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Abstract

We demonstrate the effectiveness of multilingual learfiarginsupervised part-of-speech tag-
ging. The central assumption of our work is that by combirgéngs from multiple languages, the
structure of each becomes more apparent. We consider twe efapplying this intuition to the
problem of unsupervised part-of-speech tagging: a modeldhectly merges tag structures for
a pair of languages into a single sequence and a second mabd# imstead incorporates mul-
tilingual context using latent variables. Both approaclmesformulated as hierarchical Bayesian
models, using Markov Chain Monte Carlo sampling technidaesference. Our results demon-
strate that by incorporating multilingual evidence we cahieve impressive performance gains
across a range of scenarios. We also found that performamu®ves steadily as the number of
available languages increases.

1. Introduction

In this paper, we explore the application of multilingual learning to part-eesh tagging when no
annotation is available. The fundamental idea upon which our work is hiedeat the patterns of
ambiguity inherent in part-of-speech tag assignments differ acrossdgaguAt the lexical level, a
word with part-of-speech tag ambiguity in one language may correspondunamnbiguous word
in the other language. For example, the word “can” in English may functi@masuxiliary verb,
a noun, or a regular verb. However, many other languages are likelypress these different
senses with three distinct lexemes. Languages also differ in their patfestrsciural ambiguity.
For example, the presence of an article in English greatly reduces the atybigine succeeding
tag. In languages without articles, however, this constraint is obviolslgrd. The key idea of
multilingual learning is that by combining natural cues from multiple languagessttiucture of
each becomes more apparent.

Even in expressing the same meaning, languages take different syntadts,rleading to
cross-lingual variation in part-of-speech patterns. Thereforeffactiee multilingual model must
accurately represent common linguistic structure, yet remain flexible to theyiicasies of each
language. This tension only becomes stronger as additional languagadded to the mix. Thus,
a key challenge of multilingual learning is to capture cross-lingual correlatichile preserving
individual language tagsets, tag selections, and tag orderings.

In this paper, we explore two different approaches for modeling diogaal correlations. The
first approach directly merges pairs of tag sequences into a single bilisggaence, employing
joint distributions over aligned tag-pairs; for unaligned tags, langupgeHsc distributions are still
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used. The second approach models multilingual context using latent leariabtead of explicit
node merging. For a group of aligned words, the multilingual context isomudated in the value of
a corresponding latent variable. Conditioned on the latent variable, thm¢adecisions for each
language remain independent. In contrast to the first model, the architeétilme hidden variable
model allows it to scale gracefully as the number of languages increases.

Both approaches are formulated as hierarchical Bayesian models withdanlying trigram
HMM substructure for each language. The first model operates as desttinpcted graphical
model with only one additionalouplingparameter beyond the transition and emission parameters
used in monolingual HMMs. The latent variable model, on the other handrsufated as a
non-parametric model; it can be viewed as performing multilingual clusteringligned sets of
tag variables. Each latent variable value indexes a separate distributtagofor each language,
appropriate to the given context. For both models, we perform infergsing Markov Chain Monte
Carlo sampling techniques.

We evaluate our models on a parallel corpus of eight languages: Bulg&uech, English,
Estonian, Hungarian, Romanian, Serbian, and Slovene. We consigega of scenarios that vary
from combinations of bilingual models to a single model that is jointly trained oniglfit éan-
guages. Our results show consistent and robust improvements overdingaal baseline for
almost all combinations of languages. When a complete tag lexicon is availabieealatent vari-
able model is trained using eight languages, average performancasesritom 91.1% accuracy
to 95%, more than halving the gap between unsupervised and supergréaaance. In more re-
alistic cases, where the lexicon is restricted to only frequently occurrimgsyave see even larger
gaps between monolingual and multilingual performance. In one suchrszeaverage multilin-
gual performance increases to 82.8% from a monolingual baseline ¢f%74-8r some language
pairs, the improvement is especially noteworthy; for instance, in complet®tesaenario, Serbian
improves from 84.5% to 94.5% when paired with English.

We find that in most scenarios the latent variable model achieves highHerrpance than the
merged structure model, even when it too is restricted to pairs of languligesover the hidden
variable model can effectively accommodate large numbers of langudgek makes it a more
desirable framework for multilingual learning. However, we observetti@tatent variable model
is somewhat sensitive to lexicon coverage. The performance of the dnglrgeture model, on the
other hand, is more robust in this respect. In the case of the drasticallgagdexicon (with 100
words only), its performance is clearly better than the hidden variable mokislindicates that the
merged structure model might be a better choice for the languages thatdexnlessources.

A surprising discovery of our experiments is the marked variation in the thieiprovement
across language pairs. If the best pairing for each language isrchpsa oracle, average bilingual
performance reaches 95.4%, compared to average performancelé6 @8ross all pairs. Our
experiments demonstrate that this variability is influenced by cross-linguallietwveen languages
as well as by the model under consideration. We identify several fatttatscontribute to the
success of language pairings, but none of them can uniquely prduh supplementary language
is most helpful. These results suggest that when multi-parallel corperavailable, a model that
simultaneously exploits all the languages — such as the latent variable mogekpd here — is
preferable to a strategy that selects one of the bilingual models. We foahddatformance tends
to improves steadily as the number of available languages increases.

In realistic scenarios, tagging resources for some number of langueyeaiready be available.
Our models can easily exploit any amount of tagged data in any subsetitdbd® languages.
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As our experiments show, as annotation is added, performance ircmagefor those languages
lacking resources.

The remainder of the paper is structured as follows. Section 2 comparegpproach with
previous work on multilingual learning and unsupervised part-of-gptgging. Section 3 presents
two approaches for modeling multilingual tag sequences, along with theiemdferprocedures and
implementation details. Section 4 describes corpora used in the experimempisoassing steps
and various evaluation scenarios. The results of the experiments andulgisis are given in
Sections 5, and 6. We summarize our contributions and consider directioffistdire work in
Section 7.

2. Related Work

We identify two broad areas of related work: multilingual learning and indupart-of-speech tags
without labeled data. Our discussion of multilingual learning focuses ompamgised approaches
that incorporate two or more languages. We then describe related wanksopervised and semi-
supervised models for part-of-speech tagging.

2.1 Multilingual Learning

The potential of multilingual data as a rich source of linguistic knowledge déas kecognized since
the early days of empirical natural language processing. Becausmpait@ambiguity vary greatly
across languages, unannotated multilingual data can serve as a leggnalgrsan unsupervised
setting. We are especially interested in methods to leverage more than twodasgaiatly, and
compare our approach with relevant prior work.

Multilingual learning may also be applied in a semi-supervised setting, typicallydjgqiing
annotations across a parallel corpus to another language whereesachices do not exist (e.g.,
Yarowsky, Ngai, & Wicentowski, 2000; Diab & Resnik, 2002; Ba& Lapata, 2006; Xi & Hwa,
2005). As our primary focus is on the unsupervised induction of diogsistic structures, we do
not address this area.

2.1.1 BLINGUAL LEARNING

Word sense disambiguation (WSD) was among the first successful dgpigcaf automated multi-
lingual learning (Dagan et al., 1991; Brown et al., 1991). Lexical amtyigliffers across languages
—each sense of a polysemous word in one language may translate to a daiimetrpart in another
language. This makes it possible to use aligned foreign-language wsadscarce of noisy super-
vision. Bilingual data has been leveraged in this way in a variety of WSD mdBedsvn et al.,
1991; Resnik & Yarowsky, 1997; Ng, Wang, & Chan, 2003; Diab & itkes2002; Li & Li, 2002;
Bhattacharya, Getoor, & Bengio, 2004), and the quality of supervisionigied by multilingual
data closely approximates that of manual annotation (Ng et al., 2003). ePohyis one source of
ambiguity for part-of-speech tagging; thus our model implicitly leverages multiihg/SD in the
context of a higher-level syntactic analysis.

Multilingual learning has previously been applied to syntactic analysis; aprorg effort was
the inversion transduction grammar of Wu (1995). This method is trained onaamotated parallel
corpus using a probabilistic bilingual lexicon and deterministic constraintsliogumal tree struc-
tures. The inside-outside algorithm (Baker, 1979) is used to learn ptemnfier manually specified
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bilingual grammar. These ideas were extended by subsequent wogkoinrgnous grammar in-
duction and hierarchical phrase-based translation (Wu & Wong, X98&ng, 2005).

One characteristic of this family of methods is that they were designed foreinthe multilin-
gual tasks such as machine translation and lexicon induction. While wetbieageal oflearning
from multilingual data, we seek to induce monolingual syntactic structuresahdte applied even
when multilingual data is unavailable.

In this respect, our approach is closer to the unsupervised multilinguahgaainduction work
of Kuhn (2004). Starting from the hypothesis that trees induced owadlglasentences should
exhibit cross-lingual structural similarities, Kuhn uses word-level alignséo constrain the set
of plausible syntactic constituents. These constraints are implemented thraodictrafted deter-
ministic rules, and are incorporated in expectation-maximization grammar indtctassign zero
likelihood to illegal bracketings. The probabilities of the productions are éséimated separately
for each language, and can be applied to monolingual data directly. Kudwsghat this form of
multilingual training yields better monolingual parsing performance.

Our methods incorporate cross-lingual information in a fundamentally difftenanner. Rather
than using hand-crafted deterministic rules — which may require modificatioeafth language
pair — we estimate probabilistic multilingual patterns directly from data. Morediverestimation
of multilingual patterns is incorporated directly into the tagging model itself.

Finally, multilingual learning has recently been applied to unsupervised rologibal seg-
mentation (Snyder & Barzilay, 2008). This research is related, but mdkang morphological to
syntactic analysis imposes new challenges. One key difference is thagrS&ayBarzilay model
morphemes as unigrams, ignoring the transitions between morphemes. ktisyaralysis, transi-
tion information provides a crucial constraint, requiring a fundamentallgdifit model structure.

2.1.2 BEYOND BILINGUAL LEARNING

While most work on multilingual learning focuses on bilingual analysis, somectaaiperate on
more than one pair of languages. For instance, Genzel (2005) deseriimethod for inducing a
multilingual lexicon from a group of related languages. This work first gegibilingual models for
each pair of languages and then combines them. We take a differentapgrg simultaneously
learning from all languages, rather than combining bilingual results.

A related thread of research is multi-source machine translation (Och &208y,; Utiyama
& Isahara, 2006; Cohn & Lapata, 2007; Chen, Eisele, & Kay, 20@8tddi, Barbaiani, Federico,
& Cattoni, 2008) where the goal is to translate from multiple source languagesingle target
language. By using multi-source corpora, these systems alleviate spErsenkincrease transla-
tion coverage, thereby improving overall translation accuracy. Typjcallyti-source translation
systems build separate bilingual models and then select a final translatiothiea output. For in-
stance, a method developed by Och and Ney (2001) generates sdtaradtive translations from
source sentences expressed in different languages and selectssthikehocandidate. Cohn and
Lapata (2007) consider a different generative model: rather thaninomghalternative sentence
translations in a post-processing step, their model estimates the target paredation distribu-
tion by marginalizing over multiple translations from various source langualybde their model
combines multilingual information at the phrase level, at its core are estimatelsrimse tables that
are obtained using bilingual models.
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In contrast, we present an approach for unsupervised multilingualihgathat builds a single
joint model across all languages. This makes maximal use of unlabeled rdthtidesteps the
difficult problem of combining the output of multiple bilingual systems withoutesujsion.

2.2 Unsupervised Part-of-Speech Tagging

Unsupervised part-of-speech tagging involves predicting the tagsdi@saywithout annotations of
the correct tags for any word tokens. Generally speaking, the unsgsipe setting does permit the
use of declarative knowledge about the relationship between tags addypes in the form of a
dictionary of the permissible tags for the most common words. This setup isagf® as “semi-
supervised” by Toutanova and Johnson (2008), but is considereipervised” in most other pa-
pers on the topic (e.g., Goldwater & Griffiths, 2007). Our evaluation censithg dictionaries of
varying levels of coverage.

