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iAbstract

This thesis focuses on mechanisms that improve inter-processor communi-

cation in hardware shared-memory multiprocessors by detecting and exploiting

knowledge of the causal relationships among inter-processor reads and writes to

shared memory. We present two applications for exploiting causal dependence

knowledge: the avoidance of replays in a novel value-based memory ordering

mechanism, and the avoidance of coherence misses in an invalidation-based coher-

ence protocol.

Conventional out-of-order processors employ a multiported, fully-associa-

tive load queue to guarantee correct memory reference order both within a single

thread of execution and across threads in a multiprocessor system. As improve-

ments in process technology and pipelining lead to higher clock frequencies, scal-

ing this complex structure to accommodate a larger number of in-flight loads

becomes difficult. The value-based memory ordering mechanism presented here

solves the associative load queue scalability problem by completely eliminating

the associative load queue. Instead, data dependences and memory consistency

constraints are enforced by simply re-executing load instructions in program order

prior to retirement. By inferring the existence of causal relationships among pro-

cessors, the set of loads that must be replayed is filtererd, decreasing the cache

bandwidth demands of the load replay mechanism. Consequently, the replay-based

mechanism enables a simple, scalable, and energy-efficient FIFO load queue

design requiring no associative lookup hardware, while sacrificing only a negligi-

ble amount of performance and cache bandwidth.



iiThe overhead of inter-processor communication in shared-memory multi-

processors is a dominant source of processor stalls for many applications. We

present a new edge-chasing algorithm for detecting causal relationships in shared

memory multiprocessors, and present an implementation of delayed consistency

based on this algorithm that is able to avoid coherence misses, allowing a proces-

sor to continue reading an invalidated cache block until the processor becomes

causally dependent upon a newer version of the block. We have shown that edge-

chasing delayed consistency can dramatically improve performance for lock-free

list manipulation algorithms that operate on highly-contended data structures, and

also improve the performance of some commercial workloads, up to 8% for the

applications presented in this thesis.
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1Chapter 1

Introduction

Computer systems have become an integral part of our daily lives, from the

digital alarms that wake us in the morning to the traffic lights that direct our

embedded-processor assisted cars home at the end of the day, to their use in all

manner of endeavors in-between. Multiprocessor computer systems comprise one

part of this infrastructure, providing the computational power that fuels the solu-

tion of many important scientific problems, and also enabling the behind-the-

scenes infrastructure for our internet-based communications, electronic commerce,

and large financial institutions. The performance of these systems is critical to

both the smoothness of our routine interactions with them (e.g. the response time

of a favorite web page) and the timely solution of many of the world’s problems

(e.g. an accurate prediction of global climate trends).

The shared-memory programming model is a commonly used interface for

communication among multiple independent threads of execution, and multipro-

cessors that directly implement this interface in hardware constitute a large frac-

tion of all multiprocessor systems in use today. As a consequence of the ever-

increasing levels of integration provided by Moore’s law [80], the importance of

this class of machines will grow; all major computer manufacturers are either cur-

rently or will soon be shipping shared-memory multiprocessors manufactured on a

single piece of silicon.

Due to the discrepancy between processor clock cycle time and DRAM



2access time, all modern computer systems maintain a local copy of recently

touched data in a memory structure called a cache. Because most applications

exhibit temporal locality, a cache improves performance by allowing the processor

to access a recently touched memory location a second time at latency much lower

than DRAM. In shared memory multiprocessors, these local copies of memory

must be managed to prevent a processor from continuing to read a stale copy of the

data after some other processor has written that data.

Invalidation-based coherence protocols have been proven to offer the most

bandwidth-efficient mechanism for supporting a coherent shared memory image in

a multiprocessor system, and their use has become commonplace. Although

decreasing transistor size has improved system performance through decreased

clock cycle time, this reduction has unfortunately become a double-edged sword

by increasing the relative latency of communication with external sources, regard-

less of whether those sources are on the other side of the chip or another chip, cir-

cuit board, or computer altogether. Consequently, modern processors spend a

significant fraction of their time sitting idle, waiting for a memory reference that

could not be serviced by its local cache hierarchy and instead must be transmitted

by a more distant source. In invalidation-based coherence protocols, when one

processor is writing a particular memory location, that block is removed from the

caches of other processors. Should those processors subsequently access the loca-

tion, their access will incur cache misses and most likely result in processor stalls.

Consequently, cache misses due to inter-processor communication significantly

degrade performance for many parallel applications.
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3Another effect of decreasing clock cycle time is that the distance that can

be traveled by a signal within this period also shrinks. Due to this shrinking dis-

tance, many components of a microarchitecture must either shrink accordingly or

must be redesigned in such a way that allows pipelined access. The microarchitec-

tural structures that enforce the proper ordering of interprocessor reads and writes

are complicated by this desire for low latency and the need for large capacity.

The objective of the research presented in this thesis is to enhance the per-

formance of shared-memory multiprocessor systems by solving these problems

associated with inter-processor communication. Our solutions are based on the

observation that non-causally related inter-processor communication should not

degrade performance or increase the complexity of a design. By identifying

instances of communication between two processors that are not causally related

and filtering the performance degrading effects of this communication, we can

improve system performance.

Given a system composed of multiple processes where each process per-

forms a sequence of events including inter-process send and receive operations,

Lamport defined the causality relation which specifies the necessary order of

events in the system [57]. The causality relation states that the order in which

events at one process become observable to other processes should reflect the

sequence in which they occur within each process. Informally, in a shared-memory

multiprocessor, when one processor reads a memory location that was previously

written by another processor, or when one processor overwrites a memory location

that has been previously read or written by other processors, that processor



4

becomes causally dependent upon those prior read and write operations performed

by other processors. Such causal dependences are transitive in nature, as illustrated

in Figure 1-1 in the context of a system consisting of three processors (p1, p2, p3)

and three memory locations (a, b, c). Processor p1 initially performs a store to

memory location a, and p2 subsequently reads the newly written value. Processor

p2 is now causally dependent upon p1’s store to a and those instructions on which

p1’s store to a causally depend. Processor p2 subsequently writes location b,

which is then read by p3. When p3 performs a load to location a, it is already caus-

ally dependent upon p1’s store to a transitively through the memory location b,

and must therefore read the value written by p1. Two events are said to be concur-

rent if neither event is causally dependent upon the other. When p2 executes its ld

c, it is not already causally dependent upon p1’s store to c. Therefore, p2’s load to

c may correctly return either the value written by p1 or the value that existed at c

prior to p1’s write. It is this type of ambiguity that the techniques presented in this

thesis exploit. We provide a more formal definition of these causal relationships in

FIGURE 1-1. Causal dependencies in a shared-memory multiprocessor
system. 

p1 p2 p3

st a

ld a

st b

ld b

ld a
st c

ld c

Time



.

5Chapter 2, adapting this simplified description to the more complex set of memory

consistency rules dictated by modern computer architectures.

This thesis focuses on the detection of such causal relationships, and the

use of this knowledge to optimize the performance of hardware shared-memory

multiprocessors. We present two applications for exploiting causal dependence

knowledge: the avoidance of replays in a novel value-based memory ordering

mechanism, and the avoidance of coherence misses in an invalidation-based coher-

ence protocol. In the next two sections, we present an overview of these applica-

tions, followed by a summary of the contributions made by this thesis and an

outline of its contents.

1.1 Value-Based Memory Ordering

Conventional out-of-order processors employ a multiported, fully-associa-

tive load queue to guarantee correct memory reference order both within a single

thread of execution and across threads in a multiprocessor system. As improve-

ments in process technology and pipelining lead to higher clock frequencies, scal-

ing this complex structure to accommodate a larger number of in-flight loads

becomes difficult if not impossible. Furthermore, each access to this structure con-

sumes excessive amounts of energy. In the first part of this thesis, we present a

novel memory ordering mechanism that solves the associative load queue scalabil-

ity problem by completely eliminating the associative load queue. Instead, data

dependences and memory consistency constraints are enforced by simply re-exe-

cuting load instructions in program order prior to retirement. Should a load be



6incorrectly reordered with respect to a prior store, or with respect to another pro-

cessor’s invalidation message, the re-execution mechanism will detect the error

and force the problematic load to be squashed.

Naively, all loads should be re-executed to guarantee a correct execution.

Unfortunately there are two primary costs associated with replaying loads, which

we would like to avoid: 1) load replay can become a performance bottleneck given

insufficient cache bandwidth for replays or due to the additional resource occu-

pancy, and 2) each replayed load causes an extra cache access and word-sized

compare operation, consuming energy.

It is in this context that obtaining knowledge of the causal relationships

among processors can be advantageous. If one can detect the instances in which a

load necessarily received a correct value when it originally accessed the cache, the

costs associated with replay can be avoided. We describe and evaluate a set of heu-

ristics that can be used to perform this detection for both uniprocessor read-after-

write hazards and multiprocessor ordering violations. These heuristics infer the

potential existence of causal dependences based on locally observable events, and

we find that this inference is very effective at reducing the number of loads that

must be replayed. Consequently, the replay-based mechanism enables a simple,

scalable, and energy-efficient FIFO load queue design requiring no associative

lookup hardware, while sacrificing only a negligible amount of performance and

cache bandwidth.
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71.2 Edge-Chasing Delayed Consistency

In shared memory multiprocessors utilizing invalidation-based coherence

protocols, cache misses caused by inter-processor communication are a dominant

source of processor stall cycles for many applications, particularly commercial

workloads. In the second part of this thesis, we explore a novel delayed consis-

tency implementation called edge-chasing delayed consistency that attempts to

mitigate the performance degradation caused by this class of misses. Edge-chasing

delayed consistency allows a processor to continue to non-speculatively read a

cache block after it has been invalidated from its local cache hierarchy. Using the

example from Figure 1-1, it is technically correct for p2’s load to location c to

return either the value written by p1 or the value that existed before p1’s write,

because the operations are concurrent. If p2’s load can return either value, then

there is no reason to penalize this load by forcing it to wait while obtaining the

newest value of c.

