as additional languages are added
1 Introduction to the mix. From a computational standpoint, the
In this paper we investigate the problem of unsuMain challenge is to ensure that the model scales
pervised part-of-speech tagging when unannotatdf!l as the number of languages increases. Care
parallel data is available in a large number of lanMust be taken to avoid an exponential increase in
guages. Our goal is to develop a fully joint multilin-the parameter space as well as the time complexity
gual model that scales well and shows improved peff inference procedure.
formance for individual languages as the tatam- ~ We propose a non-parametric Bayesian model for
ber of languages increases. joint multilingual tagging. The topology of our
Languages exhibit ambiguity at multiple levels/model connects tagging decisions within a language
making unsupervised induction of their underlyinggs well as across languages. The model scales lin-
structure a difficult task. However, sources of lin€arly with the number of languages, allowing us to
guistic ambiguity vary across languages. For exanfAcorporate as many as are available. For each lan-
ple, the wordfishin English can be used as either guage, the model contains an HMM-like substruc-
verb or a noun. In French, however, the nquois- ture and connects these substructures to one another
son (fish) is entirely distinct from the verbal form by means of cross-lingual latent variables. These
pécher (to fish). Previous work has leveraged thig/ariables, which we refer to asuperlingual tags
idea by building models for unsupervised learningapture repeated multilingual patterns and thus re-
from aligned bilingual data (Snyder et al., 2008)duce the overall uncertainty in tagging decisions.
However, aligned data is often available foany We evaluate our model on a parallel corpus of
languages. The benefits of bilingual learning vargight languages. The model is trained once using all



languages, and its performance is tested separatelyages.

for each on a held-out monolingual test set. When a . . .

complete tag lexicon is provided, our unsupervise eyo_r_1d Bilingual _Learnlng Wh|Ie_most work on
model achieves an average accuracy of 95%, in CorW_ultlllngual learning focuses on bilingual analyss,
parison to 91% for an unsupervised monolinguasl\’Ome models operate on more than one pair of lan-

Bayesian HMM and 97.4% for its supervised coundyages. For instance, Genzel (2005) describes a

terpart. Thus, on average, the gap between unsrLTJ]-ethOd for inducing a multlllngugl lexicon _frorr_1
group of related languages. His model first in-

pervised and supervised monolingual performan o _
uces bilingual models for each pair of languages

is cut by nearly two thirds. We also examined sce- dth bines th 0 K tak giff i
narios where the tag lexicon is reduced in size. INC then combines them. Durwork takes a ditieren

all cases, the multilingual model yielded substantiiat‘i'p':)ro"’mh by smultaneou_sly Iea_r_mng from all lan-
performance gains. Finally, we examined the pelguages, rather than combining t?"'“gua_' results.
formance of our model when trained on all possibleh'_A‘ relatedl thread oLresgarch 'S mu!tl-s_ource ma(;
subsets of the eight languages. We found that perfo‘?- ine translation (Och and Ney, 2001; Utiyama an

mance improves steadily as the number of availab'éah"?‘ra’ 2006; Cohn and I_.apata, 2007) where the
languages increases. goal is to translate from multiple source languages to

a single target language. Rather than jointly training
all the languages together, these models train bilin-
gual models separately, and then use their output to

Bilingual Part-of-Speech Tagging Early work on select a final translation. The selection criterion can

multilingual tagging focused on projecting annotale€ learned at training time since these models have

