
Characterizing a Java Implementation of
TPC-W

Todd Bezenek, Trey Cain, Ross Dickson, Tim Heil, Milo Martin,
Collin Mccurdy, Ravi Rajwar, Eric Weglarz, Craig Zilles, and

Mikko Lipasti

Department of Electrical and Computer Engineering
Computer Sciences Department
University of Wisconsin-Madison

Slide
2

Ou
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

tline

• What is TPC-W?

• Our implementation of TPC-W
O Why Java?

• Full system simulation

• Results

• Future work and summary

Slide
3

ue 1Q 2000

5

environments

ontent
Wh
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

at is TPC-W?

• TPC-W is the TPC’s newest benchmark
O Version D5.5 (11/19/99), final version d
O Our implementation is based on vD5.
O www.tpc.org

• Measures systems for transactional web

• Transactional web environment
O Web serving of static and dynamic c
O On-line transaction processing (OLTP)
O Some decision support (DSS)

Slide
4

g

Wh
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

at does TPC-W model?

• Models an online bookstore
O Searching
O Browsing
O Shopping carts and secure purchasin
O Best sellers and new products
O Customer registeration
O Administrative updates

Slide
5

be updated

s

r (like TPC-C)

)

Ob
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

servations about TPC-W

• Dynamic web pages, static images

• Durable shopping cart
• Lazy consistency

O Allows 30 seconds for some pages to
O Enables various caching optimization
O We did not exploit this opportunity

• Scaling
O ~5MB in DB tables per concurrent use
O ~1KB per item in DB tables (like TPC-D
O ~25KB per item in static images

Slide
6

/Jigsaw)
Ou
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

r TPC-W implementation

• All 14 web interactions implemented

• Components
O Jigsaw Java web server (www.w3.org
O Server side Java ‘servlets’
O Java Database Conectivity (JDBC)
O IBM’s DB2 Universal Database 6.1
O Images stored in filesystem

• Did not implement
O Secure sockets layer (SSL)
O Payment gateway emulator (PGE)

Slide
7

t Tables

on (i.e.,
 cart)

DB/2

250 MB
Ou
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

r TPC-W implementation

Merchan
Session
Informati
shopping

Images Used in
Web Content

250 MB

Java VM

RBEEmulated
BrowserEmulated

BrowserEmulated
BrowserEmulated

Browser

Java VM

RBEEmulated
BrowserEmulated

BrowserEmulated
BrowserEmulated

Browser

Java VM

Jigsaw
Web

Server ServletsHTTP

Java VM

Jigsaw
Web

Server ServletsHTTP

JDBC

Slide
8

arc ISAs

ith no changes

o a database

tood

t

Wh
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

y Java?

• Portability
O Studied workload on PowerPC and Sp
O Workload ran on both architectures w

• JDBC interface
O Connecting server side applications t
O Simple and elegant

• Server side Java
O Java servlet behavior not well unders
O Opportunity to study new environmen

Slide
9

nts
ion

ccurate and
Wh
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

y full-system simulation?

• TPC-W has
O Multiple users, threads, and compone
O Significant inter-process communicat
O TCP/IP networking
O File caching of static content

• Performance counters are not enough

• Full-system simulation is necessary for a
complete characterization of TPC-W

• Simulated two architectures

Slide
10

device drivers

neration
Sim
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

OS-PowerPC

• AIX 4.3.1 (slightly modified)

• 64-bit PowerPC ISA
• Simulates device interfaces → modified

• Checkpointing support
• Fast simulation through runtime code-ge

O Runs only on AIX PowerPC machines

• Emitter interface for trace-based studies

• Source code available
• SimOS-PPC publicly available

Slide
11

ed drivers

nd simulator
Sim
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

ICS

• Solaris 7 (unmodified)

• 64-bit Sparc v9 ISA
• Simulates hardware devices → unmodifi

• Fast simulation through threaded code a
translation cache (STC)

• Source code not generally available
O Runs only on Solaris/SPARC machines
O Add code through loadable modules

• www.simics.com (Virtutech)

Slide
12

mage
mulation tricky

mentation

 systems
Ful
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

l-system simulation challenges

• Significant work in getting the right disk i
• External ethernet & TCP/IP networking si

O Machine-room simulation?