The edge-chasing consistency protocol identifies those cache blocks that

can safely be read after being invalidated by tracking the operations that are caus-

ally dependent upon that cache block. While the replay reduction heuristics used in

the first part of this thesis infer causal dependences based on locally observable

events, the edge-chasing delayed consistency protocol explicitly tracks the causal

dependences among processors, forcing a processor to obtain a new copy of a

block only after the processor becomes causally dependent upon the write that

invalidated the block.

Because the expiration of a cache block’s useful lifetime is based on cau-



8sality, this expiration is delayed until it is dictated by the memory consistency

model, longer than it would have been delayed by prior delayed consistency imple-

mentations. In our evaluation of edge-chasing delayed consistency, we find that

the performance of some applications can be improved by this implementation

technique. Of four commercial workloads studied, edge chasing delayed consis-

tency improves the performance of two, TPC-H and SPECweb99, by 8% and 4%

respectively. We find edge-chasing delayed consistency has little effect on the per-

formance of the scientific applications studied here.

1.3 Thesis Contributions

• Elimination of associative search logic from the load queue via value-

based replay: We demonstrate a value-based replay mechanism for

enforcing uniprocessor and multiprocessor ordering constraints that elimi-

nates the need for associative lookups in the load queue, creating a more

scalable memory ordering implementation for large window out-of-order

microprocessors.

• Replay-reduction heuristics: We introduce several novel heuristics that

reduce the cache bandwidth required by the load-replay mechanism to a

negligible amount.

• Consistency model checking: we define the constraints for implementing

a back-end memory consistency checker. These constraints are also useful

in the domain of other checking mechanisms such as DIVA [10]. Recent

work has exposed a subtle interaction between memory consistency and



.

9value prediction that results in consistency violations under forms of weak

consistency [71]. Our value-based replay implementation may be used to

detect such errors.

• Edge-chasing delayed consistency: we describe a novel implementation

of delayed consistency that extends the lifetime of cache blocks beyond the

time that they are invalidated, remaining useful until the processor

becomes causally dependent upon a newer version of the block. This

implementation is based on a novel edge-chasing algorithm for tracking

causality that may prove more generally applicable than the delayed con-

sistency mechanism discussed here. We show that the edge-chasing

delayed consistency protocol can improve the performance of some appli-

cations significantly.

• Constraint-graph extensions: We describe extensions to the constraint

graph model for reasoning about memory models other than sequential

consistency. In addition to the implementation techniques discussed here,

these extensions are broadly applicable to the design and verification of

multiprocessor systems that employ a relaxed memory model.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present the formal

framework used for our discussion of causality, based on the constraint graph rep-

resentation originally defined by Landin, Hagersten, and Haridi [59]. Before pre-

senting the design and evaluation of value-based memory ordering and edge-



10chasing delayed consistency, Chapter 3 includes a description of the methodology

used for the experimental sections of the thesis, including PHARMsim, the Pow-

erPC-based full-system timing simulator developed for this work. In Chapter 4, we

describe the value-based memory ordering mechanism, followed by a performance

evaluation of the mechanism relative to an aggressive conventional load queue

design in Chapter 5. We present the design and implementation of the edge-chas-

ing delayed consistency protocol in Chapter 6, followed by an experimental evalu-

ation of the protocol in chapter 7. A discussion of prior work and its relationship to

the different parts of this thesis is separated by topic at the end of chapters 2, 4, and

6.



11Chapter 2 

Formal Representations of Shared Memory

Since the invention of shared-memory multiprocessor computers, there has

been a plethora of research that formally defines the behavior of the shared-mem-

ory interface. These definitions have used a wide range of specification languages,

for example I/O automata [42], axiomatic specifications [27][100], set and func-

tion-based specifications [30], graph based representations [1][29][39][59], and

temporal logic [58]. In this thesis, we utilize one of these formal representations,

the constraint graph model originally proposed by Landin, Hagersten, and Haridi

[59]. Each of these proposals is essentially a representation of the same shared

memory interface using a different formalism (most models have been defined

with respect to a sequentially consistent memory, with some including extensions

for other memory models). The choice of a formalism should depend on the pur-

pose for which it will be used. For example, if one plans to verify the correctness

of a coherence protocol, a detailed specification of machine behavior is appropri-

ate, such as a specification written in TLA+. In this thesis, we use a formal model

to reason about the correctness of multithreaded executions, and we consequently

choose the constraint graph for its simplicity. The directed acyclic graph is a com-

monly understood abstraction, which will hopefully prevent our discussion from

being obfuscated by overly formal language.

This chapter is organized as follows: in Section 2.1 we formally describe

the constraint graph model previously defined by Landin et al., and describe our



12extensions that allow it to be used when reasoning about processor consistent and

weakly ordered memory models. In Section 2.2 we informally discuss how the

constraint graph may be used to reason about the correctness of multithreaded exe-

cutions on shared-memory multiprocessors through a set of examples, and explain

how our augmented definition differs from the original constraint graph defini-

tions. We conclude in Section 2.3 with a more thorough discussion of other formal

shared memory representations and related work.

2.1 Constraint Graph Model and Extensions

An execution of a multithreaded program can be represented in terms of a

directed graph called a constraint graph, consisting of a set of vertices V = { v1, v2,

... vn } and edges E = { e1, e2, ..., em }. Vertices in the graph represent dynamic

instances of memory operations1, and edges represent the transitive ordering rela-

tionships among these operations. This representation was originally defined by

Landin et al. (who used the term access graph) for reasoning about the correctness

of request reorderings in sequentially consistent shared-memory multiprocessor

interconnection networks. Condon and Hu subsequently re-invented the model for

use when verifying that a machine is sequentially consistent [29]. The key idea

behind the constraint graph that makes it a powerful tool for reasoning about mul-

tithreaded executions is that it can be used to test the correctness of an execution

by simply testing the graph for a cycle. The presence of a cycle indicates that the

1. In RISC architectures, such operations are typically ordinary load and store instructions, 

however in architectures with memory instructions that perform multiple non-atomic 

memory operations, such nodes correspond to the individual non-atomic memory 

operations.
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13execution violates the consistency model because the observed order of operations

cannot be placed in an order that agrees with the order dictated by the memory

model.

The constraint graph was originally defined solely for sequential consis-

tency, but we would also like to use it to reason about more relaxed memory con-

sistency models. In this section, we define the constraint graph model with

extensions that allow one to reason about the necessary ordering among opera-

tions, whether the system is sequentially consistent or uses a relaxed memory

model. This definition differs from the previous definitions by adding or removing

certain edge types from the graph, depending on the consistency model, as

described below.

The following set of relations describes the edge types in our augmented

constraint graph representation. These ordering relations are divided into single-

thread ordering relations and dynamic ordering relations.

2.1.1 Single-thread Ordering Relations

The single-thread ordering relations place an order on the operations that

are executed by a single processor. These relations are derived from the sequence

of operations executed by a single thread, and they exist regardless of interactions

with other threads. Depending on the consistency model, some of these orders may

or may not be enforced. The following 15 single-thread ordering relations repre-

sent the ordering constraints enforced or relaxed by all current commercial archi-

tectures. These single-thread relations can be divided into four groups: program

order relations, same address relations, data dependence relations, and memory



14ordering instruction relations.

1. Program order-based relations ( , , , , ): these five

relations order operations in the order specified by each processor’s program. An

operation i precedes an operation j in program order ( ) if both operations are

executed by the same processor p, and operation i precedes operation j in the order

specified by p’s program. Program order can be further divided into read-to-read

order ( ), write-to-write order ( ), read-to-write order ( ) and write-to-

read order ( ), depending on whether i and j are reads or writes.

2. Same address ordering relations ( , , ,

): these four relations define an ordering between operations that reference

the same memory location. For example, an operation i precedes an operation j in

same-address read-to-read order ( ) if both operations read from the same

memory location, and i  j. These relations specify the constraints on operations

that access the same memory location in consistency models that do not already

enforce the program order-based relations.

3. Data dependence ordering relations ( , ): these two

relations define an ordering between memory operations whose addresses depend

on a prior memory read. For example, an operation i precedes an operation j in

data dependent read-to-read order ( ) if both operations read from mem-

ory and the address computation used to perform j is data dependent on the value

returned by i, and i  j. An operation i precedes an operation j in data dependent

po rdrd wrwr rdwr wrrd
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rdrd wrwr rdwr

wrrd

rdrd sa– wrwr sa– rdwr sa–
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15read-to-write order ( ) if operation i reads from memory and operation j

writes to memory, and the address computation used to perform j is data dependent

on the value returned by i or the value written by j is data dependent on the value

returned by i, and i  j.

4. Memory ordering instruction (MOI) relations ( , , ,

): these four relations define an ordering between the memory ordering

instructions defined by an architecture (e.g. PowerPC sync, IA-64 st.rel, etc.), and

read/write operations. The MOI relations required by an architecture depend on the

semantics of the memory ordering instruction. For example, the PowerPC sync

instruction enforces a total order from all memory operations that precede the

instruction to all memory operations that follow it. Consequently, all of MOI rela-

tions ( , , , ) are used to specify its semantics. On the other

hand, the Alpha’s write memory barrier (wmb) instruction only forces an ordering

among writes, so only the  and  relations are used to order memory

operations with respect to the wmb.

2.1.2 Dynamic Ordering Relations

The dynamic ordering relations ( , , ) reflect the

orders among operations that are dynamically observed during a particular pro-

gram execution. Each of these relations is address dependent, meaning that two

operations will only be ordered by dynamic ordering relations if they access the

same memory location. The dynamic ordering relations are consistency model

independent; each of these ordering relations is present regardless of the memory

rdwr dep–

po

rdmoi wrmoi moird

moiwr

rdmoi wrmoi moird moiwr

wrmoi moiwr

dyn raw– dyn waw– dyn war–



16consistency model. Unlike the single-thread ordering relations, the dynamic order-

ing relations place an order on memory operations executed by different proces-

sors, in addition to operations executed by the same processor.

• Dynamic read-after-write order ( ): An operation i precedes an

operation j in dynamic read-after-write order if operation i writes the mem-

ory location at address a and operation j reads the memory location at

address a, and j reads the value written by i before it is overwritten.