tions from an annotated source language to a targ&cess to the correct translation. In unsqpervised set-
language (Yarowsky and Ngai, 2001; Feldman et altings, however, we do not have a principled means
2006). In contrast, we assume no labeled data " selecting among outputs of different bilingual
all: our unsupervised model instead symmetricallj’odels. By developing a joint multilingual model
improves performance for all languages by learniny® ¢&n automatically achieve performance that ri-
cross-lingual patterns in raw parallel data. An addiVals that of the best bilingual pairings.
tional distinction is that projection-based work uti-
: . . M odel
lizes pairs of languages, while our approach allows
for continuous improvement as languages are add§de propose a non-parametric directed Bayesian
to the mix. graphical model for multilingual part-of-speech tag-
In recent work, Snyder et al. (2008) presenteding using a parallel corpus. We perform a joint
a model for unsupervised part-of-speech taggingaining pass over the corpus, and then apply the
trained from a bilingual parallel corpus. This bilin-parameters learned for each language to a held-out
gual model and the model presented here sharen@gnolingual test set.
number of similarities: both are Bayesian graphi- The core idea of our model is that patterns of
cal models building upon hidden Markov modelsambiguity vary across languages and therefore even
However, the bilingual model explicitly joins eachunannotated multilingual data can serve as a learn-
aligned word-pair into a single coupled state. Thusng signal. Our model is able to simultaneously har-
the state-space of these joined nodes grows exponearess this signal fronall languages present in the
tially in the number of languages. In addition, crosseorpus. This goal is achieved by designing a sin-
ing alignments must be removed so that the resultfe graphical model that connects tagging decisions
ing graph structure remains acyclic. In contrast, ouwithin a language as well as across languages.
multilingual model posits latent cross-lingual tags The model contains language-specific HMM sub-
without explicitly joining or directly connecting the structures connected to one another by cross-lingual
part-of-speech tags across languages. Besides patent variables spanning two or more languages.
mitting crossing alignments, this structure allows th&hese variables, which we refer to sigperlingual
model to scale gracefully with the number of lantags capture repeated cross-lingual patterns and

2 Reated Work
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Figure 1: Model structure for parallel sentences in Engksknch, Hebrew, and Urdu. In this example, there are three
superlingual tags, each connected to the part-of-spegaf taword in each of the four languages.

thus reduce the overall uncertainty in tagging deci- Our model design has several benefits. Crossing
sions. To encourage the discovery of a compact sahd many-to-many alignments may be used with-
of such cross-lingual patterns, we place a Dirichledut creating cycles in the graph, as all cross-lingual

process prior on the superlingual tag values. information emanates from the hidden superlingual
tags. Furthermore, the model scales gracefully with
3.1 Mode Structure the number of languages, as the number of new

For each language, our model includes an HMMmedges and nodes will be proportional to the number

like substructure with observed word nodes, hid®f words for each additional language.
den part-of-speech nodes, and directed transition
and emission edges. For each set of aligned worél”s2 Superlingual Tags

in parallel sentences, we add a latent superlinguglach superlingual tag value specifies a set of dis-
variable to capture the cross-lingual context. A setibutions — one for each language’s part-of-speech
of directed edges connect this variable to the partagset. In order to learn repeated cross-lingual pat-
of-speech nodes of the aligned words. Our modegrns, we need to constrain the number of superlin-
assumes that the superlingual tags for parallel segual tag values and thus the number of distributions
tences are unordered and are drawn independenthey provide. For example, we might allow the su-
of one another. perlingual tags to take on integer values franto

Edges radiate outward from superlingual tags td’, with each integer value indexing a separate set
language-specific part-of-speech nodes. Thus, oafdistributions. Each set of distributions should cor-
model implicitly assumes that superlingual tags areespond to a discovered cross-lingual pattern in the
drawn prior to the part-of-speech tags of all landata. For example, one set of distributions might fa-
guages and probabilistically influence their selecvor nouns in each language and another might favor
tion. See Figure 1 for an example structure. verbs.

The particular model structure for each set of par- Rather than fixing the number of superlingual
allel sentences (i.e. the configuration of superlinguag values to an arbitrary and predetermined size
tags and their edges) is determined by bilingual lexit, . . ., K, we allow them to range over the entire set
cal alignments and — like the text itself — is consid-of integers. In order to encourage the desired multi-
ered an observed variable. In practice, these lexiclhgual clustering behavior, we use a Dirichlet pro-
alignments are obtained using standard techniquesss prior for the superlingual tags. This prior allows
from machine translation. high posterior probability only when a small number



of values are used repeatedly. The actual number dhat is, any expert can “veto” a potential tag by as-
sampled values will be dictated by the data and th&igning it low probability, generally leading to con-
number of languages. sensus decisions.

