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בראשית ברא אלהים את השמים ואת הארץ

في البداء خلق االله السموات والارض

• Languages exhibit variations in 
patterns of ambiguity 

• Variations as natural supervison
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Main idea:  learn from systematic variations in 
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Key Technical Challenge

Represent shared cross-lingual syntactic 
structure

• Linguistically plausible

- Allow full range of syntactic divergence and 
translational freedom

• Computationally tractable 

- Support probabilistic operations: argmax, 
marginalization, sampling



Prior Representations

Synchronous Grammars [Wu 1997; Melamed 2003;  Chiang 
2005; Smith&Smith 2004; Eisner 2005; Blunsom et al 2008]

• Employed for modeling phrase reordering in MT

• In basic form, isomorphic trees (up to sibling order)

Node Matching [Burkett&Klein 2008]

• Ignores tree structure

• Marginalization is #P-complete



Our Proposal

Probabilistic adaptation of Unordered Tree 
Alignment [Jiang et al 1995] 

• Node alignments must respect tree structures

• Yet any number of nodes may remain unaligned

• Can marginalize and sample all possible alignments in linear 
time with dynamic program



For trees T1 and T2,  an alignment A is 
obtained in the following way:

1. Insert empty nodes into T1 and T2 and swap sibling 
order, until they are isomorphic
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A Generative Model
We observe:

DT NN VB NNP 

NN   NNP VB
... ... ...

• frequent POS sequence pairs

• lexical alignments
( )

Hypothesize aligned trees 
that best explain:

ω Probability of constituent pairs of aligned nodes

Parameters to learn

Distribution on num. of word alignments between aligned nodes
Distribution on num. of word alignments between unaligned nodes

φ+

φ−

(language-specific parameters for unaligned nodes [Klein&Manning 2002]) 
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Inference: Gibbs Sampling

• Sample each aligned tree pair conditioned 
on others:

• Marginalize over all parameter values 
using standard closed forms           
(accumulated counts + hyperparameters)

P
(
(T1, T2, A)i

∣∣(T1,T2,A)−i

)
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Sampling each Tree: 
Inside-Outside

The  boy  ran  through  the  haunted  house 
DT  NN  VB  IN    DT   JJ    NN

• Recursively sample split-points from the top 
down

• Calculate probability of each split-point by 
marginalizing over all possible subtrees     
(“inside” table of inside-outside)

☟

T ∗
1 , T ∗

2separately sample



P (T1, T2)computing need to marginalize over all 
possible alignments A⇒



P (T1, T2)computing need to marginalize over all 
possible alignments A⇒

• For                         table      stores marginal 
probability of subtrees rooted at 

• Bottom-up dynamic program computes      in 
time 

n1 ∈ T1, n2 ∈ T2

n1, n2

D

D
O(|T1||T2|)



P (T1, T2)computing need to marginalize over all 
possible alignments A⇒

• For                         table      stores marginal 
probability of subtrees rooted at 

• Bottom-up dynamic program computes      in 
time 

case 1:
n1 n2

n1 ∈ T1, n2 ∈ T2

n1, n2

D

D
O(|T1||T2|)



P (T1, T2)computing need to marginalize over all 
possible alignments A⇒

• For                         table      stores marginal 
probability of subtrees rooted at 

• Bottom-up dynamic program computes      in 
time 

case 2:
n1 n2

λ

n1 ∈ T1, n2 ∈ T2

n1, n2

D

D
O(|T1||T2|)



P (T1, T2)computing need to marginalize over all 
possible alignments A⇒

• For                         table      stores marginal 
probability of subtrees rooted at 

• Bottom-up dynamic program computes      in 
time 

case 3:
n1 n2

λ

n1 ∈ T1, n2 ∈ T2

n1, n2

D

D
O(|T1||T2|)



A|T1, T2similar for sampling

P (T1, T2)computing need to marginalize over all 
possible alignments A⇒

• For                         table      stores marginal 
probability of subtrees rooted at 

• Bottom-up dynamic program computes      in 
time 

case 3:
n1 n2

λ

n1 ∈ T1, n2 ∈ T2

n1, n2

D

D
O(|T1||T2|)



Experiments

Input: Bilingual POS sequences 

Output: Binary tree bracketings

Evaluate:
Bracket precision, recall, F-measure, 
on held-out monolingual test data. 

Baseline: (Bayesian) CCM [Klein & Manning 2002]

(w/ giza alignments)



Corpora

• Korean-English Treebank:   5,000 sentences

• Urdu translation of  WSJ:   4,300 sentences

- no Urdu gold brackets

• English-Chinese Treebank:  3,850 sentences

Evaluate on various maximum sentence lengths (5 - 30)
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Results

• Average improvement across all scenarios:

Precision:      +10
Recall:           +8
F-measure:    +9

• Average reduction in error relative to 
binary tree oracle:  19%
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Monolingual X

The FCC effort Collapsed
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English:
Urdu:



Conclusions
Key idea:  Use bilingual cues to learn better 
unsupervised monolingual models of grammar

• Adapt Tree Alignment to probabilistic setting: 

‣ Discover partial shared structure

‣ Allow language-specific divergence

‣ Computationally tractable

• Achieve improved performance on five 
corpora, across all sentence lengths



Thank you!
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