• Dynamic write-after-write order ( ): An operation i precedes an

operation j in dynamic write-after-write order if operations i and j write the

same memory location, and j overwrites the value written by i.

• Dynamic write-after-read order ( ): An operation i precedes an

operation j in dynamic write-after-read order if operation i reads the mem-

ory location at address a and operation j writes the memory location at

address a, and j overwrites the value read by i.

2.2 Discussion

This constraint graph definition differs from prior definitions by adding

single-thread ordering constraints other than . In the absence of these other sin-

gle-thread constraints, this representation is equivalent to the previous definitions.

It should be clear that there is overlap between many of the single-threaded order-

ing relations. For example, any two operations that are ordered by  are also

ordered by . Program order is the union of each of the other orders; each is a

subset of program order. The relationship between the single-threaded orders is

dyn raw–

dyn waw–

dyn war–

po

rdwr

po
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illustrated in Figure 2-1. This figure also separates the single-threaded orders by

consistency model. Below each labeled dotted line are the orders that must be

enforced to correctly implement a specific consistency model. For example, in

order for a system to implement processor consistency, it is not necessary to

enforce  or , however the remaining orders must be enforced.

2.2.1 Definition of causal dependence

Throughout this thesis, we use the term causally dependent to refer to the

relationship of operations in the constraint graph. An operation i1 is causally

dependent upon an operation i2 if there exists a directed path from i2 to i1 in the

constraint graph. We also use the statement that a processor p is causally depen-

dent upon an operation i1, meaning that some prior operation executed by p was

causally dependent upon i1, therefore any subsequent operation executed by p will

also be causally dependent on i1. We also use the terms upstream and downstream

to specify the relationship of operations in the constraint graph. An operation i1 is

FIGURE 2-1. Relationship between single-thread ordering constraints. 
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upstream from an operation i2 if there is a directed path from i1 to i2. If i1 is

upstream from i2, then i2 is downstream from i1.

2.2.2 Examples

Figure 2-2, Figure 2-3, and Figure 2-4 illustrate how the constraint graph is

used to reason about memory consistency models. In each of these examples,

redundant edges have been removed for clarity. Figure 2-2 (a) shows an execution

that violates sequential consistency, because processor p1’s second load instruc-

tion should return the value of memory location B written by p2, instead of the

original value of B. As shown in the figure, the constraint graph corresponding to

this execution contains a cycle, indicating that it is erroneous. The example in

Figure 2-2 (b) is equivalent to the example in Figure 2-2 (a), only it is written for a

weakly ordered memory model. In this erroneous execution, a cycle exists in the

FIGURE 2-2. Constraint graph examples.  (a) Sequentially inconsistent execution (b)

Equivalent weakly ordered inconsistent execution

FIGURE 2-3. Dependence order/Same-Address order in a weakly ordered
system. 
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19constraint graph which spans the additional memory barrier relative edges. If the

memory barrier were not present in either p1 or p2’s instruction stream, the pic-

tured interleaving of loads and stores would be legal. However, because both of

the memory barriers are present, if p1 observes p2’s write to address A, then p1

must also observe p2’s write to address B.

Figure 2-3 illustrates a slightly more complicated scenario, in which pro-

cessor p3’s second load instruction erroneously reads the original value of memory

location A, rather than the value written by p1. Due to the memory barrier instruc-

tion at p1, the same-address writes at p2, and the data dependence at p3, the load

operation should be ordered after the store operation. If any of these edges were

not present (e.g. if p3’s operations were not data dependent), then the resulting

execution would be correct. These examples illustrate that if there is a cycle in the

constraint graph, then the execution is erroneous. However, by the definition of the

constraint graph and consistency model, the converse of this is also true: if the con-

straint graph corresponding to an execution is acyclic, then that execution is cor-

rect with respect to the consistency model.

Figure 2-4 shows a constraint graph for another PowerPC execution, corre-

sponding to the executed instruction trace shown in the left side of the figure. In

this example, processor p1 executes a series of instructions between two sync

operations. The first three store instructions all write to memory location A, creat-

ing a series of  edges connecting them. The next two instructions are a

load followed by a data dependent load instruction, which are connected by a

 edge in the constraint graph. The following three instructions are a store

wrwr sa–

rdrd dep–
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to location C, followed by a load to C, followed by another store to C, which are all

ordered with respect to one another via  or  edges because they

each read or write the same location.

The resulting constraint graph contains three separate independent strands

of execution that are not ordered with respect to one another. Within each strand,

the operations must appear to execute in a certain order, but across strands, no

ordering guarantees are made. Each strand must appear to execute after the first

sync operation and before the second sync operation. When processor p2 executes

its load instruction to C, receiving the data written by p1, the load instruction is

ordered after the entire right-most strand of p1’s execution, but is not ordered with

respect to the remainder of p1’s operations. Consequently, the load A executed by

p2 does not necessarily need to return any of the values stored by p1. It could cor-

rectly return any of the values, or the value that existed prior to any of p1’s store

FIGURE 2-4. Weakly ordered constraint graph. Register specifiers omitted

when irrelevant
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21operations. Note that if there were a WAR edge from p2’s load A to any of p1’s

stores, the constraint graph would remain acyclic. This example illustrates the

additional ordering flexibility garnered by a relaxed memory model.

2.2.3 Write atomicity

Any formal model treads a fine line between including too many details

thus making its use unwieldy, and not sufficiently modeling important aspects of

the system. The constraint graph model described above neglects modeling non-

atomic writes (present in models that allow unordered stores to forward data to

subsequent loads, or models that relax the global atomicity of writes). For exam-

ple, Figure 2-5 illustrates a variation of Dekker’s algorithm in which the forward-

ing of store data from a write buffer can be inferred by the program’s outcome. If

the value obtained by each processor’s first load is forwarded from that proces-

sor’s store before the store has been globally ordered, and the second load reads

the value that existed before each of the stores, then it will be visible to the pro-

grammer that the store operation was performed non-atomically. Figure 2-6 illus-

trates another example where the non-atomicity of writes is visible to the

programmer, in this case, because p1’s store becomes visible to processor p2

before processor p3.

Because the augmented constraint graph representation above does not

include support for the modeling of non-atomic writes, when a constraint graph is

created for each of these executions (shown in the figures), a cycle forms indicat-

ing that the execution is incorrect. However, in some memory models, these partic-

ular  executions are correct (e.g., TSO allows the execution in Figure 2-5;
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PowerPC allows the execution in Figure 2-6). Thus, if one wishes to model execu-

tions of systems that break write-atomicity, then the constraint graph correspond-

ing to those executions may sometimes indicate that the execution is incorrect

when it is not.

When evaluating replay-based memory ordering, we find that there are so

few replays performed to enforce sequential consistency that we do not explore

weaker models. Consequently, this application is not affected by the omission of

non-atomic write modeling. Our evaluation of edge-chasing delayed consistency

may be affected by this omission, because edge-chasing delayed consistency may

benefit from the relaxation of write atomicity. The lack of modeling for non-

atomic writes affects the implementation by creating a cycle when one would oth-

erwise not exist, causing a loss in performance by forcing a processor to unneces-

sarily stop using a stale cache line. However, exploiting the non-atomicity

FIGURE 2-5. Detectable instance of store-to-load forwarding from write
buffer. 

FIGURE 2-6. Detectable instance of non-atomic write. 
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23property adds a significant amount of complexity to the protocol, which we do not

believe would be justified. Prior representations separately proposed by Collier,

Adve, and Gharachorloo do include the modeling of non-atomic writes

[1][27][39]. Should future implementations of edge-chasing delayed consistency

benefit from a more exact enforcement of the necessary conditions for using stale

cache lines, one of these more detailed representations can be used instead of our

representation.

2.3 Related Work

This work is based on the original constraint graph definition presented by

Landin, Hagersten, and Haridi, who used it to reason about the correctness of

request and response reordering in sequentially consistent interconnection net-

works [59]. Prior to Landin et al.’s formalization, a similar model was used by

Shasha and Snir to determine the necessary conditions for the insertion of memory

barriers by parallelizing compilers to ensure sequentially consistent executions

[98]. The constraint graph has since been used to automatically verify sequentially

consistent systems [29][90] and reason about the correctness of value prediction in

multiprocessor systems [71]. It has also recently been used to measure the differ-

ences in the limits of parallelism across consistency models in several multi-

threaded applications [20], and check the correctness of an implementation of the

TSO memory model [44].

Although previous work has defined constraint graphs for sequentially

consistent systems, the majority of multiprocessors shipping today employ a



24relaxed memory model [49][50][73][101][110]. The representation presented here

augments the constraint graph representation for use in reasoning about processor

consistent and weakly ordered systems. These extensions are more broadly appli-

cable to reasoning about relaxed memory consistency models, whether it be for the

purpose of verification or for the performance analysis discussed here.

There has been a plethora of work on other formalisms for reasoning about

shared-memory consistency models. Dubois et al. established the theoretical cor-

rectness of delaying data writes until the next synchronization operation [34], and

introduced the concept of the memory operations being “performed” locally, per-

formed with respect to other processors in the system, and performed globally.

Collier presented a formal framework that divided memory operations into several

sub-operations in order to model the non-atomicity of memory operations, and for-

mulated a series of rules regarding the correct observable order of sub-operations

allowable in different consistency models [27]. Adve incorporated the best fea-

tures of Landin et al.’s model (acyclic graph) and Collier’s framework (multiple

write events) into a powerful unified model, which was used to perform a design

space exploration of novel consistency models [1] (specifically Chapter 7). Chap-

ter 4 from Gharachorloo’s thesis describes a framework for specifying memory

consistency models that improves upon previous representations through the addi-

tion of a memory operation “initiation” event, which can be used to model early

store-to-load forwarding from a processor’s write buffer. The formal representa-

tion described in Section 2.1 is most similar to Adve’s representation, although in

favor of simplicity it lacks the detailed modeling of non-atomic writes.
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Experimental Methodology

In this chapter we describe the methodology used for performance evalua-

tion throughout the thesis. We begin with a discussion of performance evaluation

methodologies in general, motivating our desire to create a simulation environ-

ment capable of simulating shared-memory multiprocessors executing non-trivial

real-world applications. Section 3.1 also describes the machine model imple-

mented by PHARMsim, detailing the modifications to the original SimpleScalar

and SimpleMP simulators necessary for supporting modern microarchitectures,

system-level simulation, and the PowerPC architecture. We present an overview of

the benchmark programs used for performance evaluation in Section 3.2, followed

in Section 3.3 by a discussion of the non-determinism problem and its effects on

the data presented in this thesis.