More formally, suppose we haver lan- We now formalize this description by giving the
guages, ¢1,...,¢,. According to our genera- stochastic process by which the observed data (raw
tive model, a countably infinite sequence of setparallel text) is generated, according to our model.
(W Wby (WL whn), L is drawn from
some base distribution. Eachf is a distribution
over the parts-of-speech in language For n languages, we assume the existencenof

In parallel, an infinite sequence of mixing compotagsetsI™, ..., T™ and vocabulariesy!,..., W™,
nentsry, o, . . . is drawn from a stick-breaking pro- one for each language. For clarity, the generative
cess (Sethuraman, 1994). These components defpr@cess is described using only bigram transition
a distribution over the integers with most probabildependencies, but our experiments use a trigram

3.4 Generative Process

ity mass placed on some initial set of values. Th&odel.

two sequences(wi',...,wi"), (wWhl, .. wy") .. g
andm, m ... now define the distribution over su-
perlingual tags and their associated distributions on
parts-of-speech. That is, each superlingualtag

N is drawn with probabilityr,, and indexes the set

of distributions(w’!, ..., wi).

3.3 Part-of-Speech Tags 2

Finally, we need to define the generative probabili-
ties of the part-of-speech nodes. For each such node
there may be multiple incoming edges. There will
always be an incoming transition edge from the pre-
vious tag (in the same language). In addition, there
may be incoming edges from zero or more superlin-
gual tags. Each edge carries with it a distribution
over parts-of-speech and these distributions must be
combined into the single distribution from which the
tag is ultimately drawn.

We choose to combine these distributions as a
product of experts. More formally: for language
and tag position, the part-of-speech tag is drawn
according to

, by, (i) 11, Wﬁ(yz)
Yi ~ 7
Where ¢,, , indicates the transition distribution,
and thez’s range over the values of the incoming
superlingual tags. The normalization teféfnis ob-
tained by summing the numerator over all part-of-
speech tagsg; in the tagset.

This parameterization allows for a relatively sim-
ple and small parameter space. It also leads to a
desirable property: for a tag to have high probabil-
ity eachof the incoming distributions must allow it.

(1)

. Transition and Emission Parameters: For

each languagé and for each tag € T, draw
a transition distribution ¢¢ over tags7, and
anemissiordistributiond! over wordsiv*, all
from symmetric Dirichlet priors of appropriate
dimension.

. Superlingual Tag Parameters:
Draw an infinite sequence of sets
(wfﬂ...,w{"),(wéﬂ...,wgn),... from

base distributiorGy. Eachw! is a distribution
over the tagseT™. The base distributiot, is
a product ofn symmetric Dirichlets, where the
dimension of the*” such Dirichlet is the size
of the corresponding tagsét:.

At the same time, draw an infinite sequence
of mixture weightst ~ GEM («), where
GEM («) indicates the stick-breaking distribu-
tion (Sethuraman, 1994), and = 1. These
parameters together define a prior distribution
over superlingual tags,

p(z) =) Thdk=z, 2

k
or equivalently over the part-of-speech distri-
butions(w’, ..., w) that they index:

D
ZWké(wél,...,wﬁ"):(wzl,...,wzn>' (3)

k

In both casesy,—,s is defined as one when
v = o' and zero otherwise. Distribution 3 is
said to be drawn from a Dirichlet process, con-
ventionally written adD P(«, Gy).