Since the work of Merialdo (1994), the hidden Markov model (HMM) hasrbthe most com-
mon representatidnfor unsupervised tagging (Banko & Moore, 2004). Part-of-spaags are
encoded as a linear chain of hidden variables, and words are treatsitesl observations. Recent
advances include the use of a fully Bayesian HMM (Johnson, 2007; Gédah& Griffiths, 2007),
which places prior distributions on tag transition and word-emission probakiliBach Bayesian
priors permit integration over parameter settings, yielding models that perietl across a range
of settings. This is particularly important in the case of small datasets, where ofithe counts
used for maximume-likelihood parameter estimation will be sparse. The Bayedtamgsalso facil-
itates the integration of other data sources, and thus serves as the aepairttifor our work.

Several recent papers have explored the development of altertratingg procedures and
model structures in an effort to incorporate more expressive featumagpermitted by the genera-
tive HMM. Smith and Eisner (2005) maintain the HMM structure, but incorfgoaalarge number
of overlapping features in a conditional log-linear formulatidg@ontrastive estimatiois used to
provide a training criterion which maximizes the probability of the observettseas compared to
a set of similar sentences created by perturbing word order. The aslugfe set of features and a
discriminative training procedure led to strong performance gains.

Toutanova and Johnson (2008) propose an LDA-style model forpemgised part-of-speech
tagging, grouping words through a latent layer of ambiguity classes. &abliguity class corre-
sponds to a set of permissible tags; in many languages this set is tightly aoestoy morpho-
logical features, thus allowing an incomplete tagging lexicon to be expaithghighi and Klein
(2006) also use a variety of morphological features, learning in anestdot Markov Random Field
that permits overlapping features. They propagate information from a somaber of labeled “pro-
totype” examples using the distributional similarity between prototype and raiptppe words.

Our focus is to effectively incorporate multilingual evidence, and we irecu simple model
that can easily be applied to multiple languages with widely varying structuspkpties. We view
this direction as orthogonal to refining monolingual tagging models for articpkar language.

1. In addition to the basic HMM architecture, other part-of-speech taggpgoaches have been explored (Brill, 1995;
Mihalcea, 2004)
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Figure 1: Example graphical structures of (a) two standard monoling$] (b) our merged
node model, and (c) our latent variable model with three superlinguablesia

3. Models

The motivating hypothesis of this work is that patterns of ambiguity at the papeech level differ
across languages in systematic ways. By considering multiple languages sgoubédy, the total
inherent ambiguity can be reduced in each language. But with the poteh#itages of leveraging
multilingual information comes the challenge of respecting language-spdufiacteristics such as
tag inventory, selection and order. To this end, we develop models that jtagtlyarallel streams
of text in multiple languages, while maintaining language-specific tag sets anthgters over
transitions and emissions.
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Part-of-speech tags reflect the syntactic and semantic function of thedtaggrds. Across
languages, pairs of word tokens that are known to share semantictacsgyrfunction should have
tags that are related in systematic ways. Ted alignmenttask in machine translation is to
identify just such pairs of words in parallel sentences. Aligned wordzairve as the cross-lingual
anchors of our model, allowing information to be shared via joint tagging desisiBesearch in
machine translation has produced robust tools for identifying word aligtenese use such a tool
as a black box and treat its output as a fixed, observed property chthibgb data.

Given a set of parallel sentences, we posit a hidden Markov modeMHfgr each language,
where the hidden states represent the tags and the emissions are the hdras unsupervised
monolingual setting, inference on the part-of-speech tags is perfornmaly javith estimation of
parameters governing the relationship between tags and wordsntissiorprobabilities) and be-
tween consecutive tags (thensition probabilities). Our multilingual models are built upon this
same structural foundation, so that the emission and transition parameéagnsareidentical inter-
pretation as in the monolingual setting. Thus, these parameters can bellearparallel text and
later applied to monolingual data.

We consider two alternative approaches for incorporating crossdingiormation. In the first
model, the tags for aligned words are merged into single bi-tag nodes; inahedséatent variable
model, an additional layer of hiddeuperlingual tagénstead exerts influence on the tags of clusters
of aligned words. The first model is primarily designed for bilingual datailerthe second model
operates over any number of languages. Figure 1 provides a griapitidel representation of the
monolingual, merged node, and latent variable models instantiated over asngliel sentence.

Both the merged node and latent variable approaches are formalizedasihiwal Bayesian
models. This provides a principled probabilistic framework for integrating meltources of
information, and offers well-studied inference techniques. Table 1 summesahe mathematical
notation used throughout this section. We now describe each model in depth

3.1 Bilingual Unsupervised Tagging: A Merged Node Model

In the bilingual merged node model, cross-lingual context is incorpotaterteating joint bi-tag
nodes for aligned words. It would be too strong to insist that aligned svbedve an identical
tag; indeed, it may not even be appropriate to assume that two languagedddntical tag sets.
However, when two words are aligned, we do want to choose their tadlyjoip enable this, we
allow the values of the bi-tag nodes to range over all possible tag {aifs € T' x 7", whereT
andT” represent the tagsets for each language.

The tagst andt’ need not be identical, but we do believe that they are systematically related.
This is modeled using a coupling distribution which is multinomial over all tag pairs. The
parametet is combined with the standard transition distributidim a product-of-experts model.
Thus, the aligned tag pafy;, y;) is conditioned on the predecessgrs; andy}fl, as well as the
coupling parametep(y;, y;.).z The coupled bi-tag nodes serve as bilingual “anchors” — due to the
Markov dependency structure, even unaligned words may benefit dross-lingual information
that propagates from these nodes.

2. While describing the merged node model, we consider only the two lgagéiand/’, and use a simplified notation
in which we write(y, y') to mean(y*, y”). Similar abbreviations are used for the language-indexed parameters.
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Notation used in both models

! — Thesit" word token of the sentence in language

Yl — Theit" tag of the sentence in language

alt — The word alignments for the language p@ir¢’).

o — The transition distribution (over tags), conditioned on#aglan-
guage’. We describe a bigram transition model, though our imple-
mentation uses trigrams (without bigram interpolations); the ex-
tension is trivial.

0 — The emission distribution (over words), conditioned on t&dg
languag¢.

oo — The parameter of the symmetric Dirichlet prior on the transition
distributions.

fo — The parameter of the symmetric Dirichlet prior on the emission

distributions.

Notation used in the merged node model

w — A coupling parameter that assigns probability mass to each pair of
aligned tags.

wo — A Dirichlet prior on the coupling parameter.

Ayp — Distribution over bilingual alignments.

Notation used in the latent variable model

T — A multinomial over the superlingual tags

o — Theconcentration parametéor «, controlling how much proba-
bility mass is allocated to the first few values.

2j — The setting of thg®” superlingual tag, ranging over the set of in-
tegers, and indexing a distribution setin

U, = (L2, ") — Thez!" set of distributions over tags in all languaggsthrough
ly.

Go — A base distribution from which th&, are drawn, whose form is
a set ofn symmetric Dirichlet distributions each with a parameter
Yo.

A — Distribution over multilingual alignments.

Table 1: Summary of notation used in the description of both models. As eatdnse is treated
in isolation (conditioned on the parameters), the sentence indexing is left implicit.
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We now present a generative account of how the words in each sera@d the parameters
of the model are produced. This generative story forms the basis cfampling-based inference
procedure.

3.1.1 MERGEDNODE MODEL: GENERATIVE STORY

Our generative story assumes the existence of two tag8esd7”, and two vocabularie®” and
W' — one of each for each language. For ease of exposition, we formulataamlel with bigram
tag dependencies. However, in our experiments we used a trigram mdteuirany bigram
interpolation), which is a trivial extension of the described model.

1. Transition and Emission Parameters For each tag € T, draw atransitiondistribution ¢,
over tagsl’, and aremissiordistributiond; over wordslV. Both the transition and emission
distributions are multinomial, so they are drawn from their conjugate prior, itiehlzt (Gel-
man, Carlin, Stern, & Rubin, 2004). We use symmetric Dirichlet priors, wliatode only an
expectation about the uniformity of the induced multinomials, but not do enmaderences
for specific words or tags.

Foreachtag € 7’, draw atransitiondistribution¢; over tagsl”, and aremissiordistribution
6, over wordsiW’, both from symmetric Dirichlet priors.

2. Coupling Parameter. Draw a bilingualcouplingdistributionw over tag pairs pairg’ x 7".
This distribution is multinomial with dimensiofY’| - |7”|, and is drawn from a symmetric
Dirichlet priorwg over all tag pairs.

3. Data. For each bilingual parallel sentence:

(a) Draw an alignmena from a bilingual alignment distributiorl,. The following para-
graph definea and A, more formally.

(b) Draw a bilingual sequence of part-of-speech 1@gs..., ym), (v}, ..., y,,) according to:
P((Y1s ey ym), (W1, 9h)|a, @, ¢',w).2 This joint distribution thus conditions on the
alignment structure, the transition probabilities for both languages, andotimirng
distribution; a formal definition is given in Formula 1.

(c) Foreach part-of-speech tagin the first language, emit a word from the vocabulBry
€Tq ~ Gyi,

(d) For each part-of-speech tgpin the second language, emit a word from the vocabulary
W/. l'/- ~ 9/
. ] y‘; .
This completes the outline of the generative story. We now provide more dataibw align-
ments are handled, and on the distribution over coupled part-of-spagsbdaences.

Alignments An alignmenta defines a bipartite graph between the waxdandx’ in two parallel
sentences . In particular, we represanas a set of integer pairs, indicating the word indices.
Crossing edges are not permitted, as these would lead to cycles in the gegudtphical model,
thus, the existence of an edffe;) precludes any additional edgés+ a,j — b) or (i — a,j + b),

3. We use a special end state, rather than explicitly modeling sentence [Ehg#the values of. andn are determined
stochastically.
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for a,b > 0. From a linguistic perspective, we assume that the ¢dge indicates that the words
T andz; share some syntactic and/or semantic role in the bilingual parallel sentences.

From the perspective of the generative story, alignments are treatedves flom a distribu-
tion A,. Since the alignments are always observed, we can remain agnosticladaligtribution
Ap, except to require that it assign zero probability to alignments which eitijealign a single
index in one language to multiple indices in the other languad@)carontain crossing edges. The
resulting alignments are thus one-to-one, contain no crossing edgemagnte sparse or even
possibly empty. Our technique for obtaining alignments that display thesenigspis described in
Section 4.2.

Generating Tag Sequences In a standard hidden Markov model for part-of-speech tagging, the
tags are drawn as a Markov process from the transition distribution. Ehnmsits the probability
of a tag sequence to factor across the time steps. Our model employs a sinidaizédion: the
tags for unaligned words are drawn from their predecessor’s tramsiitribution, while joined tag
nodes are drawn from a product involving the coupling parameter anglahsition distributions
for both languages.

More formally, given an alignmernt and sets of transition parameterand¢’, we factor the
conditional probability of a bilingual tag sequen@g, ..., ym), (¥}, ---, ¥, into transition probabil-
ities for unaligned tags, and joint probabilities over aligned tag pairs:

P((yb "'aym)a (ylla '-'7y;z)|a7 ¢7 gb,v“) = H ¢yi71(yi> H ¢;;71(y;)

unaligned: unaligned;
H P(yiuy;‘yi—lvy;—17¢u ¢/,L«J). (1)
(ij)€a

Because the alignment contains no crossing edges, we can still model thestggaerated
sequentially by a stochastic process. We define the distribution over atamedirs to be a product
of each language’s transition probability and the coupling probability:

B () 8 () (i1

P(yiayﬂyi—hy}—hqsa ¢/7CU) = 7 . (2)

The normalization constant here is defined as:

Z=Y bu.) Sy () wy.y).
yy

This factorization allows the language-specific transition probabilities to #eedlacross aligned
and unaligned tags.

Another way to view this probability distribution is as a product of three d@gpdhne two tran-
sition parameters and the coupling parameter. Product-of-expert meéfileder(, 1999) allow each
information source to exercise very strong negative influence on thmabildy of tags that they
consider to be inappropriate, as compared with additive models. This isfidealr setting, as it
prevents the coupling distribution from causing the model to generate a tag tinacceptable from
the perspective of the monolingual transition distribution. In preliminary expsats we found that
a multiplicative approach was strongly preferable to additive models.

