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Abstract

Harold W. Cain, Kevin M. Lepak, Brando
Precise and accurate simulation of processors and com-
puter systems is a painstaking, time-consuming, and
error-prone task. Abstraction and simplification are
powerful tools for reducing the cost and complexity of
simulation, but are known to reduce precision. Similarly,
limiting and simplifying the workloads that are used to
drive simulation can simplify the task of the computer
architect, while placing the accuracy of the simulation at
risk. Historically, precision has been favored over accu-
racy, resulting in simulators that are able to analyze
minute machine model variations while mispredicting—
sometimes dramatically—the actual performance of the
processor being simulated. In this paper, we argue that
both precise and accurate simulators are needed, and
provide evidence that counters conventional wisdom for
three factors that affect precision and accuracy in simu-
lation. First, we show that operating system effects are
important not just for commercial workloads, but also
for SPEC integer benchmarks. Next, we show that sim-
ulating incorrect speculative paths is largely unimpor-
tant for both commercial workloads and SPEC integer
benchmarks. Finally, we argue that correct simulation of
I/O behavior, even in uniprocessors, can affect simulator
accuracy.

1.0 Introduction and Motivation
For many years, simulation at various levels of abstraction
has played a key role in the design of computer systems.
There are numerous compelling reasons for implementing
simulators, most of them obvious. Design teams need sim-
ulators throughout all phases of the design cycle. Initially,
during high-level design, simulation is used to narrow the
design space and establish credible and feasible alterna-
tives that are likely to meet competitive performance
objectives. Later, during microarchitectural definition, a
simulator helps guide engineering trade-offs by enabling
quantitative comparison of various alternatives. During
design implementation, simulators are employed for test-
ing, functional validation, and late-cycle design trade-offs.
Finally, simulators provide a useful reference for perfor-
mance validation once real hardware becomes available.

Outside of the industrial design cycle, simulators are also
heavily used in the computer architecture academic
research community. Within this context, simulators are
primarily used as a vehicle for demonstrating or comparing
the utility of new architectural features, compilation tech-
niques, or microarchitectural techniques, rather than for
helping to guide an actual design project. As a result, aca-
demic simulators are rarely used for functional or perfor-
mance validation, but strictly for proof of concept, design
space exploration, or quantitative trade-off analysis.
Simulation can occur at various levels of abstraction.
Some possible approaches and their benefits and draw-
backs are summarized in Table 1. For example, flexible
and powerful analytical models that exploit queueing the-
ory can be used to examine system-level trade-offs, iden-
tify performance bottlenecks, and make coarse
performance projections. Alternatively, equations that
compute cycles per instruction (CPI) based on cache miss
rates and fixed latencies can also be used to estimate per-
formance, though this approach is not effective for systems
that are able to mask latency with concurrent activity.
These approaches are powerful and widely employed, but
will not be considered further in this paper. Instead, we
will focus on the last three alternatives: the use of either
trace-driven, execution-driven, or full-system simulation
to simulate processors and computer systems.
Trace-driven simulation utilizes execution traces collected
from real systems. Collection schemes range from soft-
ware-only schemes that instrument program binaries all
the way to proprietary hardware devices that connect to
processor debug ports. The former pollute the collected
trace, since the software overhead slows program execu-
tion relative to I/O devices and other external events. The
latter can run at full speed, but require expensive invest-
ment in proprietary hardware, knowledge of debug port
interfaces, and are probably not feasible for future multi-
gigahertz processors. Trace collection is also hampered by
the fact that usually only non-speculative or committed
instructions are recorded in the trace. Hence, the effects of
speculatively executed instructions from incorrect branch
paths are lost. Furthermore, once a trace has been col-