• Checkpointing simulated multi-tier imple
O External interactions add complexity

• Simulation speed/detail tradeoff
• Large workload requires simulating large

O Multiple processors
O Large memories
O Long warmups

Slide
13

gle system

 time

mOS)

n all tables
Sim
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

ulation parameters

• Single-tier configuration
O All servers & browser emulators on sin
O One web server
O Eight emulated browsers with no think

• Dual processor (SimICS), Uniprocessor (Si

• 1 GB main memory, Single-level cache
• ~250 MB of database tables

O 144000 customers, 10,000 items

• Images not served

• Database warm-up by full table scans o

• JVM 1.1.x (No JIT)

Slide
14

Stores

23 %

5 %

22 %

49 %
Wo

Sim

Sim
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

rkload CPU breakdown

ICS (from Unix utility: top)

In kernel mode: 5 -15 %

OS-PPC (from emitter interface)

Process System Utilization

rbe 2 - 5 %

jigsaw 15 - 25 %

db2 70 - 83 %

Process Instructions Loads

kernel (1 thread) 33 % 23 %

rbe (10 threads) 5 % 2 %

jigsaw (14 threads) 23 % 16 %

db2 (17 threads) 38 % 59 %

Slide
15

 database

18 20

ome
roduct Detail
earch Request
hopping Cart
uy Request
rder Inquiry
dmin Request

18 20

ew Products
est Sellers
earch Results
ustomer Regist.
uy Confirm
rder Display
dmin Confirm
Res
Sea
serv
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

ponse time (from a real system)
rches and ‘best sellers’ requests dominate
er utilization

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

Time (s)

%
 In

te
ra

ct
io

ns

Response Time

H
P
S
S
B
O
A

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

Time (s)

%
 In

te
ra

ct
io

ns

Response Time

N
B
S
C
B
O
A

Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

Slide
16

Instruction supply (SimICS/SimOS)
SimICS:

I-Cache Hit Rate (150M inst.)
64-byte block, 4-way

Size Proc#1 Proc#2

4KB 91.9 % 92.6 %

16KB 94.4 % 95.0 %

64KB 97.5 % 97.7 %

256KB 99.0 % 99.1 %

1MB 99.7 % 99.7 %

Overall Branch Predictor Accuracy

Predictor Proc#1 Proc#2

small 2-bit (128B table) 84.1 % 85.1 %

medium 2-bit (1KB table) 93.4 % 92.8 %

large 2-bit (16KB table) 96.6 % 95.5 %

small gshare (10b history, 256B table) 89.5 % 89.2 %

large gshare (16b history, 16KB table) 96.7 % 95.4 %

SimOS-PPC:

I-Cache Hit Rate (2.5B inst.)
64-byte block, 2-way

Size Proc#1

4KB 95.6 %

16KB 97.7 %

64KB 99.1 %

256KB 99.7 %

1MB 99.9 %

Per Thread Branch Predictor Accuracy
large gshare (16b history, 16KB table)

Thread Accuracy

kernel 96.7 %

rbe 96.4 %

jigsaw 93.6 %

db2 93.0 %

Slide
17

ory access,

tal

4 %

9 %

5 %

3 %

 %

0 M inst.),
Da
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

ta supply (SimOS/SimICS)

SimOS: Data Cache Miss Rate (2.5 B inst.), per mem
128-byte block, 4-way

Size Load Store To

512 KB 0.25 % 0.22 % 0.2

1 MB 0.19 % 0.19 % 0.1

2 MB 0.14 % 0.17 % 0.1

4 MB 0.11 % 0.15 % 0.1

16 MB 0.08 % 0.13 % 0.1

SimICS: Data Cache Miss Rate (300-45
per instruction, 64-byte block, 4-way

Size Total

1 MB 0.64 %

4 MB 0.43 %

Slide
18

Upgrade-3-hop
Data-Fetch-3-hop
Upgrade-2-hop
Data-Fetch-2-hop
Insn-Fetch
Co
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

herence (SimICS)

Tot
al

Use
r

Kern
el

Tot
al

Use
r

Kern
el

Benchmarks

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 m
is

se
s

1MB 4MB

Slide
19

e

Fut
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

ure work

• More workload tuning
O We found proper indexing important
O Exploit lazy consistency
O Database tuning
O More efficient Java servlet/JDBC cod
O Better JVM/JIT

• SSL Implementation

• Larger database size

• Multi-tier measurements
• Detailed architectural characterization

Slide
20

mented
stem simulators
 OSs with no

 be completed

oad

-system

de release at

pcw.html
Sum
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

mary

• A difficult and complex task
O Most of the TPC-W specification imple
O Setup of TPC-W on two different full-sy

• Using Java enables study of two ISAs and
changes to the application

• Performance tuning and optimization to

• Preliminary characterization of this workl

• Most complex workload setup under full
simulation?