10
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3.1.2 MERGEDNODE MODEL: INFERENCE

The goal of our inference procedure is to obtain transition and emissiamp#er®) and¢ that can
be applied to monolingual test data. Ideally we would choose the parametthatte the highest
marginal probability, conditioned on the observed watdsnd alignmenta,

~

97 (i = argH@l%X / P(Hv ¢7 Yy, W‘Xa a, 90) ¢07 wO)dydw-

While the structure of our model permits us to decompose the joint probabilityndtipos-
sible to analytically marginalize all of the hidden variables. We resort to stdridante Carlo
approximation, in which marginalization is performed through sampling. Byatepléy sampling
individual hidden variables according to the appropriate distributionspltain a Markov chain
that is guaranteed to converge to a stationary distribution centered ondineddgosterior. Thus,
after an initial burn-in phase, we can use the samples to approximate a rhdigiriaution over
any desired parameter (Gilks, Richardson, & Spiegelhalter, 1996).

The core element of our inference procedure is Gibbs sampling (Geman&a 1984). Gibbs
sampling begins by randomly initializing all unobserved random variablezadt iteration, each
random variable; is then sampled from the conditional distributi®fu;|u_;), whereu_; refers
to all variables other tham;. Eventually, the distribution over samples drawn from this process will
converge to the unconditional joint distributidt(u) of the unobserved variables. When possible,
we avoid explicitly sampling variables which are not of direct interest, hbilieraintegrate over
them. This technique is known asllapsed samplingt is guaranteed never to increase sampling
variance, and will often reduce it (Liu, 1994).

In the merged node model, we need sample only the part-of-speech tathiearbrs. We are
able to exactly marginalize the emission parametexsd approximately marginalize the transition
and coupling paramete¢sandw (the approximations are required due to the re-normalized product
of experts — see below for more details). We draw repeated samples @trtheffspeech tags, and
construct a sample-based estimate of the underlying tag sequence. akfiglirgy, we construct
maximuma posterioriestimates of the parameters of interest for each langéeaye] ¢.

Sampling Unaligned Tags For unaligned part-of-speech tags, the conditional sampling equations
are identical to the monolingual Bayesian hidden Markov model. The pilapald each tag de-
composes into three factors:

P(yz‘|Y—i,y/7X7XI7907¢O) o8 P(xi’y%y—ivx—iaHO)P(yi|yi—17y—’i7¢0)P(yi+1’yi7y—i7¢0)? (3)

which follows from the chain rule and the conditional independencies in tltemdhe first factor
is for the emission:; and the remaining two are for the transitions. We now derive the form &f eac
factor, marginalizing the parametétainde.

For the emission factor, we can exactly marginalize the emission distrib@jtiwhose prior is
Dirichlet with hyperparametét,. The resulting distribution is a ratio of counts, where the prior acts
as a pseudo-count:

n(yi, x;) + 6o

n(yi) + Wy, 100 @)

Py, x,00) = / 0, (2:)P(0y, ]y %1, 00)d0,, =

Yi

Here,n(y;) is the number of occurrences of the tagn y_;, n(y;, ;) is the number of occur-
rences of the tag-word paiy;, ;) in (y—;, x—;), andWW,, is the set of word types in the vocabulary
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W that can take tag;. The integral is tractable due to Dirichlet-multinomial conjugacy, and an
identical marginalization was applied in the monolingual Bayesian HMM of Gdielwend Grif-
fiths (2007).

For unaligned tags, it is also possible to exactly marginalize the paramet@rerning transi-
tions. For the transition from— 1 to i,

. . _ ‘ , ~ n(Yi-1, i) + do
P(yilyi—1,¥—i, ¢0) = /¢1 Dy (i) PPy, |y —is P0)dy, . = ) 1 o (5)

The factors here are similar to the emission probabilityy; ) is the number of occurrences of
the tagy; in y_;, n(yi;—1, ;) is the number of occurrences of the tag sequépgce , y;), andT is
the tagset. The probability for the transition frano i + 1 is analogous.

Jointly Sampling Aligned Tags The situation for tags of aligned words is more complex. We
sample these tags jointly, considering @il x T"| possibilities. We begin by decomposing the
probability into three factors:

P(y%y‘;’yfiﬂyl—jvxv)(/?av 007067¢7 (23/,0.)) X P(xi’yax—’iaGO)P('CE;"y/)X/—ja06)P(yi7y‘;’y7i7ylfj7a7 (Z)v (b/aw)‘

The first two factors are emissions, and are handled identically to the uedlicase (For-
mula 4). The expansion of the final, joint factor depends on the alignmené a&futceeding tags.
If neither of the successors (in either language) are aligned, we hpuedact of the bilingual
coupling probability and four transition probabilities:

P(yss i1y —isy2j &, ' w) o< w(yis y3) Sy y () Sy (Wi ) By ()8 (U41)-

Whenever one or more of the succeeding words is aligned, the samplinglésr must account
for the effect of the sampled tag on the joint probability of the succeedirgy tagjch is no longer
a simple multinomial transition probability. We give the formula for one such cadeer we are
sampling a joint tag pai(yi,y;.), whose succeeding woro{s:iﬂ,x;,rl) are also aligned to one
another:

/ / ’ , , ¢yi (yi-i-l) d),y/ (y;_H)
P(ys yily—i-Y-jr a6, ¢, w) o w(yi, 4 by, (4:) 8y () S Et,)w(t 7
s i y;_ )

Intuitively, if w puts all of its probability mass on a single assignmgnt = 1t,y§.Jrl =t,
then the transitions fromto i + 1 andj to j + 1 are irrelevant, and the final factor goes to one.
Conversely, ifw is indifferent and assigns equal probability to all paitst’), then the final fac-
tor becomes proportional 0, (yiﬂ)gzb’y; (y;.H), which is the same as if;; andz;; were not
aligned. In general, as the entropywlincreases, the transition to the succeeding nodes exerts a
greater influence og; andy;. Similar equations can be derived for cases where the succeeding tags
are not aligned to each other, but one of them is aligned to another tag;;eids aligned taz:;-+2.

As before, we would like to marginalize the parametgrg’, andw. Because these parameters
interact as a product-of-experts model, these marginalizations arexapptions. The form of the

marginalizations for» and¢’ are identical to Formula 5. For the coupling distribution,

(6)

N(a) +|T % T'wy’

Pw(yivy“y*iay,—jvw(]) ~ (7)
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wheren(y;, y;) is the number of times tags andy’; were aligned, excludingand;j, and N (a)
is the total number of alignments. As above, the pugrappears as a smoothing factor; in the
denominator it is multiplied by the dimensionality©f which is the size of the cross-product of the
two tagsets. Intuitively, this approximation would be exactly correct if edighed tag had been
generated twice — once by the transition parameter and once by the couglarggier — instead
of a single time by the product of experts.

The alternative to approximately marginalizing these parameters would be tteshem using
a Metropolis-Hastings scheme as in the work by (Snyder, Naseem, Eise@starzilay, 2008).
The use of approximate marginalizations represents a bias-varianceftradeere the decreased
sampling variance justifies the bias introduced by the approximations, fotigalanumbers of
samples.

3.2 Multilingual Unsupervised Tagging: A Latent Variable Model

The model described in the previous section is designed for bilingual dligaiz; as we will see
in Section 5, it exploits such data very effectively. However, many messucontain more than
two languages: for example, Europarl contains eleven, and the Mulsssttegrpus contains eight.
This raises the question of how best to exploit all available resources midi-aligned data is
available.

One possibility would be to train separate bilingual models and then combine titygirt @t test
time, either by voting or some other heuristic. However, we believe that-irmgsal information
reduces ambiguity at training time, so it would be preferable to learn from mubipdgiages jointly
during training. Indeed, the results in Section 5 demonstrate that joint traduoitpgrforms such a
voting scheme.

Another alternative would be to try to extend the bilingual model developedeirptvious
section. While such an extension is possible in principle, the merged nodé¢ doedenot scale well
in the case of multi-aligned data across more than two languages. Recalkthaewnerged nodes
to represent both tags for aligned words; the state space of such grasesas 7’|, exponential
in the number of languages. Similarly, the coupling parameter has the same dimension, so
that the counts required for estimation become too sparse as the numbeguddas increases.
Moreover, the bi-tag model required removing crossing edges in the-aligmment, so as to avoid
cycles. This is unproblematic for pairs of aligned sentences, usuallyriregithe removal of less
than 5% of all edges (see Table 16 in Appendix A). However, as the nuphlarguages grows, an
increasing number of alignments will have to be discarded.

Instead, we propose a new architecture specifically designed for the nguifilisetting. As
before, we maintain HMM substructures for each language, so that theetkparameters can
easily be applied to monolingual data. However, rather than merging tag fmdaligned words,
we introduce a layer cuperlingual tags The role of these latent nodes is to capture cross-lingual
patterns. Essentially they perform a non-parametric clustering overfsgigreed tags, encouraging
multilingual patterns that occur elsewhere in the corpus.

More concretely, for every set of aligned words, we add a supedirtgg with outgoing edges
to the relevant part-of-speech nodes. An example configuration isnsimokigure 1c. The super-
lingual tags are each generated independently, and they influencéattéoseof the part-of-speech
tags to which they are connected. As before, we use a product-eftexpodel to combine these
cross-lingual cues with the standard HMM transition model.
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This setup scales well. Crossing and many-to-many alignments may be usedtwithating
cycles, as all cross-lingual information emanates from the hidden supgalitags. Furthermore,
the size of the model and its parameter space scale linearly with the numberwidasg We now
describe the role of the superlingual tags in more detail.

3.2.1 PROPAGATING CROSSLINGUAL PATTERNS WITH SUPERLINGUAL TAGS

Each superlingual tag specifies a set of distributions — one for eaclidge( part-of-speech
tagset. In order to learn repeated cross-lingual patterns, we needdiwaio the number of values
that the superlingual tags can take and thus the number of distributionsrthégigp For example,
we might allow the superlingual tags to take on integer values ftaim &, with each integer
value indexing a separate set of tag distributions. Each set of distribuimnsd correspond to a
discovered cross-lingual pattern in the data. For example, one setrifutisns might favor nouns
in each language and another might favor verbs, though heterogdistiisutions (e.g., favoring
determiners in one language and prepositions in others) are also possible.

Rather than fixing the number of superlingual tag values to an arbitrarysizee leave it un-
bounded, using a non-parametric Bayesian model. To encourage tresldesltilingual clustering
behaviour, we use a Dirichlet process prior (Ferguson, 1973)etJhik prior, high posterior prob-
ability is obtained only when a small number of values are used repeatedhaciled number of
sampled values will thus be dictated by the data.

We draw an infinite sequence of distribution séts Uo, ... from some base distributiof¥,.
Each¥; is a set of distributions over tags, with one distribution per language, Wf[ﬁf@h To
weight these sets of distributions, we draw an infinite sequence of mixtughtise, -, ... from
a stick-breaking process, which defines a distribution over the integtrsnast probability mass
placed on some initial set of values. The pair of sequenges,, ... and¥, Vs, ... now define
the distribution over superlingual tags and their associated distributionartsrqf-speech. Each
superlingual tag € N is drawn with probabilityr,, and is associated with the set of multinomials
(Wl vt ).

As in the merged node model, the distribution over aligned part-of-speeslistggverned by
a product of experts. In this case, the incoming edges are from thdiagpal tags (if any) and
the predecessor tag. We combine these distributions via their normalizeacprébssuming tag
positioni of languagel is connected td\/ superlingual tags, the part-of-speech tads drawn
according to,

) M 14 )
i ~ ¢y¢,1 (yl) Hénl wzm (yZ) ’ (8)

whereg,, , indicates the transition distribution,, is the value of then'” connected superlingual
tag, andy)’ (y;) indicates the tag distribution for languagyigiven by V., . The normalizatior? is
obtained by summing this product over all possible valueg .of

This parameterization allows for a relatively simple parameter space. It adete a desirable
property: for a tag to have high probabiliBachof the incoming distributions must allow it. That s,
any expert can “veto” a potential tag by assigning it low probability, gaheleading to consensus
decisions.