lected, the cost associated with the disk space used to store
the trace may be a limiting factor.
Prior work has argued that trace-driven simulation is no
longer adequate for simulating modern, out-of-order pro-
cessors (e.g. [1]). In fact, the vast majority of research
papers published today employ execution-driven simula-
tion and utilize relatively detailed and presumably precise
simulation. A recent paper argued that precise simulation
is very important and can dramatically affect the conclu-
sions one might draw about the relative benefits of specific
microarchitectural techniques [6]. Some of these conclu-
sions were toned down in a subsequent publication [5].
One can reasonably conclude that the majority of recently
published computer architecture research papers place a
great deal of emphasis and effort on precision of simula-
tion, and researchers invest large amounts of time imple-
menting and exercising detailed simulation models.
In this paper, we show that conventional approaches to
exercising processor simulators do so poorly vis-a-vis
accuracy that, practically speaking, precision is unimpor-
tant. We argue that the correct approach is to build a simu-
lator that is both precise and accurate. We accomplish this
by building a simulator--PHARMsim--that does not cheat
with respect to any aspect of simulation. Without the
investment in such a simulator, we assert that it is impossi-
ble to determine whether or not the right abstractions and
simplifications have been applied to either the simulator or
the workload that is driving it.
We provide evidence that counters conventional wisdom
for three factors that affect precision and accuracy in simu-

lation. First, we show that operating system effects are
important not just for commercial workloads (as shown by
[8] and numerous others), but also for SPEC integer
benchmarks [13]. Surprisingly, omitting the operating sys-
tem can introduce error that exceeds 100% for benchmarks
that, according to conventional wisdom, hardly exercise
the operating system. Next, we show that simulating incor-
rectly predicted speculative paths is largely unimportant
for both commercial workloads and SPEC integer bench-
marks. In most cases, even with an aggressively specula-
tive processor model that issues twice as many instructions
as it retires, the bottom line effect on performance is usu-
ally less than 1%, and only 2.4% in the worst case. Finally,
we argue that correct simulation of I/O behavior, even in
uniprocessors, can affect simulator accuracy. We find that
a direct-memory-access (DMA) engine that correctly mod-
els the timing of cache line invalidates to lines that are
written by I/O devices can affect miss rates by up to 2%
and performance by up to 1%, even in a uniprocessor with
plenty of available memory bandwidth.
We have found that the main drawback of a simulator that
does not cheat is the expense and overhead of correctly
implementing such a simulator. For example, since our
DMA engine implementation relies on the coherence pro-
tocol to operate correctly, the coherence protocol must be
correctly implemented. Similarly, since the processors
actually read values from the caches, rather than cheating
by reading from an artificially-maintained flat memory
image, DMA and multiprocessor coherence must be cor-
rectly maintained in the caches. Furthermore, within the
processor core, the register renaming, branch redirection,

Modeling Technique Inputs Benefits Drawbacks

Analytical models Cache miss rates; I/O rates Flexible, fast, convenient, pro-

vide intuition

Cannot model concurrency; 

lack of precision

CPI Equations Core CPI, cache miss rates Simple, intuitive, reasonably 

accurate

Cannot model concurrency; 

lack of precision

Trace-driven Simulation Hardware traces; software 

traces

Detailed, precise Trace collection challenges; 

lack of speculative effects; 

implementation complexity

Execution-driven Simulation Programs, input sets Detailed, precise, speculative 

paths

Implementation complexity; 

simulation time overhead; cor-

rectness requirement; lack of 

OS and system effects

Full-system, execution-driven 

simulation (PHARMsim)

Operating system, programs, 

input sets, disk images

Detailed, precise, accurate Implementation complexity, 

simulation time overhead, cor-

rectness requirement
TABLE 1. Attributes of various performance modeling techniques. 



store queue forwarding, etc., must all operate correctly for
the simulator to follow the correct path. Of course, this
drawback is also an advantage: forcing a correctness
requirement also forces us, as researchers, to be more thor-
ough and realistic about the techniques that we propose,
since we cannot “cheat” when we implement them in our
simulator. Counter to our initial expectation, the simula-
tion-time overhead of our simulator is surprisingly low,
compared to competitive trace- or execution-driven simu-
lators.
Section 2 provides further discussion on precision and
accuracy and how they relate to processor simulation; Sec-
tion 3 presents details of our PHARMsim simulation envi-
ronment; Section 4 provides evidence for our three claims
concerning operating system effects, speculative wrong-
path execution, and DMA implementation; and Section 5
discusses conclusions and implications of our findings.