3. Data: For each multilingual parallel sentence, which we wish to marginalize but for which we can-
. . not compute closed-form integrals, where each sam-
(@) D_raw an a!lgnmena specifying sets of e sampley is drawn fromP(sampley|x,a). We
aligned indices across languages. Eacihen approximate the tag marginals as:
such set may consist of indices in any sub-

set of the languages. We leave the distri-P(y! = t|x, a)

bution over alignments undefined, as we

consider alignments observed variables.
(b) For each set of indices iy draw a super-

lingual tag valuez according to Distribu-

tion 2.

- Dok P(yf = t’J\sfamplek, X, a) @)
We employ closed forms for integrating out the
emission parametefs transition parameteks, and
superlingual tag parameters and w. We explic-
itly sample only part-of-speech tags superlingual
_ tagsz, and the hyperparameters of the transition and
(c) For each language fori = 1,... (until  gmission Dirichlet priors. To do so, we apply stan-
end-tag reached): dard Markov chain sampling techniques: a Gibbs
i. Draw a part-of-speech tag € T ac-  sampler for the tags and a within-Gibbs Metropolis-

cording to Distribution 1 Hastings subroutine for the hyperparameters (Hast-
i. Draw a wordw; € W* according to ings, 1970).
the emission distributiof,,. Our Gibbs sampler samples each part-of-speech

nd superlingual tag separately, conditioned on the
urrent value of all other tags. In each case, we use
Standard closed forms to integrate over all parameter
values, using currently sampled counts and hyperpa-
3.5 Inference rameter pseudo-counts. We note that conjugacy is
technically broken by our use of a product form in
tags which have highestarginal probability given istribution 1. Nevertheless, we consider the sam-
. pled tags to have been generated separately by each
the observed words and alignmentsa. More . .
o . . of the factors involved in the numerator. Thus our
specifically, since we are evaluating our accuracy per .
" : ; method of using count-based closed forms should be
tag-position, we would like to predict, for language . o
. . . h viewed as an approximation.
index ¢ and word index, the single part-of-speech

To perform Bayesian inference under this modez
we use a combination of sampling techniques, whic
we describe in detail in the next section.

Ideally we would like to predict the part-of-speec

tag: , 3.6 Sampling Part-of-Speech Tags
argm?xP (v =tlx,a) To sample the part-of-speech tag for languégst

_ e _ positioni we draw from
which we can rewrite as thegmax; . of the inte- ,
gral, Py;ily— (e %,a,2)

P(nyrl'yzéa Y—(,i), A, Z) P(yﬂy—(/,?)v a, Z)-
£ __

/ |:P (y7 - t’y—(f,i% ¢7 07 Z,w,X, a) . P(fEﬂXéZ, yé) ’

P (Y—(Z,i)a ¢a 07 z,T,Ww,

xa)} dy_ (1. dp 46 dz dr deo, v.v'h.ere thg first two terms are the generatiye proba-
bilities of (i) the current tag given the previous tag

in which we marginalize over the settings of all@"d superlingual tags, ard) the next tag given the

tags other thany! (written as Y (), the tran- current tag and superlingual tags. These two quan-

sition distributions¢ — {¢z} erﬁission distri- tities are similar to Distribution 1, except here we
- t/ ’ . g

butions § — {95}1 superlingual tag, and su- integrate over the transition parametgy , and the

perlingual tag parameters — {1, m,...} and superlingual tag parametezs. We end up with a
w — {< e w£"> ( a wf”> } (where?’ product of integrals. Each integral can be computed
= e wi™), (wey e we)

ranges over all part-of-speech tags) in closed form using multinomial-Dirichlet conju-
As these integrals are intractable to compute e@acy (and by making the above-mentioned simpli-

actly, we resort to the standard Monte Carlo approxying assumption that all other tags were gener-
imation. We collectV samples of the variables overated separately by their transition and superlingual



parameters), just as in the monolingual Bayesiaassume an improper uniform prior and use a Gaus-
HMM of (Goldwater and Griffiths, 2007). sian proposal distribution with mean set to the pre-

For example, the closed form for integrating ovewrious value, and variance to one-tenth of the mean.
the parameter of a superlingual tag with values

given by: 4 Experimental Setup
count(z,y;, £) + wo i i
/wﬁ(yi)P(wao)dwﬁ _ (2, 4i, 0) : We test our model in an unsupervised framework
count(z,£) + T*wo where only raw parallel text is available for each

of the languages. In addition, we assume that for

each language a tag dictionary is available that cov-

ers some subset of words in the text. The task is to

learn an independent tagger for each language that
can annotate non-parallel raw text using the learned
parameters. All reported results are on non-parallel

monolingual test data.