We now formalize this description by giving the stochastic generative psdoe the observed
data (raw parallel text and alignments), according to the multilingual model.
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3.2.2 LATENT VARIABLE MODEL: GENERATIVE STORY

Forn languages, we assume the existence tfgsetsl™ , . .., 7" and vocabulariesy’!, ..., W",
one for each language. Table 1 summarizes all relevant parameterglaFity the generative
process is described using only bigram transition dependencies, bexperiments use a trigram
model, without any bigram interpolations.

1. Transition and Emission Parameters For each languagé = 1,...,n and for each tag
t € T*, draw atransition distribution ¢} over tagsT, and anemissiondistributiond; over
wordsW*, all from symmetric Dirichlet priors of appropriate dimension.

2. Superlingual Tag Parameters Draw an infinite sequence of sets of distributions over tags
Uy, Uy, ..., Where eachV; is a set ofn multinomials ( }, iz, ...¢"), one for each oh
languages. Each multinomiajf is a distribution over the tagsé&t’, and is drawn from a
symmetric Dirichlet prior; these priors together comprise the base distribtitioiiom which
each¥; is drawn.

At the same time, draw an infinite sequence of mixture weights GEM («), where
GEM («) indicates the stick-breaking distribution (Sethuraman, 1994) with contentra
parameterny = 1. These parameters define a distribution over superlingual tags, aaequi
lently over the part-of-speech distributions that they index:

z o~ > op Tlg—= 9
U ~ ZZO Wk(s\y:q/k, (10)

wheredy—y, is defined as one whel = ¥, and zero otherwise. From Formula 10, we can
say that the set of multinomialk is drawn from a Dirichlet process, conventionally written
DP(a,Gp).

3. Data. For each multilingual parallel sentence:

(a) Draw an alignmena from multilingual alignment distributiom,,,. The alignmenta
specifies sets of aligned indices across languages; each such seimsiy of indices
in any subset of the languages.

(b) For each set of indices W draw a superlingual tag valueaccording to Formula 9.
(c) Foreach languagg fori =1, ... (until end-tag reached):

i. Draw a part-of-speech tag € T* according to Formula 8.
ii. Draw a wordw,; € W* according to the emission distributidy,.

One important difference from the merged node model generative sttrgtithe distribution
over multilingual alignmentsl,,, is unconstrained: we can generate crossing and many-to-one align-
ments as needed. To perform Bayesian inference under this modelaiveusg Gibbs sampling,
marginalizing parameters whenever possible.
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3.2.3 LATENT VARIABLE MODEL: INFERENCE

As in section 3.1.2, we employ a sampling-based inference proceduri, Agadard closed forms
are used to analytically marginalize the emission paraméteasd approximate marginalizations
are applied to transition parametefsand superlingual tag distributioniz{; similar techniques are
used to marginalize the superlingual tag mixture weighté\s before, these approximations would
be exact if each of the parameters in the numerator of Formula 8 were ssdplgnsible for other
sampled tags.

We still must sample the part-of-speech tggand superlingual tags. The remainder of the
section describes the sampling equations for these variables.

Sampling Part-of-speech Tags To sample the part-of-speech tag for language position: we
draw from:

Py _(oiy %,a,2) oc Pzt x5, YO P lvi y— iy . 2) P(yily iy, a,2)  (11)

wherey_ ;) refers to all tags except’. The first factor handles the emissions, and the latter two
factors are the generative probabilitieipfthe current tag given the previous tag and superlingual
tags, andii) the next tag given the current tag and superlingual tags. These twttipsare similar
to equation 8, except here we integrate over the transition paramgterand the superlingual tag
parameters)’. We end up with a product of integrals, each of which we compute in clased f
Terms involving the transition distributiors and the emission distributiorgsare identical to
the bilingual case, as described in Section 3.1.2. The closed form foratitegover the parameter
of a superlingual tag with valueis given by:

n('z? Yi, K) + wé
n(z,0) + T
wheren(z, y;, £) is the number of times that tag is observed together with superlingual tagn

language/, n(z,¢) is the total number of times that superlingual tagppears with an edge into
languagé’, andi§ is a symmetric Dirichlet prior over tags for languagge

/ ) PO )t =

Sampling Superlingual Tags For each set of aligned words in the observed alignraem need
to sample a superlingual tag Recall that: is an index into an infinite sequence

R0 W T ST, ) WO

where each)! is a distribution over the tagsét’. The generative distribution overis given by
Formula 9. In our sampling scheme, however, we integrate over all possthitegs of the mixture
weightsz using the standard Chinese Restaurant Process closed form (E&ddlest, 1995):

1 :
P(zi‘z_i,y) X HP(yf‘Zi, Z—iay—(é,i)) ) {kzan(%) T ?_l (12)
; e otherwise

The first group of factors is the product of closed form probabilitiesafbtags connected to the
superlingual tag, conditioned of3. Each of these factors is calculated in the same manner as
equation 11 above. The final factor is the standard Chinese Rest&uma@ss closed form for
posterior sampling from a Dirichlet process prior. In this factois the total number of sampled
superlingual tags;(z;) is the total number of times the valugoccurs in the sampled superlingual
tags, andv is the Dirichlet process concentration parameter (see Step 2 in Section 3.2.2)

16



MULTILINGUAL PART-OF-SPEECHTAGGING

3.3 Implementation

This section describes implementation details that are necessary to repmawexperiments. We
present details for the merged node and latent variable models, as wetlmgoolingual baseline.

3.3.1 INITIALIZATION

An initialization phase is required to generate initial settings for the word tadjygrerparameters,
and for the superlingual tags in the latent variable model. The initialization dlaw/é:

e Monolingual Model

— Tags: Random, with uniform probability among tag dictionary entries for the emitted
word.

— Hyperparametersfy, ¢q: Initialized to1.0
e Merged Node Model

— Tags Random, with uniform probability among tag dictionary entries for the emitted
word. For joined tag nodes, each slot is selected from the tag dictionding eimitted
word in the appropriate language.

— Hyperparameterséy, ¢g, wq: Initialized to1.0
e Latent Variable Model

— Tags: Set to the final estimate from the monolingual model.

— Superlingual Tags:Initially a set of 14 superlingual tag values is assumed — each value
corresponds to one part-of-speech tag. Each alignment is assigmefitbase 14 values
based on the most common initial part-of-speech tag of the words in the alignmen

— Hyperparametersé, ¢§: Initialized to1.0

— Base Distribution G§: Set to a symmetric Dirichlet distribution with parameter value
fixed to1.0

— Concentration Parametera: Set tol.0 and remains fixed throughout.

3.3.2 HYPERPARAMETERESTIMATION

Both models have symmetric Dirichlet prioflg and ¢g, for the emission and transition distribu-
tions respectively. The merged node model also has symmetric Dirichletgyrion the coupling
parameter. We re-estimate these priors during inference, based enfoonative hyperpriors.

Hyperparameter re-estimation applies the Metropolis-Hastings algorithmeatftarfull epoch
of sampling the tags. In addition, we run an initial 200 iterations to speed manee. Metropolis-
Hastings is a sampling technique that draws a new valinem a proposal distribution, and makes
a stochastic decision about whether to accept the new sample (Gelman@d4)., this decision is
based on the proposal distribution and on the joint probability with the observed and sampled
variablesx’ andy*.

We assume an improper prié¥(«) that assigns uniform probability mass over the positive reals,
and use a Gaussian proposal distribution with the mean set to the previeeisftne parameter and
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variance set to one-tenth of the méaFor non-pathological proposal distributions, the Metropolis-
Hastings algorithm is guaranteed to converge in the limit to a stationary MaHam centered on
the desired joint distribution. We observe an acceptance rate of apptekmé#s, which is in line
with standard recommendations for rapid convergence (Gelman et al), 2004

3.3.3 ANAL PARAMETER ESTIMATES

The ultimate goal of training is to learn models that can be applied to unalignedingrad data.
Thus, we need to construct estimates for the transition and emission pasameted §. Our
sampling procedure focuses on the tggs/Ne construct maximura posterioriestimategj, indi-
cating the most likely tag sequences for the aligned training corpus. THetae tags) are then
combined with priorspy andd, to construct maximuna posterioriestimates of the transition and
emission parameters. These learned parameters are then applied to the mahtdstglata to find
the highest probability tag sequences using the Viterbi algorithm.

For the monolingual and merged node models, we perform 200 iteratioasmplisg, and select
the modal tag settings in each slot. Further sampling was not found to prdifiecent results. For
the latent variable model, we perform 1000 iterations of sampling, and $kénotodal tag values
from the last 100 samples.

4. Experimental Setup

We perform a series of empirical evaluations to quantify the contributionliafjbal and muiltilin-
gual information for unsupervised part-of-speech tagging. Ourduaiuation follows the standard
procedures established for unsupervised part-of-speech taggveg:a tag dictionary (i.e., a set of
possible tags for each word type), the model selects the appropriate gcfotoken occurring in
a text. We also evaluate tagger performance when the available dictionaries@amplete (Smith
& Eisner, 2005; Goldwater & Griffiths, 2007). In all scenarios, the masddtained using only
untagged text.

In this section, we first describe the parallel data and part-of-spemchations used for system
evaluation. Next we describe a monolingual baseline and the infereacedure used for testing.

4.1 Data

As a source of parallel data, we use Orwell's novel “Nineteen Eighty"Houhe original English

as well as its translation to seven languages — Bulgarian, Czech, Estbhiagarian, Slovene,
Serbian and RomanianEach translation was produced by a different translator and published in
print separately by different publishers.

This dataset has representatives from four language families — Slamnaite, Ugric and
Germanic. This data is distributed as part of the publicly available Multext-deaptis, Version 3
(Erjavec, 2004). The corpus provides detailed morphological annotatibe token level, including
part-of-speech tags. In addition, a lexicon for each language is @avid

4. This proposal is identical to the parameter re-estimation applied fosiemiand transition priors by Goldwater and
Griffiths (2007).

5. In our initial publication (Snyder et al., 2008), we used a subsetisfd#ita, only including sentences that have
one-to-one alignments between all four languages considered in et Fde current set-up makes use of all the
sentences available in the corpus.
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Percentage Aligned

Sentences Words | BG | CS | EN | ET | HU | RO | SL | SR
Bulgarian 6G) 6681 101175 - | 41.7|50.5|33.5|31.3|415| 454|459
Czech €9) 6750 102834| 41.0| - |419]|39.1|30.7| 31.7| 56.2| 48.4
English EN) 6736 118426| 43.2| 36.4| - |34.4|32.9|425|44.6| 40.9
Estonian ET) 6477 94900 | 35.7| 42.4| 429| - |33.8|29.2|44.8]| 39.7
Hungarian @u) 6767 08428 | 32.2| 32.0| 39.6| 32.6| - |26.9|34.6| 30.3
Romanian RO) 6519 118330| 35.5| 27.5| 425|23.4| 224| - |30.8| 321
Slovene 6L) 6688 116908| 39.3| 49.4| 45.2| 36.4| 29.1| 31.2| - |51.2
Serbian §R) 6676 112131| 41.4| 44.4| 43.2| 33.6| 26.6| 33.9| 53.4| -

Table 2: Percentage of the words in the row language that have alignmleatspaired with the
column language.

The corpus consists of 118,426 English words in 6,736 sentencesabke3). Of these sen-
tences, the first 75% are used for training, taking advantage of the multlimjgnments. The
remaining 25% are used for evaluation. In the evaluation, only monolingfaahation is made
available to the model, to simulate performance on non-parallel data.

4.2 Alignments

In our experiments we use sentence-level alignments provided in the MEkskxteorpus. Word-

level alignments are computed for each language pair usiag 6+ (Och & Ney, 2003). The

procedures for handling these alignments are different for the meagkrland latent variable mod-
els.

4.2.1 MERGEDNODE MODEL

We obtain 28 parallel bilingual corpora by considering all pairings of fightdanguages. To
generate one-to-one alignments at the word level, we intersect the onaApalignments going in
each direction. This process results in alignment of about half the tokesaximbilingual parallel
corpus. We further automatically remove crossing alignment edges, astbafl induce cycles in
the graphical model. We employ a simple heuristic: crossing alignment edgesrmoved based
on the order in which they appear from left to right; this step eliminates oragee3.62% of the
edges. Table 2 shows the number of aligned words for each languagdtparemoving crossing
edges. More detailed statistics about the total number of alignments arequtavidppendix A.