2.0 Flexibility, Precision, and Accuracy
As discussed already, design teams need simulators
throughout all phases of the design cycle. As shown in
Figure 1, the precision of a simulator tends to increase as
the project proceeds from high-level design to later design
stages. Here, we define precision as a measure of the fidel-
ity of the simulated machine to the actual machine, as the
machine is first envisioned and finally realized by its
designers. The simulator’s precision increases as a natural
side effect of the needs of the designers; as the design itself
is refined and more precisely defined, making quantitative
design trade-offs requires a more precise simulator. Hence,
additional features are added to the simulator to model
these details. On some development projects, a separate
performance simulator effectively disappears, and is
replaced by simulation of register-transfer-level models
expressed in a hardware-definition language (HDL).
As a consequence of increasing precision, flexibility in
turn decreases. By flexibility we mean the ability of the

simulator to continue to explore a broad design space. As
more and more features are modeled precisely, it becomes
increasingly difficult to support design space exploration
that strays too far from the chosen direction. This trend
also mirrors what is occurring in development; the further
the project is from its initial concept, and the closer it is to
final realization, the more difficult it becomes to make the
major changes required by a broad change in the high-level
design.
Besides flexibility and precision, there are several addi-
tional important attributes that characterize a simulator or
simulation approach. These include simulation speed,
functionality, usability, and accuracy of simulation. The
accuracy of a simulator gauges its ability to closely model
the real-world behavior of the processor or system being
simulated, and manifests itself through simulated perfor-
mance results that closely match the performance of the
real system.
Accuracy is determined by two factors: again, by how
closely the model matches the actual design (i.e. preci-
sion), but also by how the model is driven: how realistic is
the “input” to the model? In general, analytical models and
even fixed latency CPI equation models, as presented in
Table 1, can be reasonably accurate, but are not very pre-
cise. Hence they are commonly used in industry, particu-
larly for performance projections and competitive analysis,
as well as early-stage feasibility and proof-of-concept
analyses.
In contrast, academic researchers are prone to spend a
great deal of time and energy building detailed simulation
models that provide lots of precision, so that minute
microarchitectural trade-offs can be studied thoroughly
and exhaustively. Of course, the level of detail in an aca-
demic simulator must match the purpose of the study. For
example, high-level limit studies are appropriately conduct
with abstract and flexible models. On the other hand,
detailed trade-off analyses must be made with fairly pre-
cise models. Some academic work exists that attempts to
quantify simulator accuracy [2, 6].
Unlike precision, which can be quantified and rectified rel-
atively early in the design cycle, accuracy is much more
difficult to measure. Precision can be quantified by exer-
cising both the performance simulator and progressive reg-
ister-transfer-level realizations of the design with identical
test cases, and the cycle-accurate results can be compared
and reconciled to correct either the simulator or the design.
This is in fact a natural side effect of the performance vali-
dation that should occur during a properly managed design
cycle.
However, accuracy cannot be so easily determined, since
accuracy depends not only on the simulator’s precision,

FIGURE 1. Use of Simulation During Design. 
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but also on how closely the inputs to the simulation match
the real-world environment in which the system being
designed will ultimately operate. It is usually considered
extremely difficult to recreate these circumstances in such
a way that they can be used to drive a detailed performance
simulator. 
The initial work on full-system simulation from the Stan-
ford SimOS project [10] established that this is indeed pos-
sible. However, the complexities of doing so have
effectively deterred the majority of the research commu-
nity from adopting full-system simulation into their reper-
toire. We emphatically agree with other proponents of full-
system simulation and argue that all architecture research-
ers should seriously consider adoption of full-system simu-
lation, despite the up-front cost of doing so. The evidence
in Section 4 strongly supports the assertion that simulators
that ignore system effects, no matter how precise, are
likely to be so inaccurate as to be useless, even for CPU
intensive benchmarks like SPECINT 2000.
In practice, the accuracy of a performance simulator is
usually not evaluated until it’s “too late,” that is to say
after hardware is available and stable enough to boot an
operating system and run real workloads. At this point, due
to several generations of software changes and numerous
potentially compensating errors, it becomes very difficult
to precisely quantify the accuracy of a performance model.
Furthermore, from a practical standpoint, doing so is only
useful from an academic and quality assurance viewpoint,
and is not driven by immediate design needs. Hence, at
least in our experience, such an evaluation is either per-
formed poorly or not at all.