3.1 Simulation Environment

All data presented in this thesis was collected using PHARMsim, a Pow-

erPC-based execution-driven full-system timing simulator. PHARMsim was

developed by members of the PHARM research group but inherits much of its

source code from two pre-existing simulators: the PowerPC port [52] of the

SimOS full-system simulator originally developed at Stanford [96], and Sim-

pleMP, a version of the SimpleScalar 3.0 simulator [17] modified by Ravi Rajwar

to support multiprocessor systems [91]. In this section, we describe our motiva-



26tions for the creation of PHARMsim, present a summary of the features PHARM-

sim inherits from other simulators, and provide an overview of the enhancements

made to the SimpleMP timing simulator to functionally support the PowerPC

architecture and full-system simulation, and to support faithful performance mod-

eling of modern microarchitectures.

3.1.1 Why execution-driven simulation?

Execution-driven simulation has become a ubiquitous method of perfor-

mance estimation in the computer architecture research community, due largely to

its flexibility. An execution-driven simulator is a piece of software that models a

computer system’s functionality, its accuracy being limited only by programming

effort, simulation time, and virtual memory size. Arbitrary programs may be exe-

cuted on the simulator, which functionally executes the semantics of each instruc-

tion in the program’s dynamic instruction stream, and faithfully calculates the time

required to execute the program based on the specifications of the modeled system.

Once a simulator has been written for a desired system, it is fairly simple to modify

that simulator to evaluate new experimental features.

Alternative approaches to performance analysis include the use of analytic

models and trace-driven simulation. Analytic modeling techniques include meth-

ods such as bounding calculations (e.g. peak floating point performance = number

of floating point units x megahertz), queuing models, and Markov chains. Depend-

ing on the level of detail included, such techniques can provide performance esti-

mates ranging from coarse “back-of-the-envelope” calculations to minutely

detailed predictions. Unfortunately, detailed analytic microarchitectural processor
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(in the form of application-specific statistics such as branch misprediction rates or

cache miss rates). If this data is collected using simulation, the utility of the ana-

lytic model is diminished to that of a validation mechanism, because a simulator

already exists that can provide performance estimates. Consequently, their use is

often relegated to high-level design-space exploration during the early phases of a

design, and simulation is subsequently used to analyze more minute performance

trade-offs.

Trace-driven simulation, in which a fixed record of executed instructions

or memory references is fed to a simulator that models the timing of a system exe-

cuting that trace, offers many of the same advantages as execution-driven simula-

tion. Practically any system may be modeled, but the ability to study certain

optimizations is limited by the information provided by the trace. For example, if

one were attempting to evaluate value-prediction [67] using trace-based simula-

tion, the trace must include values. It is also difficult to precisely model wrong-

path speculative execution using trace-based simulation because it is unknown at

trace-generation time where a wrong-path instruction stream might venture. (This

problem may be solved through the use of a trace-generator running in parallel

with the timing simulator, whose instruction stream can be redirected to tempo-

rarily follow incorrect paths [37][72][82].)

Attempting to compare multiprocessor simulation results using trace-based

simulation is problematic because the constraints placed on the execution by a

fixed trace can affect the outcome of the comparison, and the magnitude of this
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ing an optimization that changes the timing of a program’s inter-thread depen-

dences, the optimization’s impact may be over or under-estimated because the

optimized execution is constrained by a fixed trace. For example, suppose a

designer is evaluating an optimization that decreases the latency of inter-processor

cache block transfers in a coherence protocol for those blocks containing lock vari-

ables. In an actual system, such an optimization may decrease the number of spin

iterations executed by processors waiting to acquire the lock. If one were to evalu-

ate this optimization using trace-driven simulation, the spinning processors would

continue to execute the same number of spin instructions, even though the lock

release should have been observed earlier, and these additional spin instructions

would offset any gains obtained through the optimization. Using a fixed trace arti-

ficially forces a timing simulator to follow that trace, whereas in a real system the

lock transfer optimization would have caused fewer spin loop iterations in the

application’s execution. Execution driven simulation overcomes this problem

when modeling multiprocessor systems, because timing-dependent interactions

with other processors and interrupts occur as they would in a real system.

Unfortunately, execution-driven simulation’s ability to accurately model a

system’s non-deterministic behavior can become a liability when attempting to

compare two machine configurations if the amount of non-determinism is greater

than the expected performance difference between the two machines. We discuss

methods for making accurate performance comparisons in light of non-determinis-

tic workloads in Section 3.3.
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sole simulation methodology that can provide accurate performance estimates for

multiprocessor systems. However, not all execution-driven simulators are built

alike. One technique that is sometimes used to decrease simulator complexity is to

functionally execute instructions in program order and only model the timing of

out-of-order instruction execution. Another technique functionally executes

instructions using a flat memory hierarchy, and only simulates the timing of a

cache hierarchy. Neither of these approaches provide credible performance esti-

mates for the mechanisms studied in this thesis, which depend heavily on the

observed execution order and the potential existence of multiple concurrent ver-

sions of a single memory location. For example, the performance of the value-

based replay scheme described in Chapter 4 depends heavily on the interaction of

instruction reordering by a processor’s out-of-order instruction window with exter-

nal invalidations. If the simulator functionally executed instructions in program

order, the value returned by load instructions might differ from a simulator that

performs functional execution out-of-order, due to a different resolution of a race

with an external invalidation. The edge-chasing delayed consistency mechanism

described in Chapter 6 is heavily dependent upon the existence of more than one

version of a memory location; it is not possible to model the timing of stale value

usage without actually using stale values. Consequently, for the techniques studied

in this thesis, only a true value-passing “execute during execute” simulator will

suffice, which we have created in PHARMsim.

3.1.2 Why full-system simulation?
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tem simulation [96], the technology has widely proliferated

([5][11][13][56][52][69]) as an alternative to the user-level/system call proxying

simulators typically used for computer architecture research [17][86]. Full-system

simulation offers two major advantages over these simulators: 

• Targetability: the ability to execute any program, regardless of the arcane

system calls that program might use, such as large software packages like

databases and web servers.

• Increased Accuracy: the inclusion of system devices such as disks and

network adapters and the effects of those devices on other parts of the sys-

tem (e.g. cache invalidations due to DMA traffic). Also included is support

for supervisor-level instructions within the processor module, resulting in

the ability to model the timing of all instructions in a workload, not just

user-level instructions. This support is particularly important for I/O inten-

sive applications such as commercial workloads which spend a significant

fraction of their time executing system-level code [74][95]. Our research

has shown that the inclusion of system-level instructions can also cause a

significant performance impact on non-I/O intensive workloads such as the

SPEC CPU benchmarks, which were traditionally thought to be unaffected

by operating system activity [19].

3.1.3 SimpleScalar 3.0, SimpleMP, and SimOS-PPC functionality

As mentioned earlier, PHARMsim is based on three pre-existing simula-

tors, and consequently inherits the functionality of each of those simulators.
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PHARMsim relies on SimpleMP for detailed processor and memory system tim-

ing modeling. The SimpleScalar 3.0 code on which SimpleMP is based models an

out-of-order superscalar microprocessor implemented as a five-stage pipeline, sup-

porting speculative execution and a variety of branch predictors. 

SimpleMP is a multiprocessor version of SimpleScalar, augmenting the

simulator with two detailed coherent memory systems: a snooping protocol based

on the Sun Gigaplane-XB [24], illustrated in Figure 3-1, and a NUMA directory

protocol based on the SGI Origin [60], both using inclusive two-level caches.

These memory systems model latency and bandwidth at all stages. While SimpleS-

calar uses a flat image of memory and simulates the timing of a cache hierarchy,

SimpleMP’s processor reads data contained in the caches as would occur in an

actual system; consequently, the timing and values of reads to shared data reflect

those which would occur in a real system. Similarly, SimpleMP’s processor core

passes values through the register file as it would occur in a real microprocessor,

executing instructions out-of-order in data dependence fashion, and dispensing

with SimpleScalar’s functional in-order instruction execution.

FIGURE 3-1. 16-processor broadcast snooping memory system.  (Switched

data network not shown.)
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32SimpleMP implements a FIFO write-buffer containing committed store

instructions until they have obtained coherence permissions and can be written to

the cache, allowing the processor core to continue retiring instructions without

blocking on store misses. SimpleMP also provides an aggressive sequential consis-

tency implementation including exclusive prefetching and speculative load reor-

dering as described by Gharachorloo et al. [40].

SimOS is a complete machine simulation environment consisting of simu-

lators for the major components of a computer system (CPUs, memory hierarchy,

disks, console, ethernet). We use a version of SimOS that simulates PowerPC-

based computer systems running the AIX 4.3 operating system [52]. Communica-

tion between application code and I/O devices or the host machine is performed

using a magic sim_support instruction that is embedded in modified versions of

AIX device drivers. The PowerPC version of SimOS includes two processor simu-

lators: the simple simulator, a straightforward one-instruction-at-a-time functional

model, and the block simulator, a fast functional simulator making use of direct

execution to achieve an order of magnitude improvement in simulation speed. We

augment SimOS with a third processor model based on the SimpleMP simulator.

Figure 3-2 illustrates the steps typically involved when using this infra-

structure, from checkpoint creation to checkpoint/PHARMsim validation to its

usage as a timing simulator. Because of its simulation speed, we utilize the block-

mode simulator to efficiently setup and tune workloads within the simulator. Once

a workload is ready, a checkpoint of the system is created consisting of the sys-

tem’s memory, register, and I/O device state, as well as a log of the most recently
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referenced cache blocks. When starting a simulation from this checkpoint, the sim-

ulator’s state is initialized using this snapshot, including warming the caches from

the cache block log if the simulated machine includes a cache hierarchy. During

the validation stage, we run the Simple simulator and PHARMsim in parallel,

starting from the same checkpoint, and compare the differences in architected state

that occur at instruction boundaries to ensure that PHARMsim can correctly exe-

cute this checkpoint. The Simple simulator is used because it executes instructions

one-at-a-time (unlike the block mode simulator), allowing us to easily read archi-

tected state after each instruction has been executed. Once we have confidence that

the checkpoint is correctly executed, we are able to perform performance studies

using PHARMsim. The original version of SimpleMP could not have functioned

properly in this environment without significant modifications, which we describe

in the next section.