• Look for updates and a future source co
http://www.ece.wisc.edu/~mikko/t

Backup

browsers

d Browsers (EBs)

ther URLs

tlab file)

)

Rem
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

ote browser emulator (RBE)

• Emulates web users interacting through
O RBE manages a collection of Emulate
O Each EB represents a single user

• Non-deterministic walk over web pages
O Send HTTP request
O Parse HTTP response for images and o
O Wait for think time
O Repeat

• Collects statistics required by TPC-W (Ma
O Throughput over time (WIPS)
O Web interaction response times (WIRT
O Transaction mix

Backup

ies

aximum
otal Bytes
42,048,000

1,420,000

11,534,400

8,690,000

6,440

00,080,000

45,100,800

10,497,600

19,377,240
DB2

13 i
Characterizing a Java Implementation of TPC-W
University of Wisconsin-Madison

 table sizes

ndexes were added to speedup the quer

Table Name Number of
Rows

Maximum
Bytes

M
T

address 288,000 146

author 2,500 568

cc_xacts 129,600 89

item 10,000 869

country 92 70

customer 144,000 695 1

orderline 388,800 116

orders 129,600 81

Total 1,092,592 N/A 2

	Characterizing a Java Implementation of TPC-W
	Todd Bezenek, Trey Cain, Ross Dickson, Tim Heil, Milo Martin, Collin Mccurdy, Ravi Rajwar, Eric W...
	Department of Electrical and Computer Engineering
	Computer Sciences Department
	University of Wisconsin-Madison
	Outline
	• What is TPC-W?
	• Our implementation of TPC-W
	O Why Java?
	• Full system simulation
	• Results
	• Future work and summary

	Why full-system simulation?
	• TPC-W has
	O Multiple users, threads, and components
	O Significant inter-process communication
	O TCP/IP networking
	O File caching of static content
	• Performance counters are not enough
	• Full-system simulation is necessary for accurate and complete characterization of TPC-W
	• Simulated two architectures

	SimOS-PowerPC
	• AIX 4.3.1 (slightly modified)
	• 64-bit PowerPC ISA
	• Simulates device interfaces Æ modified device drivers
	• Checkpointing support
	• Fast simulation through runtime code-generation
	O Runs only on AIX PowerPC machines
	• Emitter interface for trace-based studies
	• Source code available
	• SimOS-PPC publicly available

	SimICS
	• Solaris 7 (unmodified)
	• 64-bit Sparc v9 ISA
	• Simulates hardware devices Æ unmodified drivers
	• Fast simulation through threaded code and simulator translation cache (STC)
	• Source code not generally available
	O Runs only on Solaris/SPARC machines
	O Add code through loadable modules
	• www.simics.com (Virtutech)

	Our TPC-W implementation
	Future work
	• More workload tuning
	O We found proper indexing important
	O Exploit lazy consistency
	O Database tuning
	O More efficient Java servlet/JDBC code
	O Better JVM/JIT
	• SSL Implementation
	• Larger database size
	• Multi-tier measurements
	• Detailed architectural characterization

	Summary
	• A difficult and complex task
	O Most of the TPC-W specification implemented
	O Setup of TPC-W on two different full-system simulators
	• Using Java enables study of two ISAs and OSs with no changes to the application
	• Performance tuning and optimization to be completed
	• Preliminary characterization of this workload
	• Most complex workload setup under full-system simulation?
	• Look for updates and a future source code release at
	http://www.ece.wisc.edu/~mikko/tpcw.html

	What is TPC-W?
	• TPC-W is the TPC’s newest benchmark
	O Version D5.5 (11/19/99), final version due 1Q 2000
	O Our implementation is based on vD5.5
	O www.tpc.org
	• Measures systems for transactional web environments
	• Transactional web environment
	O Web serving of static and dynamic content
	O On-line transaction processing (OLTP)
	O Some decision support (DSS)

	What does TPC-W model?
	• Models an online bookstore
	O Searching
	O Browsing
	O Shopping carts and secure purchasing
	O Best sellers and new products
	O Customer registeration
	O Administrative updates

	Observations about TPC-W
	• Dynamic web pages, static images
	• Durable shopping cart
	• Lazy consistency
	O Allows 30 seconds for some pages to be updated
	O Enables various caching optimizations
	O We did not exploit this opportunity
	• Scaling
	O ~5MB in DB tables per concurrent user (like TPC-C)
	O ~1KB per item in DB tables (like TPC-D)
	O ~25KB per item in static images

	Our TPC-W implementation
	• All 14 web interactions implemented
	• Components
	O Jigsaw Java web server (www.w3.org/Jigsaw)
	O Server side Java ‘servlets’
	O Java Database Conectivity (JDBC)
	O IBM’s DB2 Universal Database 6.1
	O Images stored in filesystem
	• Did not implement
	O Secure sockets layer (SSL)
	O Payment gateway emulator (PGE)