3.0 PharmSim Overview
We have constructed a PowerPC-based simulation infra-
structure using the SimOS-PPC and SimpleMP simulators.
SimOS is a complete machine simulation environment
consisting of simulators for the major components of a
computer system (cpus, memory hierarchy, disks, console,
ethernet) [10]. We use a version of SimOS which simu-
lates PowerPC-based computer systems running the AIX
4.3 operating system [7]. SimpleMP is a detailed execu-
tion-driven multiprocessor simulator that simulates out-of-
order processor cores, including branch prediction, specu-
lative execution and a cache coherent memory system[9]
using a Sun Gigaplane-XB-like coherence protocol [4].
Integrating the SimpleMP simulator into SimOS required
significant changes to SimpleMP in order to accurately
support the PowerPC architecture. In this section, we dis-
cuss these modifications.
SimpleMP was missing much of the functionality neces-
sary to support system level code, in both the processor
core and memory system. We augment SimpleMP with

support for all of the instructions (system-mode and user-
mode) in the PowerPC instruction-set architecture. For
some of the relatively complex PowerPC instructions (e.g.
load/store string instructions) we use an instruction-crack-
ing scheme similar to that used in the POWER4 processor
which translates a PowerPC instruction into several sim-
pler RISC-like operations [14]. We also augment the pro-
cessor core with support for precise interrupt handling and
PowerPC context-synchronizing instructions (e.g., isync,
rfi).
The SimpleMP memory system required major changes in
order to support unaligned memory references, PowerPC
address translation, and the set of PowerPC cache manage-
ment instructions. To handle unaligned memory references
(which are allowed in the PowerPC architecture) the pro-
cessor core splits each unaligned memory reference that
crosses a cache block boundary into two smaller aligned
references which are then each issued to the SimpleMP
memory system.
In order to accurately model PowerPC virtual memory
hardware, we were forced to implement a PowerPC mem-
ory management unit (MMU) from scratch, including a
translation lookaside buffer (TLB), TLB refill mechanism,
and reference and change bit setting hardware. On a TLB
miss, we simulate a hardware TLB miss handler which
walks the page table by issuing memory references to the

Processor Parameters

decode/issue/com-

mit width

8/8/8

RUU/LSQ size 128/64

Functional Units 8 Int ALUs, 3 Int Mult/Div, 3 FP 

ALUs, 4 FP Mult/Div 3 LD/ST 

Ports

Branch Predictor Combined bimodal (8k entry)/

gshare (8k entry) with 8k choice 

predictor, 8k 4-way SA BTB, 64 

entry RAS

Memory System

L1 I Cache (latency) 64K 2 way set associative (1 cycle)

L1 DCache (latency) 256K 4 way set associative (1 

cycle)

L2 Unified Cache 4MB 4 way set associative (10 

cycles)

blocksize (all caches) 64 bytes

DRAM latency 70 cycles
TABLE 2. Simulation Parameters. 



simulated memory hierarchy. In the event of a memory
management exception (e.g., page fault, protection excep-
tion), the MMU signals the processor which traps to the
appropriate OS exception handler. The MMU also main-
tains and updates a page’s reference and dirty bits by issu-
ing single-byte stores to the simulated memory hierarchy
when a page whose reference or change bit is not set is first
referenced or written.
The PowerPC architecture includes many cache manage-
ment instructions (e.g. data cache block invalidate, data
cache block zero, etc.) which are used in both system and
user-level code. Implementing each of these instructions
required significant changes to the SimpleMP coherence
protocol.
We also augment the SimpleMP memory system to sup-
port coherent I/O. Both SimpleMP and SimpleScalar [3]
perform I/O “magically” by proxying system calls and
instantaneously updating a cache’s contents to reflect the
new memory contents. Obviously, this mechanism does
not accurately model how I/O is performed in real systems.
To accurately model coherent I/O, we added support to
SimOS and SimpleMP for I/O controllers to initiate DMA
transfers into memory and invalidate the corresponding
blocks in each processor’s caches.
For all of the data presented in this paper, we use the
machine configuration summarized in Table 2.

