Unsupervised Multilingual Grammar Induction

- Languages exhibit variations in patterns of ambiguity
- Variations as natural supervison

در معرر در مر معرد المر المر المرام المرام الله الله الله الله والارض في البداء خلق الله السموات والارض

Morphology: acl 2008

POS tagging: emnlp 2008 naacl 2009

Syntax: acl 2009 (this talk)

English: I saw the student from MIT

English: I saw the student from MIT

```
English:

I saw the student from MIT

Urdu:

I MIT of student saw
```

```
English: [I saw] the student from MIT
```

```
English: [I saw] the student from MIT

Urdu: I MIT of student saw
```

```
English: I saw the student from MIT
```

```
Urdu: [I MIT] of student saw
```

```
English:

I saw the student from MIT

Urdu:

[I MIT] of student saw

X
```

English: I saw the student from MIT

English: I [saw the student [from MIT]]

```
English: I saw [the student [from MIT]]
```

```
English: I saw the student [from MIT]

Urdu: I [MIT of] student saw

♠
```

```
English: I \quad saw \quad the \quad student \begin{bmatrix} from \quad MIT \end{bmatrix}

Urdu: I \quad \begin{bmatrix} MIT \quad of \end{bmatrix} student \end{bmatrix} \quad saw
```

```
English: I \quad saw \quad [the \quad student \quad [from \quad MIT \ ]]

Urdu: I \quad [MIT \quad of \quad ] \quad student \quad [saw \quad ]
```


Main idea: learn from systematic variations in phrase order and expression

Key Technical Challenge

Represent shared cross-lingual syntactic structure

- Linguistically plausible
 - Allow full range of syntactic divergence and translational freedom
- Computationally tractable
 - Support probabilistic operations: argmax, marginalization, sampling

Prior Representations

Synchronous Grammars [Wu 1997; Melamed 2003; Chiang 2005; Smith&Smith 2004; Eisner 2005; Blunsom et al 2008]

- Employed for modeling phrase reordering in MT
- In basic form, isomorphic trees (up to sibling order)

Node Matching [Burkett&Klein 2008]

- Ignores tree structure
- Marginalization is #P-complete

Our Proposal

Probabilistic adaptation of Unordered Tree Alignment [Jiang et al 1995]

- Node alignments must respect tree structures
- Yet any number of nodes may remain unaligned
- Can marginalize and sample all possible alignments in linear time with dynamic program

For trees T_1 and T_2 , an alignment A is obtained in the following way:

- I. Insert empty nodes into T_1 and T_2 and swap sibling order, until they are isomorphic
- 2. Overlay the resulting trees T_1 and T_2 to obtain A

For trees T_1 and T_2 , an alignment A is obtained in the following way:

- I. Insert empty nodes into T_1 and T_2 and swap sibling order, until they are isomorphic
- 2. Overlay the resulting trees T_1 and T_2 to obtain A

For trees T_1 and T_2 , an alignment A is obtained in the following way:

- I. Insert empty nodes into T_1 and T_2 and swap sibling order, until they are isomorphic
- 2. Overlay the resulting trees T_1 and T_2 to obtain A


```
DT NN (VB NNP)
NN (NNP VB)
```


We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

We observe:

Parameters to learn

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

Parameters to learn

 ω Probability of constituent pairs of aligned nodes

We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

Parameters to learn

 ω Probability of constituent pairs of aligned nodes

 ϕ^+ Distribution on num. of word alignments between aligned nodes

Distribution on num. of word alignments between unaligned nodes

We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

Parameters to learn

 ω Probability of constituent pairs of aligned nodes

 ϕ^+ Distribution on num. of word alignments between aligned nodes

 ϕ^- Distribution on num. of word alignments between unaligned nodes

(language-specific parameters for unaligned nodes [Klein&Manning 2002])

Generative Story

Draw alignment tree template (T_1, T_2, A) from uniform distribution:

For each unaligned node, draw a constituent from language-specific parameters:

For each unaligned node, draw a constituent from language-specific parameters:

Draw word alignments between aligned and unaligned nodes according to ϕ^+ and ϕ^- :

Draw word alignments between aligned and unaligned nodes according to ϕ^+ and ϕ^- :

Inference: Gibbs Sampling

 Sample each aligned tree pair conditioned on others:

$$P((T_1, T_2, A)_i | (\mathbf{T_1}, \mathbf{T_2}, \mathbf{A})_{-i})$$

 Marginalize over all parameter values using standard closed forms (accumulated counts + hyperparameters)

• Hard to sample aligned tree pair: (T_1, T_2, A)

- ullet Hard to sample aligned tree pair: (T_1,T_2,A)
- Use proposal distribution Q, which assumes no nodes are aligned, to separately sample T_1^st, T_2^st

- ullet Hard to sample aligned tree pair: (T_1,T_2,A)
- Use proposal distribution Q, which assumes no nodes are aligned, to separately sample T_1^st, T_2^st
- Accept with probability:

$$\min \left\{ 1, \frac{P(T_1^*, T_2^*) \ Q(T_1, T_2)}{P(T_1, T_2) \ Q(T_1^*, T_2^*)} \right\}$$
 (Metropolis-Hastings)