FIGURE 3-2. Typical PHARMsim usage flow. From checkpoint creation, to valida-

tion, to timing simulation.
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343.1.4 PHARMsim enhancements

In this section, we describe modifications to the SimpleMP simulator nec-

essary for functionally supporting the PowerPC architecture and system-level

code, and more accurate performance modeling.

Functional modeling:

• PowerPC Instruction Set Architecture: PHARMsim provides support for

all of the instructions in the PowerPC instruction set, including privileged

mode instructions. These instructions include the dcbz (data cache block

zero), dcbf (data cache block flush), dcbi (data cache block invalidate), and

icbi (instruction cache block invalidate) instructions which are fully sup-

ported by the two memory systems, as well as the tlbie (invalidate TLB

entry) and tlbia (invalidate all TLB entries) instructions.

• Address Translation: PHARMsim fully implements the 32-bit address

translation mode specified by the PowerPC architecture. On a TLB miss, a

simulated hardware page-table walker issues a series of memory references

to the simulated memory system, traversing the page table to find the cor-

rect mapping. If no mapping is found or a protection violation occurs, the

simulated machine drains the pipeline, squashes prior in-flight instructions,

and redirects fetch to the appropriate exception handler.

• Precise Exceptions: PHARMsim provides support for precise exceptions,

whether they are caused by instructions or asynchronous interrupts. A

micro-operation (see instruction cracking below) cannot commit until all

micro-operations in the corresponding PowerPC instruction are known to
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PowerPC specifies are restartable). In the event of an instruction exception,

all instructions in program order before the excepting instruction are

allowed to commit, after which the pipeline is squashed and fetch is redi-

rected to the appropriate exception handler. This support is overloaded for

the implementation of the PowerPC instructions rfi (return from interrupt)

and isync (instruction synchronize), which dictate that all instructions in

the pipeline must be discarded before the instruction completes. In the

event of an asynchronous exception, instruction fetch is stalled until the

pipeline drains, and then redirected to the appropriate handler.

• Reference and Change Bits: In order to support virtual memory, PowerPC

provides reference and change bits as part of the page table. When per-

forming address translation for a memory operation, copies of the R/C bits

stored in the TLB are inspected. If the corresponding bits are not already

set for a particular reference, that instruction is flagged, and at commit the

instruction must stall until a store marking the R/C bits has been performed

to the appropriate page table entry.

• Unaligned Memory References: Unaligned memory references (which are

allowed in the PowerPC architecture) are handled in the processor core by

splitting each reference crossing a cache block boundary into two smaller

aligned references which are then each issued to the SimpleMP memory

system.

• PowerPC Memory Consistency Model: In addition to the implementations
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mented the simulator with an implementation of PowerPC’s weakly

ordered model. To implement weak ordering, execution synchronizing

instructions (e.g., sync) stall the dispatch pipeline stage until all prior load

instructions have received their data and all prior store instructions have

been ordered (including those in the write-buffer). The processor’s load

queue is also snooped, as in the base SimpleMP TSO implementation,

however only same-address coherent load-to-load ordering ( ) is

enforced. Other speculative load operations whose addresses conflict with

incoming snoops are not squashed.

Performance Modeling:

SimpleMP lacks performance modeling for many common features of

modern high-performance computer systems. In this section, we describe some of

the enhancements made to more accurately model modern microarchitectures.

• Instruction Cracking: The PowerPC instruction set is supported through

the addition of a “xlate” translation stage immediately prior to the dispatch

stage. The xlate stage cracks PowerPC instructions into simpler micro-

operations, similar to the workings of the IBM Power4 [107]. This instruc-

tion-cracking mechanism is further described in prior work [18].

• Separate Scheduling Window: Rather than using a unified RUU-based

instruction scheduling window and reorder buffer [103] like SimpleScalar,

PHARMsim models a separately sized scheduling window.

• Deep Pipelines: In order to model the increasing pipeline depths found in

rdrd sa–
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recent microprocessors, PHARMsim includes a user-controlled number of

front-end pipeline stages between fetch and xlate. Once past the xlate

stage, micro-operations commit in a minimum three cycles plus functional

unit latency. Figure 3-3 illustrates the pipeline.

• Memory Dependence Prediction: By default, SimpleScalar and SimpleMP

prevent ready load instructions from issuing until all prior store addresses

have been calculated, which has been shown to be a serious performance

detriment for many applications [81]. PHARMsim supports four different

memory disambiguation modes: 1) always-conflict, which predicts that

loads will always conflict and refrains from speculatively issuing them (as

in the default SimpleScalar); 2) never-conflict, which always assumes that

loads do not conflict and speculatively issues them, squashing incorrect

speculations when a conflicting store address is calculated; 3) store-set,

which uses a store-set predictor to predict those loads that conflict with

prior outstanding stores [26]; and 4) alpha, which is identical to the Alpha

21264 memory disambiguation mechanism [28], utilizing a simple table

containing load PC’s that have caused ordering violations in the past, and

preventing subsequent loads from speculatively issuing if there is a corre-

sponding entry in the table.

FIGURE 3-3. PHARMsim pipeline structure. 
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• Level-Zero Cache: PHARMsim augments the two-level cache hierarchy

implemented by SimpleMP with a level-zero cache consisting of a subset

of the level-one cache blocks. This addition allows the modeling of a three-

level cache hierarchy without redesigning the existing coherence protocols.

• Hardware Prefetcher: PHARMsim implements a sequential hardware data

prefetcher functionally equivalent to the Power4 hardware prefetcher

[107]. Logic in the prefetcher detects streaming accesses that sequentially

touch adjacent cache blocks (in either ascending or descending direction).

Once a stream has been detected, an entry is allocated in an eight-entry

stream buffer, which prefetches the next five cache blocks in the stream

into the L2 cache, and the next adjacent block into the L1 cache. Prefetch

streams terminate on 4k page boundaries.

• Two-Dimensional Torus Network: When using the NUMA system configu-

ration provided by SimpleMP, PHARMsim replaces the fully-connected

interconnection network with a statically dimension-order routed two-

dimensional torus network consisting of three virtual channels. Figure 3-4

illustrates this configuration.

FIGURE 3-4. 16-processor directory-based NUMA memory system. 
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perform I/O “magically” by proxying system calls and instantaneously

updating a cache’s contents to reflect the new memory contents. We aug-

ment the SimpleMP memory systems with a coherent I/O controller device

that functions as another agent in the coherence protocol. The SimOS I/O

device models have been modified to use this DMA device when reading

or writing memory. 

3.2 Benchmarks

For performance evaluation, we use a variety of benchmarks, summarized

in Table 3-1. During uniprocessor experiments, we use the SPEC 2000 benchmark

suite and a few commercial workloads (TPC-B, TPC-H, and SPECjbb2000). For

multiprocessor experiments, we use the SPLASH-2 parallel benchmark suite

[111], SPECweb99, SPECjbb2000, TPC-B and TPC-H. For the parallel experi-

ments presented in Chapter 5, our SPLASH-2 checkpoints are limited to barnes,

ocean, radiosity, and raytrace because we do not have 16-processor checkpoints

for the others. For the parallel experiments presented in Chapter 7, we present data

using only our four-processor checkpoints only due to the excessive simulation

time required to run the 16-processor checkpoints.

The SPEC integer and SPLASH-2 benchmarks were compiled with the

IBM xlc optimizing C compiler, except for the C++ benchmark eon, which was

compiled using g++ version 2.95.2. The SPEC floating point benchmarks were

compiled using the IBM xlf optimizing Fortran compiler. The SPEC CPU bench-
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marks were run to completion using the MinneSPEC reduced input sets [53].

3.3 Insuring Comparable Results in Light of Non-determinism

As originally demonstrated by Alameldeen and Wood, the non-determinis-

tic nature of multithreaded workloads can cause problems when comparing the

performance of two machine configurations [6]. Should the amount of variance

Table 3-1: Benchmark descriptions. 

Benchmark(s) Comments

barnes SPLASH-2 N-body simulation (8k particles)

cholesky SPLASH-2 blocked sparse factorization 

kernel (input tk15.0)

fft SPLASH-2 fast-fourier transform kernel 

(256k points)

fmm SPLASH-2 N-body simulation in two 

dimensions (16k particles)

lu SPLASH-2 dense matrix factorization kernel 

(512 x 512 matrix)

ocean SPLASH-2 ocean simulation (514 x 514)

radiosity SPLASH-2 light interaction application (-

room -ae 5000.0 -en -0.0050 -bf 0.10)

radix SPLASH-2 integer radix sort kernel (1M 

integers, radix 1024)

raytrace SPLASH-2 raytracing application (car)

volrend 3D volume rendering using raycasting 

application. (head input)

water-nsquared SPLASH-2 molecular physics application 

(512 molecules)

water-spatial SPLASH-2 improved version of water-

nsquared (512 molecules)

SPEC CPU 2000 Uniprocessor benchmarks from SPEC

SPECjbb2000 Server-side Java benchmark (IBM jdk 1.1.8 

w/ JIT, 400 operations)

SPECweb99 Zeus Web Server 3.3.7, servicing 300 HTTP 

requests

TPC-B Transaction Processing Council’s original 

OLTP benchmark (IBM DB2 v 6.1)

TPC-H Transaction Processing Council’s decision 

support benchmark (IBM DB2 v. 6.1, 

running query 12 on a 512 MB database)
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that exists within the workload due to timing dependent behavior be greater than

the expected performance difference between the two machine configurations, it

will be difficult to discern if the observed performance difference is caused by the

differing machine configurations or the inherent workload variability. An example

of this phenomenon is shown in Figure 3-5, graphing the execution time of the

SPECjbb2000 benchmark for a certain machine configuration while varying main

memory latency from 475 to 525 cycles. Although one would expect that as mem-

ory latency increases the benchmark execution time should also increase, in this

case the execution time shows little correlation to memory latency. We also graph

the dynamic instruction count from each run, and find that the dynamic instruction

count also varies wildly, and that execution time roughly tracks dynamic instruc-

tion count.