4.0 Sources of Inaccuracy
In this section, we study three possible sources of inaccu-
racy in processor simulation, and quantify their effects on
a set of SPECINT2000 and commercial server workloads.
The three case studies are the effect of operating system

paths, the effect of direct memory access (DMA) transfers
caused by disk input/output (I/O), and the effect of specu-
latively executed incorrect branch paths.
We are able to study these effects in detail only because we
have implemented a simulator that does not cheat. The vast
majority of prior simulation work either assumes that these
effects are insignificant, and fails to consider them, or,
assuming the opposite, do implement them but do not
quantify the necessity of this implementation overhead.
We present these three case studies to examine if and how
inaccuracy is introduced into simulation, and to quantify
how relatively important each of these effects is. Current
practice in the architecture research community focuses
lots of effort on wrong-path execution, and arguably trades
off investment in the other two factors to capture wrong-
path behavior.

4.1 Operating System Effects
The first effect we study has been examined at length in
prior work, particularly for commercial workloads that
spend a nontrivial fraction of execution time in the operat-
ing system (e.g. [8]). However, conventional wisdom
holds that the SPECINT2000 benchmarks spend very little
time in the operating system, and can be safely modeled
with user-mode instructions only. Our experience with
PHARMsim, however, has shown that this is a fallacy. Our
detailed simulations have shown that ignoring the effects
of operating system instructions can lead to errors of 100%
or more when executing SPECINT2000 benchmarks. A
detailed analysis of these findings is beyond the scope of
this paper, and is left to future work. However, we do
present evidence here that helps explain this unanticipated
source of error.

FIGURE 2. Cache effect of simulating the whole system. 

The stacked bars show misses to an 8MB, 4-way set-associative cache with 64B lines due to instruction fetches, loads,
and stores, normalized to the rightmost case where the whole system is simulated. The leftmost case shows the effects of
program references only. The second case adds shared library code, the third case adds operating system code, and the
rightmost case adds cache control instructions issued by the operating system. The worst-case error, in MCF, is 5.8x.
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Figure 2 summarizes off-chip memory traffic for the set of
benchmarks we studied, which includes eight of the
SPECINT2000 benchmarks and two multiuser commercial
workloads, SPECWEB99 and SPECJBB2000 [13]. The
stacked bars show misses from an 8MB, 4-way set-asso-
ciative cache with 64B lines. Miss rates are normalized to
the correct case, where all references generated by both the
user-mode program, shared libraries, operating system,
and special cache control instructions are properly
accounted for. The four stacked bars for each benchmark
show, from left to right, the effects of the user program
only, additional effects from shared library code, addi-
tional effects from all of the operating system, and, in the
rightmost case, additional effects from special PowerPC
cache control instructions issued by the operating system.
These four cases roughly correspond to simulation
approaches used in the past: the leftmost case to trace-col-
lection schemes like Atom [12] that instrument and trace
user programs only (later versions of Atom handled shared
libraries and even parts of the operating system); the sec-
ond case to a tool like Simplescalar that requires statically-
linked objects and then performs system-call translation
[3]; the third case to a tracing technique that captures all
loads, stores, and instruction fetches by recording off-chip
bus signals, but fails to capture explicit cache control refer-
ences that avoid such signals; and finally, a full-system
simulator like PHARMsim that captures and correctly
models all references that affect the cache.
In all cases, we see that more references are captured, and
additional misses generated, as we proceed from modeling
only the user program’s references to modeling all of the
operating system. In the worst case (perlbmk), the number
of misses more than doubles, and is significant even in the
best case (specjbb).
However, interestingly enough, adding the effects of spe-
cial cache control instructions reverses this direction, and
dramatically reduces the number of misses that the cache