4.2.2 LATENT VARIABLE MODEL

As in the previous setting, we rusiza++ on all 28 pairings of the 8 languages, taking the inter-
section of alignments in each direction. Since we want each latent supeatlvagiable to span as
many languages as possible, we aggregate pairwise lexical alignments gaodats of densely
aligned words and assign a single latent superlingual variable to eablsetic Specifically, for
each word token, we consider the set of the word itself and all word solewhich it is aligned.

If pairwise alignments occur between 2/3 of all token pairs in this set, thendnisidered densely
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C4

c3

Figure 2: An example of a multilingual alignment configuration. Nodes cpaed to words to-
kens, and are labeled by their language. Edges indicate pairwise alignpnedteed
by Giza++. Boxes indicate alignment sets, though the@kis subsumed by2 and
eventually discarded, as described in the text.

connected and is admitted as an alignment set. Otherwise, increasingly smadletssare consid-
ered until one that is densely connected is found. This proceduredatezpfor all word tokens
in the corpus that have at least one alignment. Finally, the alignment setsuaexly removing
those which are subsets of larger alignment sets. Each of the remaining setsidered the site
of a latent superlingual variable.

This process can be illustrated by an example. The sentence “I knowhgayes seemed to
say, | see through you,” appears in the original English version of dheus. The English word
tokenseemeds aligned to word tokens in Serbiaéirfilo), Estonian Gais), and SlovenianzZdelq.
The Estonian and Slovenian tokens are aligned to each other. Finally,rthiarS®ken is aligned to
a Hungarian word tokemginthg), which is itself not aligned to any other tokens. This configuration
is shown in Figure 2, with the nodes labeled by the two-letter language adwas.

We now construct alignment sets for these words.

e For the Hungarian word, there is only one other aligned word, in Serb@the alignment
set consists only of this pai€( in the figure).

e The Serbian word has aligned partners in both Hungarian and Englishalbthis set has
two pairwise alignments out of a possible three, as the English and Hungeoras are
not aligned. Still, since 2/3 of the possible alignments are present, an aliggete@P) is
formed.CLl is subsumed b2, so it is eliminated.

e The English word is aligned to tokens in Serbian, Estonian, and Slovepiamffsix possible
links are present, so an alignment 9€8)is formed. Note that if the Estonian and Slovenian
words were not aligned to each other then we would have only three of ki Bo the set
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would not be densely connected by our definition; we would then removengbereof the
alignment set.

e The Estonian token is aligned to words in Slovenian and English; all thregipaialignments
are present, so an alignment séd) is formed. An identical alignment set is formed by
starting with the Slovenian word, but only one superlingual tag is created.

Thus, for these five word tokens, a total of three overlapping alignnetatase created. Over
the entire corpus, this process results in 284,581 alignment sets, covéfingf all word tokens.
Of these tokens, 61% occur in exactly one alignment set, 29% occur ithekao alignment sets,
and the remaining 10% occur in three or more alignment sets. Of all alignntsnB2&6 include
words in just two languages, 26% include words in exactly three languagéshe remaining 42%
include words in four or more languages. The sets remain fixed duringisgrapd are treated by
the model as observed data.

Number Tags per token when lexicon contains ... Trigram

of Tokens| all words | count> 5 | count> 10 | top 100 words| Entropy
Bulgarian 6G) 101175 1.39 4.61 5.48 7.33 1.63
Czech €9) 102834 1.35 5.27 6.37 8.24 1.64
English EN) 118426 1.49 3.11 3.81 6.21 1.51
Estonian ET) 94900 1.36 491 5.82 7.34 1.61
Hungarian @Qu) 98428 1.29 5.42 6.41 7.85 1.62
Romaniango) | 118330 1.55 4.49 5.53 8.54 1.73
Slovene 6L) 116908 1.33 4.59 5.49 7.23 1.64
Serbian §R) 112131 1.38 4.76 5.73 7.61 1.73

Table 3: Corpus size and tag/token ratio for each language in the set. stloollamn shows the
trigram entropy for each language based on the annotations providetheitorpus.

4.3 Tagset

The Multext-East corpus is manually annotated with detailed morphosyntactimiation. In our
experiments, we focus on the main syntactic category encoded as thetfasplethe provided
labels. The annotation distinguishes between 14 parts-of-speechjdf Wthare common for all
languages in our experiments. Appendix B lists the tag repository for ddbb eight languages.

In our first experiment, we assume that a complete tag lexicon is availableatsthéhset of
possible parts-of-speech for each word is known in advance. Wthagag dictionaries provided
in the Multext-East corpus. The average number of possible tags peritke39. We also experi-
mented with incomplete tag dictionaries, where entries are only available fdswppearing more
than five or ten times in the corpus. For other words, the entire tagset ofd4staonsidered. In
these two scenarios, the average per-token tag ambiguity is 4.65 andesp&ctively. Finally we
also considered the case when lexicon entries are available for only Ghed$ frequent words.
In this case the average tags per token ambiguity is 7.54. Table 3 showstifcdpg/token ratio
for each language for all scenarios.
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In the Multext-East corpus, punctuation marks are not annotated witltopapeech tags. We
expand the tag repository by defining a separate tag for all punctuatids nfdnis allows the model
to make use of any transition or coupling patterns involving punctuation mété&aever, we do
not consider punctuation tokens when computing model accuracy.

4.4 Monolingual Comparisons

As our monolingual baseline we use the unsupervised Bayesian hiddéwwraodel (HMM) of
Goldwater and Griffiths (2007). This model, which they call BHMM1, modifiesgtandard HMM
by adding priors and by performing Bayesian inference. Its perfocm#non par with state-of-
the-art unsupervised models. The Bayesian HMM is a particularly infovmathseline because
our model reduces to this baseline when there are no alignments in the dstamples that any
performance gain over the baseline can only be attributed to the multilinguadtasfipour model.
We used our own implementation after verifying that its performance on the Reebank corpus
was identical to that reported by Goldwater and Griffiths.

To provide an additional point of comparison, we use a supervised hiMdetov model trained
using the annotated corpus. We apply the standard maximume-likelihood estimadiperdorm in-
ference using Viterbi decoding with pseudo-count smoothing for uwkneords (Rabiner, 1989).
In Appendix C we also report supervised results using the “Stanfogdéefs, version 1.8, Al-
though the results are slightly lower than our own supervised HMM implementatimnote that
this system is not directly comparable to our set-up, as it does not allow ¢hef astag dictionary
to constrain part-of-speech selections.

4.5 Test Set Inference

We use the same procedure to apply all the models (the monolingual model, theddilngrged
node model, and the latent variable model) to test data. After training, trigearsition and word
emission probabilities are computed, using the counts of tags assigned iratliefiming iteration.
Similarly, the final sampled values of the hyperparameters are selectedathsmgparameters. We
then apply Viterbi decoding to identify the highest probability tag sequeiocesach monolingual
test set. We report results for multilingual and monolingual experimentagedmover five runs and
for bilingual experiments averaged over three runs. The averagiesthdeviation of accuracy over
multiple runs is less than 0.25 except when the lexicon is limited to the 100 mosefregords.
In that case the standard deviation is 1.11 for monolingual model, 0.85 fgeshaonde model and
1.40 for latent variable model.

5. Results

In this section, we first report the performance for the two models on tharfd reduced lexicon
cases. Next, we report results for a semi-supervised experimente atmrbset of the languages
have annotated text at training time. Finally, we investigate the sensitivity ofrbotiels to hyper-
parameter values and provide run time statistics for the latent variable modetfeasing numbers
of languages.

6. http://nlp.stanford.edu/software/tagger.shtml
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] |Alg[ BG Cs EN ET HU RO SL SR]

1. Random 83.3/ 825 869 80.7 84.0 857 782 845 835
2. Monolingual 91.2|88.7 939 958 92.7 953 91.1 874 845
3. MERGEDNODE: average | 93.2| 91.3 96.9 959 93.3 96.7 919 893 90.2
4. LATENTVARIABLE 95.0/ 926 98.2 950 946 96.7 951 958 923
5. Supervised 97.3/96.8 986 97.2 97.0 978 97.7 97.0 96.6
6. MERGEDNODE: voting 93.0/91.6 974 96.1 943 96.8 916 87.9 88.2
7. MERGEDNODE: bestpair| 95.4| 94.7 97.8 96.1 94.2 96.9 941 948 945

Table 4: Tagging accuracy with complete tag dictionaries. The first colupuorteeaverage results
across all languages (see Table 3 for language name abbreviatidres)at&nt variable
model is trained using all eight languages, whereas the merged node raedeEned on
language pairs. In the latter case, results are given by averaginglbpeirings (line 3),
by having all bilingual models vote on each tag prediction (line 6), and bingan oracle
select the best pairing for each target language (line 7). All diffesebetween ATENT-
VARIABLE, MERGEDNODE: voting and Monolingual (lines 2, 4, and 6) are statistically
significant atp < 0.05 according to a sign test.

5.1 Full Lexicon Experiments

Our experiments show that both the merged node and latent variable modstknsgiatly improve

tagging accuracy. Since the merged node model is restricted to pairs ofapesy we provide
average results over all possible pairings. In addition, we also corigidanethods for combining
predictions from multiple bilingual pairings: one using a voting scheme andliee employing an
oracle to select the best pairings (see below for additional details).

As shown in Line 4 of Table 4, the merged node model achieves, on &/&¥ag@% accuracy,
a two percentage point improvement over the monolingual basellie latent variable model —
trained once on all eight langauges — achieves 95% accuracy, nearpetwentage points higher
than the bilingual merged node model. These two results corresponditoestuations of 23% and
43% respectively, and reduce the gap between unsupervised asisagd performance by over
30% and 60%.

As mentioned above, we also employ a voting scheme to combine information frdtiplenu
languages using the merged node model. Under this scheme, we train bitimgrgald node models
for each language pair. Then, when making tag predictions for a partianguage — e.g., Roma-
nian — we consider the preferences of each bilingual model trained witheRian and a second
language. The tag preferred by a plurality of models is selected. Thisrémuthis method are
shown in line 6 of Table 4, and do not differ significantly from the averatjedual performance.
Thus, this simple method of combining information from multiple language does ragureup to
the joint multilingual model performance.

7. The accuracy of the monolingual English tagger is relatively high evetpto the 87% reported by (Goldwater &
Griffiths, 2007) on the WSJ corpus. We attribute this discrepancy to thereliffes in tag inventory used in our
data-set. For example, wh@articlesandPrepositionsare merged in the WSJ corpus (as they happen to be in our
tag inventory and corpus), the performance of Goldwater's mod&V84 is similar to what we report here.
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Figure 3: Summary of model performance in full and reduced lexiconitiond. Improvement
over the random baseline is indicated for the monolingual baseline, the aneogke
model (average performance over all possible bilingual pairings)ttentatent variable
model (trained on all eight languages). “Counisz” indicates that only words with
counts greater than were kept in the lexicon; “Top 100" keeps only the 100 most com-
mon words.

We use the sign test to assess whether there are statistically significardraiéfie in the accu-
racy of the tag predictions made by the monolingual baseline (line 2 of Taltleedlatent variable
model (line 4), and the voting-based merged node model (line 6). All diifegs in these rows are
found to be statistically significant at< 0.05. Note that we cannot use the sign test to compare the
average performance of the bilingual model (line 3), since this resultagg@regate over accuracies
for every language pair.