Data For our experiments we use the Multext-

wherecount(z, y;, £) is the number of times that tag
y; IS observed together with superlingual tagn
language’, count(z, ¢) is the total number of times
that superlingual tag appears with an edge into lan-
guagel, andwy is a hyperparameter.

The third term in the sampling formula is the
emission probability of the current word given

ysed before for multilingual learning (Feldman et
al., 2006; Snyder et al., 2008). The tagged portion of
the corpus includes a 100,000 word English text, Or-
3.7 Sampling Superlingual Tags well's novel “Nineteen Eighty Four”, and its trans-
For each set of aligned words in the observed aligration into seven languages: Bulgarian, Czech, Es-
menta we need to sample a superlingual tag tonian, Hungarian, Romanian, Slovene and Serbian.
Recall thatz is an index into an infinite sequenceThe corpus also includes a tag lexicon for each of
(Wi, Wiy (Wl Wi L., where eachul is  these languages. We use the first 3/4 of the text for
a distribution over the tagsét’. The generative dis- learning and the last 1/4 as held-out non-parallel test
tribution overz is given by equation 2. In our sam- data.

pling scheme, however, we integrate over all possi- 1pq ¢orous provides sentence level alignments.

ble settings of the mixing componentsusing the obtain word level alianment o UBIZA++
standard Chinese Restaurant Process (CRP) clos% In word lev '9 S, Wer

the sake of clarity. This quantity can be compute
exactly in closed form in a similar way.

form (Antoniak, 1974): (Och and Ney, 2003) on all 28 pairings of the 8 lan-
guages. Since we want each latent superlingual vari-
P(z|z—i,y) able to span as many languages as possible, we ag-

1 . gregate the pairwise lexical alignments into larger
‘ ——count(z;) if z; €z_; i )
HP(yZ- Z,Y (1)) {’“ﬂ;a otherwise sets of aligned words. These sets of aligned words
¢ ko are generated as a preprocessing step. During sam-
The first term is the product of closed form tag probpling they remain fixed and are treated as observed
abilities of the aligned words, given The finalterm data.
is the standard CRP closed form for posterior sam- We use the set of 14 basic part-of-speech tags pro-
pling from a Dirichlet process prior. In this term,vided by the corpus. In our first experiment, we
k is the total number of sampled superlingual taggssume that a complete tag lexicon is available, so
count(z;) is the total number of times the valug that for each word, its set of possible parts-of-speech
occurs in the sampled tags, andis the Dirichlet is known ahead of time. In this setting, the aver-
process concentration parameter (see Step 2 in Sege number of possible tags per token is 1.39. We
tion 3.4). also experimented with incomplete tag dictionaries,
Finally, we perform standard hyperparameter reshere entries are only available for words appearing
estimation for the parameters of the Dirichlet distrismore than five or ten times in the corpus. For other
bution priors ond and ¢ (the transition and emis- words, the entire tagset of 14 tags is considered. In
sion distributions) using Metropolis-Hastings. Wethese two scenarios, the average per-token tag ambi-




Lexicon: Full Lexicon: Frequency- 5 Lexicon: Frequency- 10
MONO Bl MULT!I || MONO Bl MULT!I || MONO Bl MULTI
AVG | BEST AVG | BEST AVG | BEST