model encounters. This behavior is caused by the AIX
operating system’s aggressive use of the PowerPC dcbz
(data cache block zero) instruction. This instruction writes
an entire cache line with zeroes. Aggressive hardware
implements this instruction by avoiding an off-chip mem-
ory reference even when it misses the cache, since the
whole line will be overwritten by the instruction. This
instruction is similar to the wh64 (write hint 64) instruction
in the Alpha instruction set [11].
We have analyzed the use of dcbz in the AIX operating
system, and have found that the page fault handler issues a
series of dcbz instructions that span the entire 4K virtual
memory page whenever a program page faults on a new,
previously unmapped page. This is a legitimate optimiza-
tion, since a newly mapped page cannot contain any valid
data. Hence, the operating system can safely zero out the
page before returning to the user. As a side effect, the pro-
gram can avoid cache misses to newly referenced pages,
since the dcbz instructions directly install those lines into
the cache.
The effect of the dcbz instructions is particularly pro-
nounced for the mcf benchmark, which allocates and ini-
tializes tens of megabytes of heap space to store its internal
data structure. Naive simulation, whether of the user pro-
gram only, or even including operating system effects, can
dramatically overstate—to the tune of 5.8x—the number
of cache misses encountered by this program. Note that
virtually all of the store misses, which dominate the mem-
ory traffic of this benchmark, disappear when the dcbz
instructions are correctly modeled. There is a similar,
though less pronounced, trend for all of the other work-
loads except specjbb. We attribute specjbb’s behavior to
the fact that we are capturing a snapshot of steady-state
execution for this benchmark, rather than end-to-end pro-
gram execution. As a result, memory has already been
allocated and initialized, and the AIX page fault handler
does not issue dcbz instructions.

FIGURE 3. % Executed Instructions on Wrong Path. 
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We suspect that other operating systems have similar opti-
mizations in their page fault handlers, though we currently
have no way of verifying this fact. However, the fact that a
detailed, precise, simulator described in a recent study [6]
reflected a roughly 20% error on many real benchmarks
leads us to believe that such optimizations are widespread
and dramatically impact the accuracy of simulation that
ignores operating system references.

4.2 Direct Memory Access (DMA)
High-performance systems use some form of autonomous,
coherent, I/O agent to perform I/O requests in the system
using DMA. This mechanism allows the processor to con-
tinue performing other tasks (for example, run another
ready process) while the I/O request serviced. Most current
simulators either handle I/O through system call proxy or
perform the I/O into a flat memory image. Performing flat-
memory I/O is functionally correct in simulators which do
not include values in cache models, because all values are
obtained from the flat memory. However, using this tech-
nique the state of cachelines accessed by the I/O agent can
be incorrect in one of two ways: 1) In the case of a DMA
write (i.e. write to memory, read from I/O device), the line
should be marked invalid in the processor’s cache; 2) In
the case of a DMA read (i.e. read from memory, write to I/
O device), the line should become shared.1 
In execution driven simulators which track memory values
throughout the hierarchy (i.e. SimpleMP) I/O causes an
additional problem. Since multiple coherence transactions
pertaining to regions of memory subject to I/O can be in
flight (i.e. a cache block may be in a pending state in mul-
tiple caches at the time of an I/O request), the system must
be quiesced (i.e. all processor and coherence activity must
stop) to effectively flatten the memory image. The I/O can
then be performed with any updated values copied (magi-
cally, bypassing the performance model) into processors’
caches to maintain a consistent view of memory.

In PHARMsim, in order to determine the effect of cache
state errors due to disk I/O activity, as well as system qui-
escing, we have added an I/O agent (DMA engine) which
actually performs the necessary coherence transactions and
data transfers between the coherence network/cache model
and the disk. This approach avoids the aforementioned
inaccuracies and additionally contributes realistic conten-
tion on the address and data networks due to disk I/O.
Without building this model, we cannot know whether
neglecting these I/O effects maintains our stated goals of
both simulator accuracy and precision.
We found that for the benchmarks in Figure 2, the I/O
effects are small. The only benchmark showing a non-triv-
ial change in cache hit rate is a version of mcf in which we
have artificially constrained the physical memory size to
64MB to force paging (the L1-I, L1-D, and L2 cache hit
rates are reduced by 1.5%.) If we increase the available
physical memory to eliminate paging, because AIX imple-
ments the dcbz optimization mentioned previously (Sec-
tion 4.1) for newly allocated pages, all I/O coherence
events in mcf are eliminated. We believe the relative insen-
sitivity to I/O effects occurs due to the effectiveness of
disk caches (the benchmarks shown have a paltry number
of I/O coherence events compared with other coherence
events) and also the nature of the benchmarks--which are
not meant to stress I/O performance. We also point out that
we expect the execution time difference for single-pro-
grammed workloads, provided I/O latency is modelled, to
be small given the large disparity between I/O and coher-
ence latency.
One might expect the multi-programmed commercial
workloads (specjbb and specweb) to have required disk
activity due to database logging or increased working-set
sizes common to commercial applications. However,
specjbb has no database component and specweb has less
than 1% of coherence transactions due to I/O in our snap-
shots, leading to negligible I/O effects.
In order to stress the I/O subsystem, we created our own

FIGURE 4. Effect of wrong-path instructions on IPC. 