5.2 Reduced Lexicon Experiments

In realistic application scenarios, we may not have a tag dictionary with aggeaicross the en-
tire lexicon. We consider three reduced lexicons: removing all words witimts of five or less;
removing all words with counts of ten or less; and keeping only the top 100 freagient words.
Words that are removed from the lexicon can take any tag, increasinyénalldifficulty of the
task. These results are shown in Table 5 and graphically summarized ire Bigur all cases, the
monolingual model is less robust to reduction in lexicon coverage than the ngualimodels. In
the case of the 100 word lexicon, the latent variable model achievesaay@ir57.9%, compared to
53.8% for the monolingual baseline. The merged node model, on the othikrdudmeves a slightly
higher average performance of 59.5%. In the two other scenarios téme Variable model trained
on all eight languages outperforms the bilingual merged node model, dvem an oracle selects
the best bilingual pairing for each target language. For example, usrigxiton with words that
appear greater than five times, the monolingual baseline achieves 74.uéa@gcthe merged node
model using the best possible pairings achieves 81.7% accuracy, aiudl taeent variable model
achieves an accuracy of 82.8%.
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\ |A\g| BG Ccs EN ET  HU RO SL SR]

Random 63.6| 629 62 718 616 61.3 628 64.8 61.8
LX Monolingual 748| 735 722 873 725 735 771 757 66.3
g MERGEDNODE: average | 80.1| 80.2 79 904 765 773 827 787 739
3 LATENTVARIABLE 82.8| 81.3 83.0 88.1 80.6 80.8 86.1 83.678.8
O | MERGEDNODE: voting 80.4| 804 785 90.7 764 76.8 840 79.7 764
MERGEDNODE: best pair| 81.7| 82.7 79.7 90.7 775 78 844 809 794
o Random 579| 575 547 683 56 551 57.2 59.2 5855
— | Monolingual 709| 719 66.7 844 683 69.0 73.0 704 63.7
ﬁ MERGEDNODE: average | 77.2| 77.8 753 88.8 729 73.8 805 76.1 724
S | LATENTVARIABLE 79.7|78.8 794 86.1 779 76.4 83.1 80.075.9
8 MERGEDNODE: voting 775|784 753 89.2 731 733 817 76.1 731
MERGEDNODE: best pair| 79.0| 80.2 76.7 894 749 752 821 77.676.1
Random 37.3| 36.7 321 489 36.6 364 33.7 39.8 338
S Monolingual 53.8| 60.9 44.1 69.0 548 56.8 51.4 49.4 44.0
— | MERGEDNODE: average | 59.6| 60.1 525 735 595 594 614 56.6 534
§' LATENTVARIABLE 579| 655 493 716 5438 51.0 575 539 604
MERGEDNODE: voting 624|615 554 748 622 609 643 623 575
MERGEDNODE: best pair| 63.6| 64.7 553 774 615 60.2 69.3 63.156.9

Table 5: Tagging accuracy in reduced lexicon conditions. “Counts indicates that only words
with counts greater than were kept in the lexicon; “Top 100" keeps only the 100 most
common words. The latent variable model is trained using all eight languadpeseas
the merged node models are trained on language pairs. In the latter cadts, age given
by averaging over all pairings, by having all bilingual models vote on éaglprediction,
and by having an oracle select the best pairing for each target lamg@ther than the
three pairs of results marked with §, and x, all differences between “monolingual”,
“L ATENTVARIABLE”, and “MERGEDNODE: voting' are statistically significant gb <
0.05 according to a sign test.

Next we consider the performance of the bilingual merged node modei wieelexicon is
reduced for only one of the two languages. This condition may occur whaling with two lan-
guages with asymmetric resources, in terms of unannotated text. As shoahl&6l the merged
models on average scores 5.7 points higher than the monolingual modebatietag dictionar-
ies are reduced, but 14.3 points higher when the partner languageflibsag dictionary. This
suggests that the bilingual models effectively transfer the additional lexicamation available
for the resource-rich language to the resource-poor languageingeddbstantial performance im-
provements.

Perhaps the most surprising result is that the resource-rich langaageas much on average
from pairing with the resource-poor partner language as it would haiweed from pairing with a
language with a full lexicon. In both cases, an average accuracy.2¥8i8 achieved, compared to
the 91.1% monolingual baseline.
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Monolingual Bilingual (Merged Node)
Reduced Full| Bothreduced Reduced language Unreduced language Both full
BG 60.9 88.7 60.1 71.3 91.6 91.3
(ofS} 44.1 93.9 52.5 66.7 97.1 96.9
EN 69.0 95.8 73.5 82.4 95.8 95.9
ET 54.8 92.7 59.5 65.6 93.3 93.3
HU 56.8 95.3 59.4 63.0 96.7 96.7
RO 514 91.1 61.4 69.3 91.5 91.9
SL 49.4 87.4 56.6 63.3 89.1 89.3
SR 44.0 84.5 53.4 63.6 90.3 90.2
Avg. 53.8 91.2 59.5 68.1 93.2 93.2

Table 6: Various scenarios for reducing the tag dictionary to the 100 mamgidnt terms.

5.3 Indirect Supervision

Although the main focus of this paper is unsupervised learning, we alstdpreome results in-
dicating that multilingual learning can be applied to scenarios with varying ats@iirannotated
data. These scenarios are in fact quite realistic, as previously traiwelligimy accurate taggers
will usually be available for at least some of the languages in a parallelisoYde apply our latent
variable model to these scenarios by simply treating the tags of annotatedndaty Subset of
languages) as fixed and observed throughout the sampling procédane a strictly probabilistic
perspective this is the correct approach. However, we note that, étiggaheuristics and objec-
tive functions which place greater emphasis on the supervised portior data may yield better
results. We do not explore that possibility here.

supervised language(s)...

BG cs EN ET HU RO SL SR | All others | None

BG 69.1 68.0 659 604 67.1 739 696 76.2 65.5

i C€s | 508 52.2 50.2 512 510 56.6 531 76.6 49.3
£ EN [626 705 68.1 61.8 619 80.6 695 828 71.6
§ ET | 57.2 58.0 57.7 56.1 56.4 59.8 571 725 54.3
5 Hu | 50.3 50.0 53.1 514 51.1 49.8 50.0 62.3 51.0
§ RO | 62.8 61.6 61.3 57.8 585 62.9 592 74.9 57.5
SL | 55.0 56.8 55.6 53.2 544 547 56.2 77.7 53.9

SR | 649 659 64.1 635 61.6 634 69.9 72.5 60.4
Avg | 57.7 61.7 589 586 57.7 579 648 59.2 744 57.9

Table 7: Performance of the latent variable model when some of the eighidgas have super-
vised annotations and the others have only the most frequent 100 waicisnle The
first eight columns report results when only one of the eight languagepervised. The
penultimate column reports results when all but one of the languages awised. The
final column reports results whero supervision is available (repeated from Table 5 for
convenience).
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Table 7 gives results for two scenarios of indirect supervision: whahg one of the eight
languages has annotated data, and whereualbne of the languages has annotated data. In both
cases, the unsupervised languages are provided with a 100 worchlexiball eight languages are
trained together. When only one of the eight languages is superviseestles vary depending on
the choice of supervised language. When one of Bulgarian, Hungari@&omanian is supervised,
no improvement is seen, on average, for the other seven languagesvétpowhen Slovene is su-
pervised, the improvement seen for the other languages is fairly subktatitticaverage accuracy
rising to 64.8%, from 57.9% for the unsupervised latent variable modebarg¥o for the mono-
lingual baseline. Perhaps unsurprisingly, the results are more imgraskian allbut one of the
languages is supervised. In this case, the average accuracy of ¢hensupervised language rises
to 74.4%. Taken together, these results indicate that any mixture of swggbreisources may be
added to the mix in a very simple and straightforward way, often yielding sutitetanprovements
for the other languages.

5.4 Hyperarameter Sensitivity and Runtime Statistics

Both models employ hyperparameters for the emission and transition distributos ¢, and¢g
respectively) and the merged node model employs an additional hyperetar for the coupling
distribution prior (vg). These hyperparameters are all updated throughout the inferesuedpre.
The latent variable model uses two additional hyperparameters that rehfaied: the concen-
tration parameter of the Dirichlet procesg @nd the parameter of the base distribution for super-
lingual tags {y). For the experiments described above we used the initialization values listed in
Section 3.3.1. Here we investigate the sensitivity of the models to different irdtialis of 6,

o0, andwy, and to different fixed values af and,. Tables 8 and 9 show the results obtained
for the merged node and latent variable models, respectively, usinglexigbn. We observe that
across a wide range of values, both models yield very similar results. Iticagdve note that the
final sampled hyperparameter values for transition and emission distribukicassdall below one,
indicating that sparse priors are preferred.

As mentioned in Section 3.2 one of the key theoretical benefits of the latéaibheaapproach is
that the size of the model and its parameter space scale linearly with the nurfdreguages. Here
we provide empirical confirmation by running the latent variable model oncaiiple subsets of
the eight languages, recording the time elapsed for eah Rigure 4 shows the average running
time as the number of languages is increased (averaged over all sutesatk size). We see that the
model running time indeed scales linearly as languages are added, athe thet-language running
time increases very slowly: when all eight languages are included, the time ikoughly double
that for eight monolingual models run serially. Both of our models scale w#il tagset size and
the number of examples. The time dependence on the former is cubic, as wigrasn models and
employ Viterbi decoding to find optimal sequences at test-time. During the tgdinire, however,
the time scales linearly with the tagset size for the latent variable model andatjoally for the
merged node model. This is due to the use of Gibbs sampling that isolates thiduatlsampling
decision on tags (for the latent variable model) and tag-pairs (for the chexgge model). The
dependence on the number of training examples is also linear for the sasna.rea

8. All experiments were single-threaded and run using an Intel Xéb@Blz processor

27



NASEEM, SNYDER, EISENSTEIN& BARZILAY

MERGEDNODE: hyperparameter initializations
b0 1001 001 10 10 10 10
0o 10} 10 10 01 001 10 10
wo 1010 10 10 10 01 0.01

BG | 91.3]91.3 91.3 913 912 911 91
Cs | 969|97.0 970 969 968 96.5 97
EN [ 959|959 959 959 959 959 095
ET | 93.3| 934 933 934 932 934 093
HU | 96.7| 96.7 96.7 96.7 96.7 96.7 96
RO | 919|918 918 919 918 918 91
sL | 89.3|89.3 89.3 893 894 893 89
SR | 90.2| 90.2 90.2 90.2 90.2 90.2 90

[Avg[932[932 932 932 932 931 932

N WOOWOONORFR, W

Table 8: Results for different initializations of the hyperparameters of thgedenode modeky,
Ao andw are the hyperparameters for the transition, emission and coupling multinomials
respectively. The results for each language are averaged ovesalbfe pairings with the
other languages.

LATENTVARIABLE: hyperparameter initializations & settings
«a 1.0 | 0.1 10 100 10 10 10 10 10 1.0
Y | 2.0} 10 10 10 021 001 210 10 10 10
oo 1010 10 10 10 10 01 001 120 10
0o 10|10 10 10 10 10 10 1001 O0.01

BG | 92.6| 926 926 926 926 927 926 926 926 92.6
Cs | 98.2| 981 98.2 982 98.1 98.1 982 98.1 982 098.1
EN | 9501 95.0 949 948 951 952 950 949 949 0950
ET | 94.6| 95.0 95.0 949 942 0948 950 949 949 945
HU | 96.7| 96.7 96.7 96.7 96.7 96.6 96.7 96.7 96.7 96.7
RO | 9511950 951 951 952 951 950 949 0951 95.0
SL | 95.8| 958 958 958 958 958 958 958 958 958
SR | 923|923 923 923 924 924 923 923 923 0923

|Avg | 95.0/ 95.1 95.1 950 950 951 951 950 951 950

Table 9: Results for different initializations and settings of hyperparamefahe latent variable
model. ¢y andf, are the hyperparameters for the transition and emission multinomials re-
spectively and are updated throughout infereacandqy are the concentration parameter
and base distribution parameter, respectively, for the Dirichlet prpaadsemain fixed.

6. Analysis

In this section we provide further analysis of: (i) factors that influeneesffectiveness of language
pairings in bilingual models, (ii) the incremental value of adding more languisgthe latent vari-

28



MULTILINGUAL PART-OF-SPEECHTAGGING
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Figure 4: Average running time for 1000 iterations of the latent variable mdglesults are av-
eraged over all possible language subsets of each size. The top line gteoaverage
running time for the entire subset, and the bottom line shows the running timediiid
the number of languages.

able model, (iii) the superlingual tags and their corresponding crossalipgtterns as learned by
the latent variable model, and (iv) whether multilingual data is more helpfulddditional mono-
lingual data. We focus here on the full lexicon scenario, though weoctxpe analysis to extend to
the various reduced lexicon cases considered above as well.