In order to solve this problem, we use the statistical simulation approach

advocated by Alameldeen and Wood [6]. When measuring the performance of

multiprocessor systems, we perform multiple runs for each experimental data point

while randomly inserting very small perturbations to the main memory latency

FIGURE 3-5. End-to-end simulated cycles (SPECjbb2000) for varying main memory latency.
Main memory latency is varied from 475 to 525 cycles for a 16 processor run of SPECjbb2000 for 400

transactions starting from the same checkpoint. The measured number of cycles and instructions to com-

plete the run is indicated, showing substantial variation in performance measurement for a minor architec-

tural change



42(between 0 and 4 cycles, less than 1% of main memory latency), causing the exe-

cutions to diverge. When plotting results, we include error bars signifying a 95%

confidence interval in the reported data. Although the non-determinism problem

can also occur in single processor systems due to timing dependent interactions

with I/O devices and timer interrupts, we have found such effects to be negligible

for the workloads used in this thesis.

Lepak et al. describe an alternative methodology for ensuring comparable

results based on forcing each execution to deterministically follow the same com-

mitted instruction stream [64]. Unfortunately, this method cannot be used to accu-

rately evaluate techniques that depend on the ability to resolve races differently

between the two executions, such as the edge-chasing delayed consistency mecha-

nism described in Chapter 6. Consequently, we do not use the deterministic simu-

lation methodology in this thesis. However, due to the inherent variability of the

workloads excessive simulation time has been needed to collect the data in this

thesis using the statistical simulation methodology. Some benchmarks have

required 20 simulations per data point, while still garnering a margin of error of +/-

3%. When a simulation may require several days of compute time, this methodol-

ogy is not tractable for extensive design space exploration without the benefit of

very large clusters for providing simulation bandwidth. We consequently advocate

further research into the non-determinism problem, to either develop a high-preci-

sion performance methodology that does not require excessive simulation band-

width, or provide a better understanding of the workload setup parameters that

affect a workload’s exhibited amount of non-determinism.
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Value-based Memory Ordering

Computer performance may be increased by improving any of the three

terms of the fundamental performance equation: CPU time = instructions/program

x cycles/instruction x clock cycle time. Unless a new instruction set is in develop-

ment, improving the instructions/program term is largely beyond the architect’s

reach, and instead depends on the application developer or compiler writer. Hard-

ware designers have therefore focused much energy on optimizing the latter two

terms of the performance equation. Instructions-per-cycle (IPC) has increased by

building out-of-order instruction windows that dynamically extract independent

operations from the sequential instruction stream which are then executed in a

dataflow fashion. Meanwhile, architects have also attempted to minimize clock

cycle time through increased pipelining and careful logic and circuit design.

Unfortunately, IPC and clock frequency are not independent terms. The hardware

structures (e.g. issue queue, physical register file, load/store queues, etc.) used to

find independent operations and correctly execute them out of program order are

often constrained by clock cycle time. In order to decrease clock cycle time, the

size of these conventional structures must usually decrease, also decreasing IPC.

Conversely, IPC may be increased by increasing their size, but this also increases

their access time and may degrade clock frequency. In this chapter, we focus on

the scalability of one of these hardware structures: the load queue.

Load queues are usually built using content-addressable memories that
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among memory instructions. When a store address is generated, the load queue

CAM is searched for prior loads that incorrectly speculatively issued before the

store instruction. Depending on the supported consistency model, the load queue

may also be searched when every load issues [28], upon the arrival of an external

invalidation request [49][113], or both [107]. As the instruction window grows, so

does the number of in-flight loads, resulting in the load queue CAM access latency

increasing. 

In this chapter, we present a mechanism called value-based replay that

completely eliminates the associative search functionality requirement from the

load queue in an attempt to simplify the execution core. Instead, memory depen-

dences are enforced by simply re-executing load operations in program order prior

to commit, and comparing the new value to the value obtained when the load first

executed. We refer to the original load execution as the premature load and the re-

execution as the replay load. If the two values are the same, then the premature

load correctly resolved its memory dependences. If the two values differ, then we

know that a violation occurred either due to an incorrect reordering with respect to

a prior store or a potential violation of the memory consistency model. Instructions

that have already consumed the premature load’s incorrect value must be

squashed. By eliminating the associative search from the load queue, we remove

one of the factors that limits the size of a processor’s instruction window. Instead,

loads can reside in a simple FIFO either separately or as part of the processor’s

reorder buffer. In Section 4.2, we describe in detail value-based replay’s impact on



.

45the processor core implementation.

In order to mitigate the costs associated with replay (increased cache band-

width and resource occupancy), we evaluate several heuristics that filter the set of

loads that must be replayed. These filters, based on observations made using the

constraint graph, reduce the percentage of loads that must be replayed exception-

ally well (to 0.02 replay loads per committed instruction on average), and as a

result, there is little degradation in performance when using load replay compared

to a machine whose load queue includes a fully associative address CAM. Chapter

5 presents a thorough performance evaluation of value-based memory ordering

using these filtering mechanisms.

Although the goal of value-based replay is eliminating associative lookup

hardware from the load queue, the store queue also requires an associative lookup

that will suffer similar scalability problems in large-instruction window machines.

We focus on the load queue for three primary reasons: 1) because loads occur

more frequently than store instructions (loads and stores constitute 30% and 14%,

respectively, of dynamic instructions for the workloads in this thesis), the load

queue in a balanced-resource machine should be larger than the store queue and

therefore its scalability is more of a concern; 2) the store-to-load data forwarding

facility implemented by the store queue is more critical to performance than the

rare-error checking facility implemented by the load queue, and therefore the store

queue’s use of a fast search function is more appropriate; and 3) in some microar-

chitectures [28][107], the load queue is searched more frequently than the store

queue, thus consuming more power and requiring additional read ports.
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• Elimination of associative search logic from the load queue via value-

based replay: We demonstrate a value-based replay mechanism for

enforcing uniprocessor and multiprocessor ordering constraints that elimi-

nates the need for associative lookups in the load queue.

• Replay-reduction heuristics: We introduce several novel heuristics that

reduce the cache bandwidth required by the load-replay mechanism to a

negligible amount.

• Consistency model checking: we define the constraints for implementing

a back-end memory consistency checker. These constraints are also useful

in the domain of other checking mechanisms such as DIVA [10]. Recent

work has exposed a subtle interaction between memory consistency and

value prediction that results in consistency violations under different forms

of weak consistency [71]. Our value-based replay implementation may be

used to detect such errors.

In the next section, we describe the microarchitecture of conventional asso-

ciative load queues. Section 4.2 presents our alternative memory ordering scheme,

value-based replay, including the description of our replay filtering heuristics.

Using the experimental methodology described in Chapter 3, we present a detailed

performance study of the value-based replay mechanism relative to an aggressive

conventional load queue design in Chapter 5.
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4.1 Associative Load Queue Design

We believe that an inordinate amount of complexity in an out-of-order

microprocessor’s design stems from the load queue, mainly due to an associative

search function whose primary function is to detect rare errors. In this section, we

examine the source of this complexity through an overview of the functional

requirements of the load queue structures, and a description of their logical and

physical design.

4.1.1 Functional requirements and logical design

The correctness requirements enforced by the load queue are two-fold:

loads that are speculatively reordered with respect to a prior store that has an unre-

solved address must be checked for correctness, and violations of the multiproces-

sor memory consistency model caused by incorrect reorderings must be

disallowed. Figure 4-1 (a) contains a code segment illustrating a potential violation

of a uniprocessor RAW hazard. Each operation is labeled by its program order and

by issue order (in parentheses). In this example, the load instruction speculatively

issues before the previous store’s address has been computed. Conventional mem-

ory ordering implementations enforce correctness by associatively searching the

load queue each time a store address is computed. If the queue contains an already-

(a) (b) (c)

FIGURE 4-1. Correctly supporting out-of-order loads: Examples (a) uniprocessor RAW

hazard, (b) multiprocessor violation of sequential consistency (c) multiprocessor violation of

coherence
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48issued prior load whose address overlaps the store, the load is squashed and re-exe-

cuted. In this example, if the second store overlaps address A, the scan of the load

queue will result in a match and the load of A will be squashed.

Some microarchitectures delay issuing a load instruction until all prior

store addresses are known, altogether avoiding the need to detect RAW depen-

dence violations. Unfortunately this solution is not sufficient to prevent violations

of the memory consistency model, which can occur if any memory operations are

reordered. Forcing all memory operations to execute in program order is too

restrictive, so associative lookup hardware is still required even if loads are

delayed until all prior store addresses are known.

In terms of enforcing the memory consistency model, load queue imple-

mentations can be categorized into two basic types: those in which external invali-

dation requests search the load queue, and those in which the queue is not

searched. We refer to these types as snooping load queues and insulated load

queues. In a processor with a snooping load queue, originally described by Ghara-

chorloo et al. [40], the memory system forwards external write requests (i.e. inval-

idate messages from other processors or I/O devices) to the load queue, which

searches for already-issued loads whose addresses match the invalidation address,

squashing any overlapping load. If inclusion is enforced between the load queue

and any cache, replacements from that cache will also result in an external load

queue search. Insulated load queues enforce the memory consistency model with-

out processing external invalidations, by squashing and replaying loads that may

have violated the consistency model. The exact load queue implementation will
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either of these two types may be used to support any consistency model, as

described shortly.

Figure 4-1(b) illustrates a multiprocessor code segment where processor p2

has reordered two loads to different memory locations that are both written by pro-

cessor p1 in the interim. In a sequentially consistent system, this execution is ille-

gal because all of the operations cannot be placed in a total order. A snooping load

queue detects this error by comparing the invalidation address corresponding to

p1’s store A to the load queue addresses, and squashing any instructions that have

already issued to address A, in this case p2’s second load. An insulated load queue

prevents this error by observing at load B’s completion that the load A instruction

has already completed, potentially violating consistency, and the load A is subse-

quently squashed. Loads at the head of the load queue are inherently correct with

respect to the memory consistency model, and are therefore never squashed due to

an external invalidation. Avoiding these squashes is important in order to ensure

forward progress.