0

0 . 5

1

1 . 5

2

2 . 5

3

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
vo

rte
x

sp
ec

jbb

sp
ec

web

b e n c h m a r k

IP
C e x e - d r i v e n

t r a c e - d r i v e n

1.  Provided DMA read requests are handled as regular read requests.



multi-programmed workload with a combination of file I/
O (reading multiple uncached files using the unix ‘cat’
command) and computation (using gzip of a simulator
source code file) and measured the execution time to com-
plete the workload end-to-end. We measured up to a 2.5%
reduction in cache hit rate, and a 1.1% increase in execu-
tion time when I/O traffic was modelled. We also deter-
mined the effect of quiescing the system for I/O related
events was less than 0.9% on overall execution time.
Even for this I/O intensive workload (4.8% of coherence
traffic due to I/O), the overall effect of I/O on simulation
accuracy and precision is small, but measurable, largely
due to low contention in the coherence network (over 97%
of all coherence transactions occur with fewer than two
transactions already outstanding, with 16 possible in our
network). However, in larger-scale systems with more pro-
cessors, we expect greater contention in the coherence and
data networks due to three things: 1) Additional demand
traffic from other processors; 2) Increased I/O require-
ments for supplying them; and 3) Difficulty in scaling
coherent interconnect in large systems. Evaluating this
space is beyond the scope of this work.

4.3 Effect of Wrong-Path Execution
In this section we quantify the impact of ignoring wrong-
path instructions on a simulator’s results. To perform this
comparison, we execute each benchmark on two versions
of PHARMSim: the standard execution-driven version,
and a modified “trace-based” version which uses a perfect
branch predictor to throttle the PHARMSim fetch stage
when the machine would ordinarily be fetching an incor-
rect branch path. Using these two configurations we can
evaluate the impact of wrong-path instructions on final
performance results.
Figure 3 shows the percentage of instructions reaching the
execution stage of the pipeline that are on a mispredicted
branch path. For this machine configuration, between 25%

and 40% of all instructions executed are on the wrong
path. Because this percentage is so high, one would intu-
itively expect the side-effects of wrong path instructions to
have a significant effect on total execution time. However,
as can be seen in Figure 4 this is not the case.
Figure 4 shows the difference in IPC as measured by the
trace-driven version of PHARMSim and the execution-
driven version of PHARMSim for each of the benchmarks.
We see that the difference in IPC reported by the two sim-
ulators is only 0.97% on average. In the worst case, the
benchmark crafty, the difference is only 2.4%. The mar-
ginal differences in IPC are the caused by the interaction of
wrong-path instructions with non-speculative instructions
through the cache hierarchy and branch-predictor.
Wrong-path memory operations may have a positive or
negative effect on overall performance. If a wrong path
memory operation touches a cache block that the correct
execution path will touch in the future, the wrong path
instruction may have a prefetching effect, reducing the
number of memory related stall cycles for the program.
However, if a wrong-path instruction touches a cache
block that will not be used in the immediate future, the
speculative memory reference may pollute the cache or
may compete with subsequent correct-path memory opera-
tions for memory system bandwidth. The PHARMSim
TLB does not service a TLB miss until the instruction
which caused the miss is non-speculative, which in effect
filters some of the wrong-path memory references from the
cache hierarchy. Figure 5 shows the effects of wrong-path
instructions on memory system stall time. For all of the
benchmarks except SPECjbb and SPECweb, the inclusion
of wrong-path instructions has a positive effect on memory
stall time. In all cases, however, the effect is very small.
On average, there is only a 0.3% difference between the
total number of memory stall cycles when executing with
and without wrong-path instructions.
The execution of wrong-path instructions may also affect

