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• What is TPC-W?

• Our implementation of TPC-W
O Why Java?

• Full system simulation

• Results

• Future work and summary
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at is TPC-W?

• TPC-W is the TPC’s newest benchmark
O Version D5.5 (11/19/99), final version d
O Our implementation is based on vD5.
O www.tpc.org

• Measures systems for transactional web 

• Transactional web environment
O Web serving of static and dynamic c
O On-line transaction processing (OLTP)
O Some decision support (DSS)
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at does TPC-W model?

• Models an online bookstore
O Searching
O Browsing
O Shopping carts and secure purchasin
O Best sellers and new products
O Customer registeration
O Administrative updates
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servations about TPC-W

• Dynamic web pages, static images

• Durable shopping cart
• Lazy consistency

O Allows 30 seconds for some pages to 
O Enables various caching optimization
O We did not exploit this opportunity

• Scaling
O ~5MB in DB tables per concurrent use
O ~1KB per item in DB tables (like TPC-D
O ~25KB per item in static images
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r TPC-W implementation

• All 14 web interactions implemented

• Components
O Jigsaw Java web server (www.w3.org
O Server side Java ‘servlets’
O Java Database Conectivity (JDBC)
O IBM’s DB2 Universal Database 6.1
O Images stored in filesystem

• Did not implement
O Secure sockets layer (SSL)
O Payment gateway emulator (PGE)
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y Java?

• Portability
O Studied workload on PowerPC and Sp
O Workload ran on both architectures w

• JDBC interface
O Connecting server side applications t
O Simple and elegant

• Server side Java
O Java servlet behavior not well unders
O Opportunity to study new environmen
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y full-system simulation?

• TPC-W has
O Multiple users, threads, and compone
O Significant inter-process communicat
O TCP/IP networking
O File caching of static content

• Performance counters are not enough

• Full-system simulation is necessary for a
complete characterization of TPC-W

• Simulated two architectures
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OS-PowerPC

• AIX 4.3.1 (slightly modified)

• 64-bit PowerPC ISA
• Simulates device interfaces → modified 

• Checkpointing support
• Fast simulation through runtime code-ge

O Runs only on AIX PowerPC machines

• Emitter interface for trace-based studies

• Source code available
• SimOS-PPC publicly available
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ICS

• Solaris 7 (unmodified)

• 64-bit Sparc v9 ISA
• Simulates hardware devices → unmodifi

• Fast simulation through threaded code a
translation cache (STC)

• Source code not generally available
O Runs only on Solaris/SPARC machines
O Add code through loadable modules

• www.simics.com (Virtutech)
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l-system simulation challenges

• Significant work in getting the right disk i
• External ethernet & TCP/IP networking si

O Machine-room simulation?

• Checkpointing simulated multi-tier imple
O External interactions add complexity

• Simulation speed/detail tradeoff
• Large workload requires simulating large

O Multiple processors
O Large memories
O Long warmups
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ulation parameters

• Single-tier configuration
O All servers & browser emulators on sin
O One web server
O Eight emulated browsers with no think

• Dual processor (SimICS), Uniprocessor (Si

• 1 GB main memory, Single-level cache
• ~250 MB of database tables

O 144000 customers, 10,000 items

• Images not served

• Database warm-up by full table scans o

• JVM 1.1.x (No JIT)
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rkload CPU breakdown

ICS (from Unix utility: top)

In kernel mode: 5 -15 %

OS-PPC (from emitter interface)

Process System Utilization

rbe 2 - 5 %

jigsaw 15 - 25 %

db2 70 - 83 %

Process Instructions Loads

kernel (1 thread) 33 % 23 %

rbe (10 threads) 5 % 2 %

jigsaw (14 threads) 23 % 16 %

db2 (17 threads) 38 % 59 %
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Instruction supply (SimICS/SimOS)
SimICS:

I-Cache Hit Rate (150M inst.)
64-byte block, 4-way

Size Proc#1 Proc#2

4KB 91.9 % 92.6 %

16KB 94.4 % 95.0 %

64KB 97.5 % 97.7 %

256KB 99.0 % 99.1 %

1MB 99.7 % 99.7 %

Overall Branch Predictor Accuracy

Predictor Proc#1 Proc#2

small 2-bit (128B table) 84.1 % 85.1 %

medium 2-bit (1KB table) 93.4 % 92.8 %

large 2-bit (16KB table) 96.6 % 95.5 %

small gshare (10b history, 256B table) 89.5 % 89.2 %

large gshare (16b history, 16KB table) 96.7 % 95.4 %

SimOS-PPC:

I-Cache Hit Rate (2.5B inst.)
64-byte block, 2-way

Size Proc#1

4KB 95.6 %

16KB 97.7 %

64KB 99.1 %

256KB 99.7 %

1MB 99.9 %

Per Thread Branch Predictor Accuracy
large gshare (16b history, 16KB table)

Thread Accuracy

kernel 96.7 %

rbe 96.4 %

jigsaw 93.6 %

db2 93.0 %
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ta supply (SimOS/SimICS)

SimOS: Data Cache Miss Rate (2.5 B inst.), per mem
128-byte block, 4-way

Size Load Store To

512 KB 0.25 % 0.22 % 0.2

1 MB 0.19 % 0.19 % 0.1

2 MB 0.14 % 0.17 % 0.1

4 MB 0.11 % 0.15 % 0.1

16 MB 0.08 % 0.13 % 0.1

SimICS: Data Cache Miss Rate (300-45
per instruction, 64-byte block, 4-way

Size Total

1 MB 0.64 %

4 MB 0.43 %
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ure work

• More workload tuning
O We found proper indexing important
O Exploit lazy consistency
O Database tuning
O More efficient Java servlet/JDBC cod
O Better JVM/JIT

• SSL Implementation

• Larger database size

• Multi-tier measurements
• Detailed architectural characterization
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mary

• A difficult and complex task
O Most of the TPC-W specification imple
O Setup of TPC-W on two different full-sy

• Using Java enables study of two ISAs and
changes to the application

• Performance tuning and optimization to

• Preliminary characterization of this workl

• Most complex workload setup under full
simulation?

• Look for updates and a future source co
http://www.ece.wisc.edu/~mikko/t
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ote browser emulator (RBE)

• Emulates web users interacting through 
O RBE manages a collection of Emulate
O Each EB represents a single user

• Non-deterministic walk over web pages
O Send HTTP request
O Parse HTTP response for images and o
O Wait for think time
O Repeat

• Collects statistics required by TPC-W (Ma
O Throughput over time (WIPS)
O Web interaction response times (WIRT
O Transaction mix
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 table sizes

ndexes were added to speedup the quer

Table Name Number of
Rows

Maximum
Bytes

M
T

address 288,000 146

author 2,500 568

cc_xacts 129,600 89

item 10,000 869

country 92 70

customer 144,000 695 1

orderline 388,800 116

orders 129,600 81

Total 1,092,592 N/A 2
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	2,500
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	89
	11,534,400
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