BG 88.8 | 91.3| 94.7 92.6 735 | 80.2| 827 81.3 719 | 77.8| 80.2 78.8
(of] 93.7 | 97.0| 97.7 | 98.2 722 | 79.0| 79.7 | 83.0 66.7 | 75.3| 76.7 | 794
EN 95.8 | 95.9| 9%6.1 95.0 87.3 | 90.4| 90.7 88.1 84.4 | 88.8| 894 | 86.1
ET 925 | 93.4| 943 | 946 725 | 76.5| 775 | 806 68.3 | 729| 749 | 779
HU 95.3 | 96.8| 96.9 96.7 735 | 77.3| 78.0 | 808 69.0 | 73.8| 75.2 | 76.4
RO 90.1 | 91.8| 94.0 | 951 77.1 | 827 | 844 | 86.1 73.0 | 80.5| 821 | 831
SL 87.4 | 89.3| 948 | 958 75.7 | 78.7| 80.9 | 836 704 | 76.1| 77.6 | 80.0
SR 845 | 90.2| 945 92.3 66.3 | 759 | 794 | 78.8 63.7 | 72.4| 76.1 75.9

Avg. 91.0 | 93.2| 954 95.0 747 | 80.1| 81.7 | 828 709 | 77.2| 79.0 | 79.7

Table 1: Tagging accuracy for Bulgarian, Czech, Englistipiian, Hungarian, Romanian, Slovene, and Serbian. In
the first scenario, a complete tag lexicon is available fbthe words. In the other two scenarios the tag lexicon
only includes words that appear more than five or ten timesuReare given for a monolingual Bayesian HMM

(Goldwater and Griffiths, 2007), a bilingual model (Snydeale, 2008), and the multilingual model presented here.
In the case of the bilingual model, we present both the aeeaaguracy over all pairings as well as the result from the
best performing pairing for each language. The best refrltsach language in each scenario are given in boldface.

guity is 4.65 and 5.58, respectively. model (Snyder et al., 2008). Itis a directed graphical
model that jointly tags two parallel streams of text

Training and testing In the full lexicon ex- _
periment, each word is initialized with a random?/igned at the word level. The structure of the model

part-of-speech tag from its dictionary entry. In thefOnSists of two parallel HMMs, one for each lan-
two reduced lexicon experiments, we initialize thé€}uage. The aligned words form joint nodes that are
tags with the result of our monolingual baseline (seghared by both HMMs. These joint nodes are sam-
below) to reduce sampling time. In both cased?!€d from a probability distribution that is a prod-
we begin with 14 superlingual tag values — corret/Ct of the transition and emission d|§trllgut|ons inthe
sponding to the parts-of-speech — and initially astWO languages and a coupling distribution.

sign them based on the most common initial part-of- We note that the numbers reported here for
speech of words in each alignment. the bilingual model differ slightly from those re-

. . . __ported by Snyder et al. (2008) for two reasons: we
We run our Gibbs sampler for 1,000 |terat|onsuSe a slightly larger set of sentences, and an im-

i‘gg s_ttoret_the cor\;\(jltl?r?al tag prot_)abllltles for_thel Ifsé:oved sampling scheme. The new sampling scheme
lerations. e then approximale marginal ta arginalizes over the transition and coupling param-

probabilit.ies on the training da_tg using Equation %ters by using the same count-based approximation
and predict the highest probability tags. Finally, W&hat we utilize for our multilingual model. This leads

compute maximum likelihood transition and EMiS14 higher performance, and thus a stronger baséline.

sion probabilities using these tag counts, and then
apply smoothed viterbi decoding to each held-oué
monolingual test set. All reported results are aver-
aged over five runs of the sampler. Table 1 shows the tagging accuracy of our multilin-

Monolingual and bilingual baselines  We gual model on the test data, when training is per-
reimplemented the Bayesian HMM model of Golgformed on all eight languages together. Results from
water and Griffiths (2007) (BHMM1) as our mono-Poth baselines are also reported. In the case of the
lingual baseline. It has a standard HMM structurdilingual baseline, seven pairings are possible for
with conjugate Bayesian priors over transitions an8ach language, and the results vary by pair. There-

emissions. \We note that our model, in the absen tAnother difference is that we use the English lexicon pro-

of any superlingl_@l tags, reQuceS to this Efa_-yesia\fi'ded with the Multext-East corpus, whereas (Snyder et al.,
HMM. As an additional baseline we use a bilinguab008) augment this lexicon with tags found in WSJ.