	Why Java?
	• Portability
	O Studied workload on PowerPC and Sparc ISAs
	O Workload ran on both architectures with no changes
	• JDBC interface
	O Connecting server side applications to a database
	O Simple and elegant
	• Server side Java
	O Java servlet behavior not well understood
	O Opportunity to study new environment

	Remote browser emulator (RBE)
	• Emulates web users interacting through browsers
	O RBE manages a collection of Emulated Browsers (EBs)
	O Each EB represents a single user
	• Non-deterministic walk over web pages
	O Send HTTP request
	O Parse HTTP response for images and other URLs
	O Wait for think time
	O Repeat
	• Collects statistics required by TPC-W (Matlab file)
	O Throughput over time (WIPS)
	O Web interaction response times (WIRT)
	O Transaction mix

	Full-system simulation challenges
	• Significant work in getting the right disk image
	• External ethernet & TCP/IP networking simulation tricky
	O Machine-room simulation?
	• Checkpointing simulated multi-tier implementation
	O External interactions add complexity
	• Simulation speed/detail tradeoff
	• Large workload requires simulating large systems
	O Multiple processors
	O Large memories
	O Long warmups

	DB2 table sizes
	13 indexes were added to speedup the queries
	address
	288,000
	146
	42,048,000
	author
	2,500
	568
	1,420,000
	cc_xacts
	129,600
	89
	11,534,400
	item
	10,000
	869
	8,690,000
	country
	92
	70
	6,440
	customer
	144,000
	695
	100,080,000
	orderline
	388,800
	116
	45,100,800
	orders
	129,600
	81
	10,497,600
	Total
	1,092,592
	N/A
	219,377,240

	Instruction supply (SimICS/SimOS)
	SimICS:
	I-Cache Hit Rate (150M inst.)
	64-byte block, 4-way

	Size
	Proc#1
	Proc#2
	4KB
	91.9 %
	92.6 %
	16KB
	94.4 %
	95.0 %
	64KB
	97.5 %
	97.7 %
	256KB
	99.0 %
	99.1 %
	1MB
	99.7 %
	99.7 %

	Simulation parameters
	• Single-tier configuration
	O All servers & browser emulators on single system
	O One web server
	O Eight emulated browsers with no think time
	• Dual processor (SimICS), Uniprocessor (SimOS)
	• 1 GB main memory, Single-level cache
	• ~250 MB of database tables
	O 144000 customers, 10,000 items
	• Images not served
	• Database warm-up by full table scans on all tables
	• JVM 1.1.x (No JIT)

	Response time (from a real system)
	Searches and ‘best sellers’ requests dominate database server utilization
	Overall Branch Predictor Accuracy

	Predictor
	Proc#1
	Proc#2
	small 2-bit (128B table)
	84.1 %
	85.1 %
	medium 2-bit (1KB table)
	93.4 %
	92.8 %
	large 2-bit (16KB table)
	96.6 %
	95.5 %
	small gshare (10b history, 256B table)
	89.5 %
	89.2 %
	large gshare (16b history, 16KB table)
	96.7 %
	95.4 %

	Coherence (SimICS)
	Workload CPU breakdown
	SimICS (from Unix utility: top)
	rbe
	2 - 5 %
	jigsaw
	15 - 25 %
	db2
	70 - 83 %
	In kernel mode: 5 -15 %
	SimOS-PPC (from emitter interface)

	kernel (1 thread)
	33 %
	23 %
	23 %
	rbe (10 threads)
	5 %
	2 %
	5 %
	jigsaw (14 threads)
	23 %
	16 %
	22 %
	db2 (17 threads)
	38 %
	59 %
	49 %
	SimOS-PPC:
	I-Cache Hit Rate (2.5B inst.)
	64-byte block, 2-way

	Size
	Proc#1
	4KB
	95.6 %
	16KB
	97.7 %
	64KB
	99.1 %
	256KB
	99.7 %
	1MB
	99.9 %
	Per Thread Branch Predictor Accuracy
	large gshare (16b history, 16KB table)

	Thread
	Accuracy
	kernel
	96.7 %
	rbe
	96.4 %
	jigsaw
	93.6 %
	db2
	93.0 %

	Data supply (SimOS/SimICS)
	SimOS: Data Cache Miss Rate (2.5 B inst.), per memory access,
	128-byte block, 4-way
	512 KB
	0.25 %
	0.22 %
	0.24 %
	1 MB
	0.19 %
	0.19 %
	0.19 %
	2 MB
	0.14 %
	0.17 %
	0.15 %
	4 MB
	0.11 %
	0.15 %
	0.13 %
	16 MB
	0.08 %
	0.13 %
	0.1 %
	SimICS: Data Cache Miss Rate (300-450 M inst.),
	per instruction, 64-byte block, 4-way

	1 MB
	0.64 %
	4 MB
	0.43 %