Processors that support strict consistency models such as sequential consis-

tency and processor consistency do not usually use insulated load queues, due to

the large number of operations that must be ordered with respect to one another

(i.e. all loads). Insulated load queues are more prevalent in weaker consistency

models, where there are few consistency constraints ordering instructions. For

example, in the variant of weak ordering supported by the Alpha ISA, only those

operations that are separated by a memory barrier instruction, or those operations



50that read or write the same address (connected by  in the constraint graph),

must be ordered. The Alpha 21264 supports weak ordering by stalling dispatch at

every memory barrier instruction (enforcing the first requirement), and uses an

insulated load buffer to order those instructions that read the same address [28].

Using the example in Figure 4-1(c), if processor p1’s first load A reads the value

written by p2, then p1’s second load A must also observe that value. An insulated

load buffer enforces this requirement by searching the load queue when each load

issues and squashing any prior load to the same address that has already issued.

Snooping load queues in sequentially consistent systems are simpler in this

respect, because load instructions do not search the load queue, however this addi-

tional simplicity is offset by requiring support for external invalidation searches.

In order to reduce the frequency of load squashes, the IBM Power4 uses a

hybrid approach that snoops the load queue, marking (instead of squashing) con-

flicting loads. Every load must still search the load queue at issue time for prior

loads to the same address, however only those that have been marked by a snoop

hit must be squashed [107].

Obviously, both the snooping and insulated load queue implementations

are conservative in terms of enforcing correctness. Due to false sharing and silent

stores [65], a load does not need to be squashed simply because its address

matches the address of an external invalidation. The premature load may have

actually read the correct value. Likewise, due to store value locality, when a store’s

address is computed, all prior loads to the same address that have already executed

do not necessarily need to be squashed, since many may have actually read the cor-

rdrd sa–
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rect value. These observations expose one benefit of the value-based ordering

scheme, which has been exploited by other store-set predictor designs: a subset of

squashes that occur in conventional designs are eliminated [85][115]. We quantify

the frequency of avoided squashes in Chapter 5.

4.1.2 Physical design

Load queues are usually implemented using two main data structures: a

RAM structure containing a set of entries organized as a circular queue, and an

associated CAM used to search for queue entries with a matching address. The

RAM contains meta-data pertaining to each dynamic load (e.g. PC, destination

register id, etc.), and is indexed by instruction age (assigned in-order by the front-

end of the pipeline). Figure 4-2 illustrates a simplified hybrid load queue with a

lookup initiated by each load or store address generation (agen) and external inval-

idation. For address generation lookups, an associated age input is used by the

squash logic to distinguish those loads that follow the load or store. The latency of

searching the load queue CAM is a function of its size and the number of

read/write ports. Write port size is determined by the processor’s load issue width;

each issued load must store its newly generated address into the appropriate CAM

FIGURE 4-2. A simplified hybrid load queue. 
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entry. The CAM must contain a read port for each issued store, each issued load

(in weakly ordered implementations), and usually an extra port for external

accesses in snooping load queues. A summary of their size in current generation

processors having separate load queues (as opposed to integrated load/store

queues) whose details have been published is found in Table 4-1, including an esti-

mation of their read/write CAM port requirements. Typical current-generation

dynamically scheduled processors use load queues with sizes in the range of 32-48

entries, and allow some combination of two loads or stores to be issued per cycle,

resulting in a queue with two or three read ports and two write ports.

Using Cacti v. 3.2 [99], we estimate the access latency and energy per

access for several CAM configurations in a 0.09 micron technology, varying the

Table 4-1: Load queue attributes for current dynamically scheduled

processors. 

Processor Est. # read ports Est. # write ports

Compaq Alpha 21364 (32-entry load queue,

max 2 load or store agens per cycle)

2 (1 per load/store

issued/cycle)

2 (1 per load

issued/cycle)

HAL SPARC64 V (size unknown, max 2

loads and 2 store agens per cycle)

3 (2 for stores, 1 for external

invalidations)

2

IBM Power 4 (32-entry load queue, max 2

load or store agens per cycle)

3 (2 for loads and stores, 1

for external invalidations)

2

Intel Pentium 4 (48-entry load queue, max 1

load and 1 store agen per cycle)

2 (1 for stores, 1 for external

invalidations)

2

Table 4-2: Associative load queue search latency (nanoseconds), energy

(nanojoules). 

entries Read/Write Ports (ns, nJ)

2/2 3/2 4/4 6/6

16 0.6 ns, 0.03 nJ 0.68 ns, 0.04 nJ 0.72 ns, 0.07 nJ 0.79 ns, 0.12 nJ

32 0.75 ns, 0.05 nJ 0.77 ns, 0.06 nJ 0.85 ns, 0.12 nJ 0.94 ns, 0.20 nJ

64 0.78 ns, 0.12 nJ 0.80 ns, 0.15 nJ 0.87 ns, 0.27 nJ 0.97 ns, 0.45 nJ

128 0.78 ns, 0.22 nJ 0.80 ns, 0.28 nJ 0.88 ns, 0.50 nJ 0.97 ns, 0.85 nJ

256 0.97 ns, 0.37 nJ 1.01 ns, 0.48 nJ 1.13 ns, 0.87 nJ 1.28 ns, 1.51 nJ

512 1.00 ns, 0.80 nJ 1.04 ns, 1.03 nJ 1.16 ns, 1.87 nJ 1.32 ns, 3.22 nJ
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Although this data may not represent a lower bound on each configuration’s access

latency or energy (human engineers can be surprisingly crafty), we expect the

trends to be accurate. The energy expended by each load queue search increases

linearly with the number of entries, and the latency increases logarithmically.

Increasing load queue bandwidth through multiporting also penalizes these terms:

doubling the number of ports more than doubles the energy expended per access,

and increases latency by approximately 15%. Based on these measurements, it is

clear that neither the size nor bandwidth of conventional load queues scales well,

in terms of latency or energy. These scaling problems will motivate significant

design changes in future machines that attempt to exploit higher ILP through

increased issue width or load queue size. In the next section, we present one alter-

native to associative load queues, which eliminates this CAM overhead.

4.2 Value-based Memory Ordering

The driving principle behind our design is to shift complexity from the tim-

ing critical components of the pipeline (scheduler/functional units/bypass paths) to

the back-end of the pipeline. During a load’s premature execution, the load is per-

formed identically to how it would perform in a conventional machine: at issue,

the store queue is searched for a matching address, if none is found and a depen-

dence predictor indicates that there will not be a conflict, the load proceeds, other-

wise it is stalled. After issue, there is no need for loads or stores to search the load

queue for incorrectly reordered loads (likewise for external invalidations). Instead,
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we shift complexity to the rear of the pipeline, where loads are re-executed and

their results checked against the premature load result. To support this load replay

mechanism, two pipeline stages have been added at the back-end of the pipeline

preceding the commit stage, labeled replay and compare and shown in Figure 4-3.

For simplicity, all instructions flow through the replay and compare stages, with

action only being taken for load instructions.

During the replay stage, certain load instructions access the level-one data

cache a second time. We do not support forwarding from prior stores to replay

loads, so load instructions that are replayed stall the pipeline until all prior stores

have written their data to the cache. Because each replay load was also executed

prematurely, this replay is less costly in terms of latency and power consumption

than its corresponding premature load. For example, the replay access can reuse

the effective address calculated during the premature load’s execution, and in sys-

tems with a physically indexed cache the TLB need not be accessed a second time.

In the absence of rare events such as an intervening cast-out or external invalidate

to the referenced cache block between the premature load and replay load, the

replay load will always be a cache hit, resulting in a low-latency replay operation.

Because stores must perform their cache access at commit, the tail of the pipeline

already contains datapath for store access. For the purposes of this work, we

assume that this cache port may also be used for loads during the replay stage.

FIGURE 4-3. Pipeline diagram, replay stages highlighted. 
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ity being given to stores.

During the compare stage, the replay load value is compared to the prema-

ture load value. If the values match, the premature load was correct and the

instruction proceeds to the commit stage where it is subsequently retired. If the

values differ, the premature load’s speculative execution is deemed incorrect, and

a recovery mechanism is invoked. The use of a conventional selective recovery

mechanism is most likely precluded due to the variable latency and large distance

between the processor’s scheduling stage and replay stage, so we assume that a

heavy-weight machine squash mechanism is used that squashes and re-executes all

subsequent instructions, dependent and independent. At a high level, this replay

mechanism can be viewed as an á la carte version of Austin’s DIVA checker pro-

cessor [10], checking only load instructions rather than all instructions.

Because the replay mechanism enforces correctness, the associative load

queue can be replaced with a simple FIFO buffer that contains the premature

load’s address and data (used during the replay and compare stages), in addition to

the usual meta-data stored in the load queue. To ensure a correct execution, how-

ever, care must be taken in designing the replay stage. The following three con-

straints guarantee any ordering violations are caught:

1) All prior stores must have committed their data to the L1 cache.

This requirement ensures that RAW dependences are correctly satisfied for all

loads. As a side-effect, it also eliminates the need for arbitration between the

replay mechanism and store queue for access to the shared cache port; if there are
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cache (due to typical handling of precise exceptions), and conversely, when there

are prior uncommitted stores in the pipeline, the replay stage will not attempt to

issue loads. Should this requirement result in performance degradation, it is possi-

ble that replay loads may also search the store queue, allowing them to replay

while stores are still in the pipeline. However, we believe that this is unneeded

complexity for current generation microarchitectures; in Chapter 5 we show that

stalling replay loads until all prior stores have committed their data does not cause

significant performance degradation.