Results
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fore, for each language, we present the average acc —o—Monolingual  —mBilingual Multiingual  —@—Supervised
racy over all seven pairings, as well as the accurac|
of its highest performing pairing. 97
We provide results for three scenarios. In the firs| s
case, a tag dictionary is provided for all words, lim-| s —t—
iting them to a restricted set of possible tags. In th| o
other two scenarios, dictionary entries are limited t( o / S —— e —
words that appear more than five or ten times in th| »,
corpus. All other words can be assigned any ta¢ o H/ N
increasing the overall difficulty of the task. In the| ‘ ‘ ‘ ‘ ‘ ‘
full lexicon scenario, our model achieves an averag ! 2 3 4 5 6 7 8
tagging accuracy of 95%, compared to 91% for the

mono.llngual baseline and 93.2% fo_r_the b”m_gual:igure 2: Performance of the multilingual model as the

baseline when averaged over all pairings. This aG,mper of languages varies. Performance of the mono-
curacy (95%) comes close to the performance of thggual and average bilingual baselines as well as a su-
bilingual model when the best pairing for each lanpervised monolingual performance are given for compar-
guage is chosen by an oracle (95.4%). This demoison.

strates that our multilingual model is able to effec-

tively learn from all languages. In the two reduceqeases, Interestingly, it even outperforms the bilin-
lexicon scenarios, the gains are even more strikingum baseline (by a small margin) when only two lan-
In both cases the average multilingual performanc&uages are available, which may be attributable to
outpaces even thgestperforming pairs. _the more flexible non-parametric dependencies em-
Looking at individual languages, we see that iyoyed here. Finally, notice that the gap between
all three scenarios, Czech, Estonian, Romanian, aﬂﬁ’onolingual supervised and unsupervised perfor-

Slovene show their best performance with the muly,ance is cut by nearly two thirds under the unsu-
tilingual model. Bulgarian and Serbian, on thepervised multilingual model.

other hand, give somewhat better performance with
their optimal pairings under the bilingual model, buts  Conclusion
their multilingual performance remains higher than
their average bilingual results. The performance dft this paper we've demonstrated that the benefits of
English under the multilingual model is somewhatinsupervised multilingual learning increase steadily
lower, especially in the full lexicon scenario, wherg/ith the number of available languages. Our model
it drops below monolingual performance. One posscales gracefully as languages are added and effec-
sible explanation for this decrease lies in the fact thlvely incorporates information from them all, lead-
English, by far, has the lowest trigram tag entropy oing to substantial performance gains. In one experi-
all eight languages (Snyder et al., 2008). It is poshent, we cut the gap between unsupervised and su-
sible, therefore, that the signal it should be gettingervised performance by nearly two thirds. A fu-
from its own transitions is being drowned out by les§ure challenge lies in incorporating constraints from
reliable information from other languages. additional languages even when parallel text is un-
In order to test the performance of our model agvailable.
the number of languages increases, we ran the f
lexicon experiment with all possible subsets of th
eight languages. Figure 2 plots the average accuratife authors acknowledge the support of the National Sci-
as the number of languages varies. For comparisoshce Foundation (CAREER grant 11S-0448168 and grant 11S-
the monolingual and average bilingual baseline re&3835445). Thanks to Tommi Jaakkola and members of the
sults are given, along with supervised monolinguayiT NLP group for helpful discussions. Any opinions, find-
performance. Our multilingual model steadily gainsngs, or recommendations expressed above are those of the au-
in accuracy as the number of available languages imors and do not necessarily reflect the views of the NSF.
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