- ullet Hard to sample aligned tree pair: (T_1,T_2,A)
- \bullet Use proposal distribution Q , which assumes no nodes are aligned, to separately sample T_1^*, T_2^*
- Accept with probability:

$$\min \left\{ 1, \frac{P(T_1^*, T_2^*) \ Q(T_1, T_2)}{P(T_1, T_2) \ Q(T_1^*, T_2^*)} \right\}$$
 (Metropolis-Hastings)

ullet Conditionally sample tree alignment: $A|T_1,T_2|$

- ullet Hard to sample aligned tree pair: (T_1,T_2,A)
- Use proposal distribution Q, which assumes no nodes are aligned, to separately sample T_1^st, T_2^st
- Accept with probability:

$$\min\left\{1, \frac{P(T_1^*, T_2^*)}{P(T_1, T_2)} \frac{Q(T_1, T_2)}{Q(T_1^*, T_2^*)}\right\} \text{ (Metropolis-Hastings)}$$

ullet Conditionally sample tree alignment: $A|T_1,T_2|$

separately sample T_1^st, T_2^st

Sampling each Tree: Inside-Outside

- Recursively sample split-points from the top down
- Calculate probability of each split-point by marginalizing over all possible subtrees ("inside" table of inside-outside)

```
DT NN VB IN DT JJ NN
The boy ran through the haunted house
```

need to marginalize over all possible alignments \boldsymbol{A}

 \Rightarrow

need to marginalize over all possible alignments ${\cal A}$

- For $n_1 \in T_1, n_2 \in T_2$ table D stores marginal probability of subtrees rooted at n_1, n_2
- Bottom-up dynamic program computes D in time $O(|T_1||T_2|)$

need to marginalize over all possible alignments A

- For $n_1 \in T_1, n_2 \in T_2$ table D stores marginal probability of subtrees rooted at n_1, n_2
- ullet Bottom-up dynamic program computes D in time $O(|T_1||T_2|)$

case 1: n_1

 \Rightarrow

need to marginalize over all possible alignments ${\cal A}$

- For $n_1 \in T_1, n_2 \in T_2$ table D stores marginal probability of subtrees rooted at n_1, n_2
- Bottom-up dynamic program computes D in time $O(|T_1||T_2|)$

need to marginalize over all possible alignments ${\cal A}$

- For $n_1 \in T_1, n_2 \in T_2$ table D stores marginal probability of subtrees rooted at n_1, n_2
- Bottom-up dynamic program computes D in time $O(|T_1||T_2|)$

case 3: n_1 n_2

need to marginalize over all possible alignments ${\cal A}$

- For $n_1 \in T_1, n_2 \in T_2$ table D stores marginal probability of subtrees rooted at n_1, n_2
- Bottom-up dynamic program computes D in time $O(|T_1||T_2|)$

similar for sampling

 $A|T_1,T_2$

Experiments

Input: Bilingual POS sequences (w/ giza alignments)

Output: Binary tree bracketings

Evaluate: Bracket precision, recall, F-measure, on held-out monolingual test data.

Baseline: (Bayesian) CCM [Klein & Manning 2002]

Corpora

- Korean-English Treebank: 5,000 sentences
- Urdu translation of WSJ: 4,300 sentences
 - no Urdu gold brackets
- English-Chinese Treebank: 3,850 sentences

Evaluate on various maximum sentence lengths (5 - 30)

Max Sentence Length

Results

Average improvement across all scenarios:

Precision: +10

Recall: +8

F-measure: +9

 Average reduction in error relative to binary tree oracle: 19%

Percentage of tree nodes aligned

CH-EN	
UR-EN	
KR-EN	

Percentage of tree nodes aligned

CH-EN	71.6%
UR-EN	68.8%
KR-EN	60.2%

Percentage of tree nodes aligned

CH-EN	71.6%	
UR-EN	68.8%	
KR-EN	60.2%	

Entropy of bracketed POS sequences

CH (EN) EN (CH) EN (KR) EN (UR) KR (EN)

Percentage of tree nodes aligned

CH-EN	71.6%
UR-EN	68.8%
KR-EN	60.2%

Entropy of bracketed POS sequences

Percentage of tree nodes aligned

CH-EN	71.6%
UR-EN	68.8%
KR-EN	60.2%

Entropy of bracketed POS sequences

MONO	BI	GOLD
6.7	6.0	5.8

Monolingual X

Monolingual X

Bilingual (EN-UR) ✓

 Pr_{mono} (NNP NN) < Pr_{bi} (NNP NN)

 Pr_{mono} (NNP NN) < Pr_{bi} (NNP NN)

English: NNP NN
Urdu: NNP OF NN

Conclusions

Key idea: Use bilingual cues to learn better unsupervised monolingual models of grammar

- Adapt Tree Alignment to probabilistic setting:
 - Discover partial shared structure
 - Allow language-specific divergence
 - Computationally tractable
- Achieve improved performance on five corpora, across all sentence lengths

Thank you!

Analysis Entropy of constituent tag sequences

Percentage of a		MONO	BI	GOLD
tree node	CHEN	6.6	5.6	5.3
CH-EN	ENCH	6.9	5.9	5.5
UR-EN	KREN	6.2	6.2	6.9
KR-EN	ENKR	6.8	5.9	5.6
	ENur	6.8	6.2	5.9
	avg	6.7	6.0	5.8

Analysis Entropy of constituent tag sequences

Percentage of a			MONO	BI	GOLD
tree node		CHEN	6.6	5.6	5.3
CH-EN	71.	ENCH	6.9	5.9	5.5
UR-EN	68.	KREN	6.2	6.2	6.9
KR-EN	60.	ENKR	6.8	5.9	5.6
		ENur	6.8	6.2	5.9
		avg	6.7	6.0	5.8

Morphology: acl 2008

POS tagging: emnlp 2008 naacl 2009

Syntax: acl 2009 (this talk)