6.1 Predicting Effective Language Pairings

We first analyze the cross-lingual variation in performance for diffelbdingual language pairings.
As shown in Table 10, the performance of the merged node model fortaeayt language varies
substantially across pairings. In addition, the identity of the optimally helpfiguage pairing
also depends heavily on the target language in question. For instangen&lachieves a large
improvement when paired with Serbian (+7.4), a closely related Slavic lgegtmt only a mi-
nor improvement when coupled with English (+1.8). On the other hand, dtgaBian, the best
performance is achieved when coupling with English (+6) rather than widellaelated Slavic
languages (+2.4 and +0). Thus, optimal pairings do not correspondysionjpnguage relatedness.
We note that when applying multilingual learning to morphological segmentatiobesieresults
were obtained for related languages, but only after incorporatingra¢giglaknowledge about their
lower-level phonological relations using a prior which encouragesiglogically close aligned
morphemes (Snyder & Barzilay, 2008). Here too, a more complex modehwiclels lower-level
morphological relatedness (such as case) may yield better outcomessialy gielated languages.
As an upper bound on the merged node model performance, line 7 ofIiableows the results
when selecting (with the help of an oracle) the best partner for eachdgegrhe average accu-
racy using this oracle is 95.4%, substantially higher than the average bllipgjtag accuracy of
93.2%, and even somewhat higher than the latent variable model perfmrat85%. This gap in
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performance motivates a closer examination of the relationship betweeratgggythat constitute
effective pairings.

’ MERGEDNODE MODEL ‘

coupled with...

Avg | BG CS EN ET HU RO SL SR
BG | 91.3 90.2 947 923 906 912 91.1 887
€S [96.9]953 975 978 963 964 974 974
S EN|95.9|96.1 959 958 95.8 958 96.1 96.0
§ ET | 93.3/93.0 940 929 92.2 93.0 942 93.9
5 HU | 96.7| 96.8 96.6 96.8 96.9 96.8 96.5 96.7
§ RO | 91.9| 941 906 92.0 91.3 908 91.3 939
SsL | 89.3| 885 88.1 89.2 89.8 875875 94.8

SR | 90.2| 885 882 945 942 895 850 0914

Table 10: Merged node model accuracy for all language pairs. Bacharresponds to the perfor-
mance of one language, each column indicates the language with which finenaarce
was achieved. The best result for each language is indicated in bole:s@lts other than
those marked with & are significantly higher than the monolingual baseling &at0.05
according to a sign test.

6.1.1 (ROSSLINGUAL ENTROPY

In a previous publication (Snyder et al., 2008) we proposed usimgs-lingual entropys a post-
hoc explanation for variation in coupling performance. This measure lagdsuthe entropy of a
tagging decision in one language given the identity of an aligned tag in thelatiggrage. While
cross-lingual entropy seemed to correlate well with relative performéorcthe four languages
considered in that publication, we find that it does not correlate as $gréorcall eight languages
considered here. We computed the Pearson correlation coefficieetgMyWell, 2002) between
the relative bilingual performance and cross-lingual entropy. Fdr taget language, we rank the
remaining seven languages based on two measures: how well the pageddancontributes to
improved performance of the target, and the cross-lingual entropy a¢athet language given the
coupled language. We compute the Pearson correlation coefficientdretivese two rankings to
assess their degree of overlap. See Table 19 in the Appendix for a derfipteof results. On
average, the coefficient was 0.29, indicating a weak positive correlaéitmeen relative bilingual
performance and cross-lingual entropy.

6.1.2 ALIGNMENT DENSITY

We note that even if cross-lingual entropy had exhibited higher correlatith performance, it
would be of little practical utility in an unsupervised scenario since its estimatouires a tagged
corpus. Next we consider the density of pairwise lexical alignments batleeguage pairs as
a predictive measure of their coupled performance. Since alignmentstetnthe multilingual

anchors of our models, as a practical matter greater alignment density steld greater oppor-
tunities for cross-lingual transfer. From the linguistic viewpoint, this meamay also indirectly
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capture the correspondence between two languages. Moreover, tssmadas the benefit of be-
ing computable from an untagged corpus, using automatically obtanedt++ alignments. As
before, for each target language, we rank the other languagetaltiyedilingual performance, as
well as by the percentage of words in the target language to which theidpralignments. Here
we find an average Pearson coefficient of 0.42, indicating mild positiseletion. In fact, if we
use alignment density as a criterion for selecting optimal pairing decisioeafbrtarget language,
we obtain an average accuracy of 94.67% — higher than average bllipgdarmance, but still
somewhat below the performance of the multilingual model.

6.1.3 MoDEL CHOICE

The choice of model may also contribute to the patterns of variability we obsenoss language
pairs. To test this hypothesis, we ran our latent variable model on allgfdasguages. The results
of this experiment are shown in Table 11. As in the case of the merged natd, e performance

of each target language depends heavily on the choice of partnerevidgwhe exact patterns of
variability differ in this case from those observed for the merged node médeheasure this vari-

ability, we compare the pairing preferences for each language uncleoéthe two models. More

specifically, for each target language we rank the remaining sevendgagtby their contribution

under each of our two models, and compute the Pearson coefficienidetivese two rankings. As
seen in the last column of Table 19 in the Appendix, we find a coefficieni4® Between the two

rankings, indicating positive, though far from perfect, correlation.

’ LATENTVARIABLE MODEL ‘

coupled with...

AVg BG CS EN ET HU RO SL SR
BG | 91.9 922 919 916 916 92.1 923 09138
i cs |97.2| 975 975 97.6 974 974 965 96.8
S EN | 95.7| 957 95.7 95.7 956 957 957 958
%‘ET 93.9| 948 943 934 928 939 945 94.1
S HU | 96.8| 97.0 96.8 96.7 96.7 96.8 96.6 96.8
:LéRO 932 946 921 924 923 921 94.4 94.7
SL | 90.5| 88.6 87.7 924 952 875 87.6 94.6

SR | 91.6| 947 885 945 945 89.7 880 911

Table 11: Accuracy of latent variable model when run on language. paash row corresponds
to the performance of one language, each column indicates the languagehaththe
performance was achieved. The best result for each language iatedlio bold. All
results other than those marked with are significantly higher than the monolingual
baseline ap < 0.05 according to a sign test.

6.1.4 UTILITY OF EACH LANGUAGE AS A BILINGUAL PARTNER

We also analyze the overdielpfulnessof each language. As before, for each target language,
we rank the remaining seven languages by the degree to which they ctsmtobincreased target
language performance when paired in a bilingual model. We can then atkevhihe helpfulness
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rankings provided by each of the eight languages are correlated vétarmther — in other words,
whether languages tend to be universally helpful (or unhelpful) orthanehelpfulness depends
heavily on the identity of the target language. We consider all pairs ofttamguages, and compute
the Pearson rank correlation between their rankings of the six supplamériguages that they
have in common (excluding the two target languages themselves). Whermageavhese pair-wise
rank correlations we obtain a coefficient of 0.20 for the merged node naoded.21 for the latent
variable model. These low correlations indicate that language helpfulepssids crucially on the
target language in question. Nevertheless, we can still compute the evezhgjulness of each
language (across all target languages) to obtain something like a “sal/@elpfulness ranking.
See Table 20 in the appendix for this ranking. We can then ask whetheamkisng correlates with
language properties which might be predictive of general helpfulnéescompare the universal
helpfulness rankingdo language rankings induced by tag-per-token ambiguity (the averagesnumb
of tags allowed by the dictionary per token in the corpus) as well as trigraropy (the entropy
of the tag distribution given the previous two tags). In both cases we agsgnighest rank to
the language witfowestvalue, as we expect lower entropy and ambiguity to correlate with greater
helpfulness. Contrary to expectations, the ranking induced by tatpen ambiguity actually
correlatesegativelywith both universal helpfulness rankings by very small amounts (-0.28&
merged node model and -0.23 for the latent variable model). For both métigigarian, which
has the lowest tag-per-token ambiguity of all eight languages, hagdre universal helpfulness
ranking. The correlations with trigram entropy were only a little more predietabn the case
of the latent variable model, there was no correlation at all between trignénopg and universal
helpfulness (-0.01). In the case of the merged node model, however,whas moderate positive
correlation (0.43).

6.2 Adding Languages in the Latent Variable Model

While bilingual performance depends heavily on the choice of languaigetipa latent variable
model can easily incorporate all available languages, obviating the needhyfcchoice. To test
performance as the number of languages increases, we ran the laiabevenodel with all possi-
ble subsets of the eight languages in the full lexicon as well as all threeeddexicon scenarios.
Figures 5, 6, 7, and 8 plot the average accuracy as the number obéddlaguages varies for all
four lexicon scenarios (in decreasing order of the lexicon size). &mparison, the monolingual
and average bilingual baseline results are given. In all scenarioitent variable model steadily
gains in accuracy as the number of available languages increases, @odtiiscenarios sees an
appreciable uptick when going from seven to eight languages. In thiexidbn case, the gap be-
tween supervised and unsupervised performance is cut by nearlyitd® gimder the unsupervised
latent variable model with all eight languages.

Interestingly, as the lexicon is reduced in size, the performance of the umlimyerged node
model gains relative to the latent variable model on pairs. In the full lexiese,che latent variable
model is clearly superior, whereas in the two moderately reduced lexicsas cthe performance
on pairs is more or less the same for the two models. In the case of the drasadailted lexicon

9. We note that the universal helpfulness rankings obtained fromafdbh two multilingual models match each other
only roughly: their correlation coefficient with one another is 0.50. ldit@h, “universal” in this context refers only
to the eight languages under consideration and the rankings could eéirghange in a wider multilingual context.
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Figure 5: The performance of the latent variable model as the numbergufdges varies (averaged
over all subsets of the eight languages for each siznT: Average performance across
all languages. Scores for monolingual and bilingual merged node madetgvan for
comparison.RIGHT: The Performance for each individual language as the number of
available languages varies.

(100 words), the merged node model is the clear winner. Thus, it seetrf tha two models, the
performance gains of the latent variable model are more sensitive to thef siirelexicon.

The same four figures (5, 6, 7, and 8) also show the multilingual perfarenlaroken down by
language. All languages except for English tend to increase in agcasaadditional languages are
added to the mix. Indeed, in the two cases of moderately reduced lexidgnsg$6 and 7) all lan-
guages except for English show steady large gains which actually seciregize when going from
seven to the full set of eight languages. In the full lexicon case (Figlfestonian, Romanian, and
Slovene display steady increases until the very end. Hungarian pe@ks imanguages, Bulgarian
at three languages, and Czech and Serbian at seven languagesmloréndrastic reduced lexicon
case (Figure 8), the performance across languages is less corsigtehe gains when languages
are added are less stable. All languages report gains when goingdfrerto two languages, but
only half of them increase steadily up to eight languages. Two languagest® trend downward
after two or three languages, and the other two show mixed behavior.

In the full lexicon case (Figure 5), English is the only language which failsyfwove. In the
other scenarios, English gains initially but these gains are partially eroked more languages are
added. It is possible that English is an outlier since it has significantly loweraasition entropy
than any of the other languages (see Table 3). Thus it may be that integriednsitions are simply
more informative for English than any information that can be gleaned frohilimgual context.
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The performance of the latent variable model for the redugesbtescenario (Counts

5), as the number of languages varies (averaged over all subsets @ifjtit languages
for each size)LEFT: Average performance across all languages. Scores for mondlingua
and bilingual merged node models are given for compariso@HT: The Performance
for each individual language as the number of available languagesvarie
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Figure 8: The performance of the latent variable model for the reducecbte scenario (100
words), as the number of languages varies (averaged over alltsudighe eight lan-
guages for each size)LEFT: Average performance across all languages. Scores for
monolingual and bilingual merged node models are given for compars@HT: The
Performance for each individual language as the number of availalgjedges varies.

