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Multilingual Cues

English: I saw |the student| from MIT |]
Urdu: I [[M[T Of]stuc;’ent] saw
2

Main idea: learn from systematic variations in
bhrase order and expression




Key Technical Challenge

Represent shared cross-lingual syntactic
structure

® [inguistically plausible

- Allow full range of syntactic divergence and
translational freedom

® Computationally tractable

- Support probabilistic operations: argmax,
marginalization, sampling



Prior Representations

Syn chronous Grammars [Wu 1997; Melamed 2003; Chiang
2005; Smith&Smith 2004; Eisner 2005; Blunsom et al 2008]

® Employed for modeling phrase reordering in MT

® |n basic form, isomorphic trees (up to sibling order)

Node Matchin g [Burkett&Klein 2008]

® |gnores tree structure

® Marginalization is #P-complete



Our Proposal

Probabilistic adaptation of Unordered Tree
Alignment piang et al 1995]

® Node alighments must respect tree structures
® Yet any number of nodes may remain unaligned

® (Can marginalize and sample all possible alignments in linear
time with dynamic program
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2. Overlay the resulting trees T|” and T’ to obtain A
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A Generative Model

We observe:
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Parameters to learn

W

Hypothesize aligned trees
that best explain:

® frequent POS sequence pairs

® |exical alignments

Probability of constituent pairs of aligned nodes

¢+ Distribution on num. of word alignments between aligned nodes

e

Distribution on num. of word alighments between unaligned nodes

(language-specific parameters for unaligned nodes [Klein&Manning 2002])



Generative Story

Draw alighment tree template (11,75, A)
from uniform distribution:
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Generative Story

Draw word alighments between aligned and
unaligned nodes according to ¢ and ¢
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Inference: Gibbs Sampling

® Sample each alighed tree pair conditioned
on others:

P ((Tl, TQ, A)zl(Tla T27 A)—z)

® Marginalize over all parameter values

using standard closed forms
(accumulated counts + hyperparameters)
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Sampling Aligned Trees

® Hard to sample aligned tree pair: (Tl, 15, A)
® Use proposal distribution (), which assumes

no nodes are aligned, to|separately sample 77", T,
® Accept with probability:

min{l, P17, T5) Q(J}Ti)
P(Ty, o) IQ(T7, Ty)

e Conditionally sample tree alignment:| A| T, T5

} (Metropolis-Hastings)



Sampling each Tree:
Inside-Outside

® Recursively sample split-points from the top
down

® (Calculate probability of each split-point by
marginalizing over all possible subtrees
(“inside” table of inside-outside)

#

DT NN VB 1IN DT JJ NN

The boyl ran through the haunted house
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Experiments

Input: Bilingual POS sequences (w/ giza alignments)

Output:  Binary tree bracketings

Bracket precision, recall, F-measure,

Evaluate: .
on held-out monolingual test data.

Baseline:  (Bayesian) CCM [Klein & Manning 2002]




Corpora

® Korean-English Treebank: 5,000 sentences

® Urdu translation of WS§J: 4,300 sentences

- no Urdu gold brackets

® English-Chinese Treebank: 3,850 sentences

Evaluate on various maximum sentence lengths (5 - 30)
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Results

® Average improvement across all scenarios:

Precision: +10
Recall: +8

F-measure: +9

® Average reduction in error relative to
binary tree oracle: 19%
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Conclusions

Key idea: Use bilingual cues to learn better
unsupervised monolingual models of grammar

® Adapt ITree Alignment to probabilistic setting:

» Discover partial shared structure
» Allow language-specific divergence

» Computationally tractable

® Achieve improved performance on five
corpora, across all sentence lengths



Thank you!
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