FIGURE 5. Effect of wrong-path instructions on memory stall time. 
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branch predictor performance. The branch predictor used
for the results in this section is a combining predictor
whose pattern history tables are not updated speculatively,
and whose branch history register is checkpointed before
each branch and restored in the event of a branch mispre-
diction. Consequently, the main branch predictor is not
polluted by wrong-path instructions and suffers no perfor-
mance degradation. However, the 64-entry return address
stack is updated speculatively and is not recovered in the
event of a branch misprediction. As shown in Figure 6 the
pollution of the return address stack by wrong path instruc-
tions significantly affects its performance. On average, the
accuracy of the return address stack decreases by 15%. In
the worst case (crafty) accuracy is reduced by 29%.
Despite this RAS performance loss, overall performance
results are not barely affected, as shown in Figure 4.
Overall, ignoring the effects of wrong-path execution has
almost no impact on performance. Consequently, we
believe trace-driven simulation without wrong-path
instructions is a valid method for estimating uniprocessor
performance. Execution-driven uniprocessor simulators
may also ignore wrong path instructions to improve simu-
lation efficiency. Although these results validate the use of
trace-driven simulation to evaluate single-threaded work-
loads, the performance of multi-threaded workloads which
include communication among threads should not be eval-
uated using trace-driven simulators for reasons which are
beyond the scope of this paper.

5.0 Conclusions
This paper studies three factors that can affect the accuracy
of uniprocessor simulation: operating system effects,
direct memory access by I/O devices, and wrong-path
speculative execution. Using PHARMsim, a detailed full-
system simulator that does not cheat, we are able to show
that operating system references should be fully modeled,
even for benchmarks like SPECINT2000 that have histori-

cally been considered safe for user-mode-only simulation.
In the case of the AIX operating system, this is due to opti-
mizations in the page fault handler that employ explicit
cache control instructions to avoid unnecessary cache
misses. Further, we find that correct modeling of DMA
traffic can have a nontrivial effect on performance, and
should be accounted for in workloads that perform a sig-
nificant amount of I/O. Finally, we show that wrong-path
speculative execution has a nearly indiscernible effect on
overall performance. Though individual microarchitectural
structures like the return address stack can be negatively
affected by these paths, the overall contribution of these
effects is so minimal that ignoring speculative paths is safe
for the workloads we study.
Our study is far from complete, as there are numerous
other effects we are currently studying and plan to report
on in the future. These include the effects of speculative
and non-speculative TLB refills, more detailed analysis of
branch predictor updates, evaluation of DMA transfers
directly into the cache hierarchy, etc. However, we do
make the following conclusions and suggestions based on
the evidence presented herein:
• All detailed processor simulations, even if only running 

SPECINT-like benchmarks, should fully account for 
operating system references. The extreme errors that 
are introduced if these effects are not modeled make 
any such simulations so inaccurate as to be meaning-
less. This conclusion should have a significant impact 
on the research community and the peer review pro-
cess.

• Trace-based simulation, which is still widely used in 
industry, should not be dismissed in favor of execution-
driven simulation. Our evidence suggests that traces 
that include operating system references but omit 
wrong-path speculative references are far more useful 
than execution-driven simulation of user-mode pro-
grams.

FIGURE 6. Effect of wrong-path instructions on return-address stack accuracy. 
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• Though demonstrably more accurate than execution-
driven simulation, trace-based simulations may still 
have shortcomings that make execution-driven simula-
tion attractive. For example, most hardware tracing 
schemes are incapable of capturing register or memory 
values. Hence, study of techniques that exploit value 
locality is not possible with such traces.

• Workloads that perform a nontrivial amount of I/O 
should be simulated in a way that properly accounts for 
the additional memory traffic induced by DMA trans-
fers. Without such an accounting, simulation results 
may not be acceptably accurate. On the other hand, 
workloads like SPECINT2000, with minimal I/O, can 
safely be simulated without accurate modeling of DMA 
effects.

Finally, we want to point out that lack of proper simulation
infrastructure should not serve as a valid excuse for avoid-
ing both precise and accurate processor simulation, and the
research community as a whole needs to accept this fact.
Our research group has made a significant investment in
simulation infrastructure that also builds heavily on work
done by others. The fact that we have been able to develop
this infrastructure serves as an existence proof that it is
possible, even with the limited means available within aca-
demia.
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