6.3 Analysis of the Superlingual Tag Values

In this section we analyze the superlingual tags and their corresporatitagfpspeech distributions,
as learned by the latent variable model. Recall that each superlingualttétiyéty represents
a discoverednultilingual contextand that it is through these tags that multilingual information
is propagated. More formally, each superlingual tag provides a comptdtéodtion over parts-
of-speech for each language, allowing the encoding of both primaryseodndary preferences
separately for each language. These preferences then interact evidmtiuage-specific context
(i.e. the surrounding parts-of-speech and the corresponding wavd)place a Dirichlet process
prior on the superlingual tags, so the number of sampled values is dictatkd bymplexity of the
data. In fact, as shown in Table 12, the number of sampled superlingsateagily increases with
the number of languages. As multilingual contexts becomes more complexvemsediadditional
superlingual tags are needed.

Number of languages 2 3 4 5 6 7 8
Number of superlingual tag values11.07 | 12.57| 13.87| 15.07| 15.79| 16.13| 16.50

Table 12: Average number of sampled superlingual tag values as the noftdreguages increases.

Next we analyze the part-of-speech tag distributions associated withlingpal tag values.
Most superlingual tag values correspond to low entropy tag distributieitis,a single dominant
part-of-speech tag across all languages. See, for example, theudistribassociated with superlin-

35



NASEEM, SNYDER, EISENSTEIN& BARZILAY

gual tag value 6 in Table 13, all of which favor nouns by large margins. Sissl of distributions
occur favoring verbs, adjectives, and the other primary part-aéedpeategories. In fact, among the
seventeen sampled superlingual tag values, nine belong to this type, grabtiee 80% of actual
superlingual tag instances. The remaining superlingual tags corige$panore complex cross-
lingual patterns. The associated tag distributions in those cases fawedtfpart-of-speech tags
in various languages and tend to have higher entropy, with the probabilityspesad more evenly
over two or three tags. One such example is the set of distributions asdogidt¢he superlingual
tag value 14 in Table 13, which seems to be a mixed noun/verb class. In gk @ight languages
the most favored tag is verb, while a strong secondary choice in these isasoun. However,
for Estonian and Hungarian, this preference is reversed, with naing given higher probability.
This superlingual tag may have captured the phenomenon of “light Yevhereby verbs in one
language correspond to a combination of a noun and verb in anotheagageor example the En-
glish verbwhisperV, when translated into Urdu, becomes the collocatitnspefN do/V. In these
cases, verbs and nouns will often be aligned to one another, requimiogeacomplex superlingual
tag. The analysis of these examples shows that the superlingual tagisreljdearns both simple
and complex cross-lingual patterns

BG | P(N) =0.91, P(A) =0.04, .. BG | P(V) =0.66, P(N)=0.21,
o | CS| P(N)=0. 92 P(A) =0.03, = | cS P(V) =0.60, P(N)=0.22,
w | EN | P(N) =0.97, P(V)=0.00, . w | EN | P(V)=0.55, P(N)=0.25, .
2 | ET | P(N) =091, P(V)=0.03, 3 | ET | P(N) =052, P(V)=0.29, .
o | HU | P(N) =085, P(A)=0.06, S | HU | P(N) =044, P(V)=0.34,
< | RO | P(N)=0.90, P(A)=0.04, g RO | P(V)=0.45, P(N)=0.33, .

SL | P(N) =0.94, P(A)=0.03, SL | P(V)=0.55, P(N)=0.24, .

SR | P(N) =0.92, P(A)=0.03, SR | P(V)=0.49, P(N)=0.26, .

Table 13: Part-of-speech tag distributions associated with two supellilagerst tag values. Prob-
abilities of only the two most probable tags for each language are shown.

6.3.1 FERFORMANCE WITHREDUCED DATA

One potential objection to the claims made in this section is that the improved resultserdag b
merely to the addition of more data, so that the multilingual aspect of the model enaglevant.
We test this idea by evaluating the monolingual, merged node, and latentl@ayabtems on train-
ing sets in which the number of examples is reduced by half. The multilinguallmiodéis setting
have access to exactly half as much data as the monolingual model in thelagigirement. As
shown in Table 14, both the monolingual baseline and our models are quitsithseto this drop
in data. In fact, both of our models, when trained on half of the corpuspstiierform the mono-
lingual model trained on the entire corpus. This indicates that the perfoargains demonstrated
by multilingual learning cannot be explained merely by the addition of more data.
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|A\g | BG Ccs EN ET HU RO SL SR

MONOLINGUAL: full data 91.2| 88.7 939 058 92.7 953 911 87.4 845
MONOLINGUAL: half data 91.0/88.8 93.8 957 926 953 90.2 875 845
MERGEDNODE: (avg) fulldata | 93.2| 91.3 96.9 959 933 96.7 91.9 89.3 90.2
MERGEDNODE: (avg) halfdata| 93.0| 91.1 96.6 95.7 92.7 96.7 92.0 88.9 89.9
LATENTVARIABLE: full data 95.0/ 926 98.2 950 946 96.7 951 958 92.3
LATENTVARIABLE: half data 947|926 97.8 947 939 96.7 944 954 0922

Table 14: Tagging accuracy on reduced training dataset, with completdadizgndries; results
on the full training dataset are repeated here for comparison. Theditghn reports
average results across all languages (see Table 3 for language Inlareé@ations).

7. Conclusions

The key hypothesis of multilingual learning is that by combining cues from multpiguages, the
structure of each becomes more apparent. We considered two waydyihgphis intuition to the
problem of unsupervised part-of-speech tagging: a model that dimeeltges tag structures for a
pair of languages into a single sequence and a second model which iimstegubrates multilingual
context using latent variables.

Our results demonstrate that by incorporating multilingual evidence we téevadmpressive
performance gains across a range of scenarios. When a full lexi@wailable, our two models
cut the gap between unsupervised and supervised performanceathy oee third (merged node
model, averaged over all pairs) and two thirds (latent variable model, altieight languages). For
all but one language, we observe performance gains as additionablgeg are added. The sole
exception is English, which only gains from additional languages in retlexécon settings.

In most scenarios, the latent variable model achieves better performamcthéhmerged node
model, and has the additional advantage of scaling gracefully with the nwhlaelguages. These
observations suggest that the non-parametric latent variable struntuiggs a more flexible paradigm
for incorporating multilingual cues. However, the benefit of the lateriaisée model relative to the
merged node model (even when running both models on pairs of langsagess to decrease with
the size of the lexicon. Thus, in practical scenarios where only a smalblexic no lexicon is
available, the merged node model may represent a better choice.

Our experiments have shown that performance can vary greatly dageowl the choice of
additional languages. Itis difficult to predepriori which languages constitute good combinations.
In particular, language relatedness itself cannot be used as a conpigdittor as sometimes
closely related languages constitute beneficial couplings and sometimésteshlanguages are
more helpful. We identify a number of features which correlate with bilingedigpmance, though
we observe that these features interact in complex ways. Fortunateliatent variable model
allows us to bypass this question by simply using all available languages.

In both of our models, lexical alignments play a crucial role as they determangypology
of the model for each sentence. In fact, we observed a positivelatiore between alignment
density and bilingual performance, indicating the importance of high qualitprakmts. In our
experiments, we considered the alignment structure an observed vapialleced by standard MT
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tools which operate over pairs of languages. An interesting alternativédvio® to incorporate
alignment structure into the model itself, to find alignments best tuned for taggmgacy based
on the evidence of multiple languages rather than pairs.

Another limitation of the two models is that they only consider one-to-one lexiicairaents.
When pairing isolating and synthetic languatjeis would be beneficial to align short analytical
phrases consisting of multiple words to single morpheme-rich words in the lathguage. To
do so would involve flexibly aligning and chunking the parallel sentencesigfirout the learning
process.

An important direction for future work is to incorporate even more soucfesultilingual
information, such as additional languages and declarative knowledbeiofypological properties
(Comrie, 1989). In this paper we showed that performance improvesasithber of languages
increases. We were limited by our corpus to eight languages, but weianfigure work on
massively parallel corpora involving dozens of languages as well asrlgafrom languages with
non-parallel data.
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Eisenstein, & Barzilay, 2008, 2009). The current article extends thik woseveral ways, most
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results (Section 3.1.2) and we conduct extensive new empirical analfygesmultilingual results.
More specifically, we analyze properties of language combinations tmétitmate to successful
multilingual learning, we show that adding multilingual data provides much gréateefit than
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Appendix A. Alignment Statistics

BG

CS

EN

ET HU

RO

SL

SR

BG
CS
EN
ET
HU
RO
SL

SR

42163
51098
33849
31673
42017
45969
46434

42163 51098 33849

43067
40207
31537
32559
57789
49740

43067

40746
39012
50289
52869
48394

31673

40207 31537
40746 39012
32056

32056
27709
42499
37681

26455

34072 36442

42017
32559
50289
27709
26455

45969
57789
52869
42499
34072
36442

29797 38004 59865

46434
49740
48394
37681
29797
38004
59865

Table 15: Number of alignments per language pair

BG

CS

EN

ET HU

RO

SL

SR | Avg.

BG
CS
EN
ET
HU
RO
SL

SR

2.77
6.13
3.36
4.04
4.52
2.95
3.48

2.77

3.67
1.92
2.73
3.61
2.59
2.64

6.13 3.36 4.04
3.67 192 273
435 6.12

4.35
6.12
5.59
3.54
3.86

2.88
2.88
3.88 4.13
2.44 3.09
2.21 3.06

452
3.61
5.59
3.88
4.13

3.78
3.92

2.95
2.59
3.54
2.44
3.09
3.78

411

3.483.89
2.64.85
3.864.75
2.213.01
3.063.72
3.92.20
4.113.22
3.33

Table 16: Percentage of alignments removed per language pair
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Appendix B. Tag Repository

BG CS EN ET HU RO SL SR
Adjective X X X X X X X X
Conjunction | x x X X X X X X
Determiner - - X - - X - -
Interjection X X X X X X X X
Numeral X X X X X X X X
Noun X X X X X X X X
Pronoun X X X X X X X X
Particle X X - - - X X X
Adverb X X X X X X X X
Adposition X X X X X X X X
Article - - - - X X - -
Verb X X X X X X X X
Residual X X X X X X X X
Abbreviation| x X X X X X X X

Table 17: Tag repository for each language

Appendix C. Stanford Tagger Performance

Language| Accuracy
BG 96.1
CS 97.2
EN 97.6
ET 97.1
HU 96.3
RO 97.6
SL 96.6
SR 95,5
Avg. 96.7

Table 18: Performance of the (supervised) Stanford tagger for lHexicon scenario
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Appendix D. Rank Correlation

] Performance correlates fdvlERGEDNODE model
Language| Cross-lingual entropy Alignment density ALENTVARIABLE performance

BG -0.29 0.09 -0.09
cs 0.39 0.34 0.24
EN 0.28 0.77 0.42
ET 0.46 0.56 0.56
HU 0.31 -0.02 0.29
RO 0.34 0.83 0.89
SL 0.59 0.66 0.95
SR 0.21 0.13 0.63
Avg. 0.29 0.42 0.49

] Performance correlates fdt ATENTVARIABLE model
Language| Cross-lingual entropy Alignment density B GEDNODE performance

BG 0.58 0.44 -0.09
CS -0.40 -0.44 0.24
EN 0.67 0.41 0.42
ET 0.14 0.32 0.56
HU -0.14 -0.72 0.29
RO 0.04 0.68 0.89
SL 0.57 0.54 0.95
SR 0.18 0.10 0.68
Avg. 0.21 0.17 0.49

Table 19: Pearson correlation coefficients between bilingual perfarenan the target language
and various rankings of the supplementary language. For both modeferagath tar-
get language, we obtain a ranking over all supplementary languaged basilingual
performance in the target language. These rankings are then catneltiether charac-
teristics of the bilingual pairingcross-lingual entropy (the entropy of tag distributions
in the target language given aligned tags in the supplementary langusiggment
density (the percentage of words in the target language aligned to words in thi@gux
language); and performance in the alternative model (target langeafgerpance when
paired with the same supplementary language in the alternative model).
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Appendix E. Universal Helpfulness

MERGEDNODE model | LATENTVARIABLE model
ET 2.43 BG 1.86
EN 2.57 SR 3.00
SL 3.14 ET 3.14
BG 3.43 CS 3.71
SR 3.43 EN 3.71
RO 471 SL 3.71
CS 5.00 RO 4.14
HU 571 HU 6.00

Table 20: Average helpfulness rank for each language under the taelsno
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