2) All loads must be replayed in program order. To enforce consistency

constraints, the local processor must not observe the writes of other processors out

of their program order, which could happen if replayed loads are reordered. For the

machine configuration used in the next chapter, we find that limiting replay to one

instruction per cycle provides adequate replay bandwidth. Consequently, all loads

are in-order because only one may be issued per clock cycle. In very aggressive

machines, multiple load replays per cycle may prevent resource stalls. If all the

replays performed in a single cycle are cache hits, their execution will appear

atomic to other processors, and the writes of other processors will be observed in

the correct order. In cases where a replay load causes a cache miss, correctness is

ensured by forcing subsequent loads to replay after the cache miss is resolved. 

3) A dynamic load instruction that causes a replay squash should not

be replayed a second time after squash-recovery. This rule ensures forward

progress in pathological cases where contention for a piece of shared data can per-
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Naively, all loads (except those satisfying rule 3) should be replayed to

guarantee a correct execution. Unfortunately there are two primary costs associ-

ated with replaying loads, which we would like to avoid: 1) load replay can

become a performance bottleneck given insufficient cache bandwidth for replays

or due to the additional resource occupancy and 2) each replayed load causes an

extra cache access and word-sized compare operation, consuming energy. In order

to mitigate these penalties, we have investigated methods of eliminating the replay

operation for certain dynamic load instructions. In the next two subsections, we

define four filtering heuristics that are used to filter the set of loads that must be

replayed while ensuring a correct execution. Filtered loads continue to flow

through the replay and compare pipeline stages before reaching commit, however

they do not incur cache accesses, value comparisons, or machine squashes. The

first three filtering heuristics eliminate load replays while ensuring the execution’s

correctness with respect to memory consistency constraints. The final replay heu-

ristic filters replays while preserving uniprocessor RAW dependences.

4.2.1 Filtering replays while enforcing memory consistency

The issues associated with avoiding replays while also enforcing memory

consistency constraints are fairly subtle. To assist with our reasoning, we employ

the constraint graph representation discussed in Chapter 2, using the example

shown in Figure 4-4 in which processor p1 incorrectly reads the original value of

C. For the purposes of this discussion, we assume a sequentially consistent system,

where there are four edge types: program order edges that order all memory opera-
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tions executed by a single processor, and the dynamic ordering relations ( ,

, ) which order all memory operations that read or write the same

memory location.

The following three replay filters detect those load operations that should

be replayed to ensure correctness. The first two are based on the observation that

any cycle in the constraint graph must include one of the dynamic ordering edges

that connect instructions executed by two different processors. If an instruction is

not reordered with respect to another instruction whose edge spans two processors,

then there is no potential for consistency violation.

No-Recent-Miss Filter: One method of inferring the lack of a constraint

graph cycle is to monitor the occurrence of cache misses in the cache hierarchy. If

no cache blocks have entered a processor’s local cache hierarchy from an external

source (i.e. another processor’s cache) while an instruction is in the instruction

window, then there must not exist an incoming dynamic ordering edge from any

other processor in the system to any instruction in the window. Consequently, we

can infer that no cycle can exist, and therefore there is no need to replay loads to

check consistency constraints. Using the example from Figure 4-4, the load B

would incur a cache miss in an invalidation-based coherence protocol, requiring p1

FIGURE 4-4. Constraint Graph Example. 
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replay any load instructions currently in its instruction window. This filter may be

implemented as follows: each time a new cache block enters a processor’s local

cache, the cache unit asserts a signal monitored by the replay stage. When this sig-

nal is asserted, a “recent miss/need-replay” flag is set to true and an age register is

assigned the age index of the most-recently fetched load instruction in the instruc-

tion window. During each cycle that the flag is set to true, load instructions in the

replay stage are forced to replay. After the flagged load instruction replays, if the

age register still contains its age index, the flag is reset to zero.

No-Recent-Snoop Filter: The no-recent-snoop filter is conceptually simi-

lar to the no-recent-miss filter, only it detects the absence of an outgoing constraint

graph edge, rather than an incoming edge. Outgoing edges can be detected by

monitoring the occurrence of external write requests. If no blocks are written by

other processors while a load instruction is in the out-of-order window, then there

must not exist an outgoing  edge from any load instruction at this proces-

sor to any other processor. Reorderings across outgoing  and 

edges are prevented by the in-order commitment of store data to the cache. When

the no-recent-snoop filter is used, loads are only replayed if they were in the out-

of-order instruction window at the time an external invalidation (to any address)

was observed by the core. In terms of implementation, a mechanism similar to the

no-recent-miss filter can be used. This heuristic will perform best in systems that

utilize inclusive cache hierarchies, which filter the stream of invalidates observed

by the processor. Because fewer invalidates reach the processor, fewer loads will

dyn war–

dyn raw– dyn waw–



60need to be replayed.

Care must be taken to ensure that the visibility of external invalidates is not

lost due to castouts. For example, if a cache block is replaced and an invalidate

arrives to that block immediately following the replacement, the invalidate will be

filtered by the cache, and will not be sent to the processor. This exposes a window

of opportunity during which a load that should be replayed is not. One solution to

this problem (which we advocate) is to maintain an extra copy of the replaced

cache block’s tag until the oldest instruction in the out-of-order window retires.

Incoming invalidates that match this tag are then forwarded to the processor, trig-

gering a replay for load instructions in the instruction window.

No-Reorder Filter: The no-reorder filter is based on the observation that

the processor often executes memory operations in program order. If so, the

instructions must be correct with respect to the consistency model, therefore there

is no need to replay any load. We can detect operations that were originally exe-

cuted in-order using the instruction scheduler, by marking loads that issue while

there are prior incomplete loads or stores.

4.2.2 Filtering replays while enforcing uniprocessor RAW dependences

In order to minimize the number of replays needed to enforce uniprocessor

RAW dependences, we use the observation that most load instructions do not issue

out of order with respect to prior unresolved store addresses. The no-unresolved-

store filter identifies loads that did not bypass any stores with unresolved

addresses when issued prematurely. These loads are identified and marked at issue

time, when the store queue is searched for conflicting writes from which to for-
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instructions that must be inserted into the load queue [87].

4.2.3 The interaction of filters

Of the four filters described above, only the no-reorder filter can be used in

isolation; each of the other three are too aggressive. The no-recent-snoop and no-

recent-miss filters eliminate all replays other than those that can be used to infer

the correctness of memory consistency, at the risk of breaking uniprocessor depen-

dences. Likewise, the no-unresolved-store filter eliminates all replays except those

used to preserve uniprocessor RAW dependences, at the risk of violating the mem-

ory consistency model.

Consequently, the no-unresolved-store filter should be paired with either

the no-recent-snoop or no-recent-miss filters to ensure correctness. If the no-unre-

solved-store filter indicates that a load should be replayed, it is replayed irrespec-

tive of the consistency filter output. Likewise, if the consistency filter indicates

that a load should be replayed, it is replayed irrespective of the no-unresolved-

store filter. For further improvement, the no-recent-snoop filter and no-recent-miss

filter can be used simultaneously. However we find that these filters work well

enough in isolation that we do not explore this option. In the next chapter, we eval-

uate the value-based replay mechanism using these filters.

4.3 Discussion

In this section, we discuss the interaction of value-based replay with two

common microarchitectural techniques: memory dependence prediction and
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power-savings offered by the value-based memory ordering mechanism.

4.3.1 Interaction with memory dependence predictors

One drawback to the value-based replay mechanism is its inability to corre-

late a misspeculated load dependency to the store on which it depends. In a con-

ventional design, store addresses search the load queue as they are computed to

find dependent loads that erroneously issued prematurely. When a match is found,

the identity of the store on which the load depends is unambiguous. However,

when a load incurs a memory ordering violation in the value-based scheme, it is

unclear which store caused the misspeculation, and whether that store was even

performed by the local processor or a remote processor.

Some memory dependence mechanisms rely on the identification of the

conflicting store for training, and thus cannot be properly trained if this identifica-

tion cannot be performed. Dependence predictors of this type include Moshovos et

al.’s original dependence predictor [81], store set predictors [26], store barrier

caches [46] and the colliding store-distance predictor proposed by Yoaz et al.

[114].

Consequently, when evaluating value-based memory-ordering in Chapter

5, we use a simple predictor that is functionally equivalent to the dependence pre-

dictor used in the Alpha 21264, where a PC-indexed table is used whose entries

contain a single bit indicating whether the load at that PC has been a victim of a

previous dependence misprediction [28]. If this bit is set, corresponding loads are

prevented from issuing until the addresses of all prior stores are computed. For
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to a baseline machine incorporating a store-set predictor, showing a negligible dif-

ference in performance. Should this prediction strategy cause a performance deg-

radation in more-aggressive microarchitectures, which may exploit a greater

degree of instruction-level parallelism than the machine configuration used in

Chapter 5, it may be possible to find alternative methods of training those depen-

dence predictors which depend on conflicting store identification. For example,

Yoaz et al.’s method uses a tagged prediction table indexed by load PC whose

entries contain the distance between the load and colliding store. Loads that match

an entry in the prediction table may issue once all stores at this distance or beyond

have resolved their addresses and are found to be independent. If this predictor

were included in a machine that uses value-based memory ordering, it could be

trained by simply initially setting the distance to one, instead of the precise dis-

tance. Each time a load instruction causes a memory ordering violation, this dis-

tance would be incremented until the counter saturates or the violations cease.

With the addition of path-based information used to index the table, this prediction

strategy may rival that of a true store-set predictor.

4.3.2 Value-based memory ordering in simultaneously multithreaded pro-

cessors

Our description of value-based memory ordering above has assumed a con-

ventional single-threaded processor. The specifics of the memory ordering imple-

mentation found in a simultaneous multithreaded (SMT) processor may affect the

functionality of value-based memory ordering and its associated filters. Unfortu-
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implementations constrain load issuance in the presence of prior conflicting stores

that belong to another thread. In this section we include a brief discussion our

assumptions regarding SMT memory disambiguation, and describe how the value-

based memory ordering mechanism functions in this organization.

For the purposes of this discussion, we assume a store queue that is shared

among threads, where each load searches the store addresses corresponding to all

threads prior to issuing. When a load issues, three store-queue address match sce-

narios exist: 

• definite inter-thread match: the load conflicts with a prior store from

another thread. In this case we assume the load will stall until the store data

has been written to the L1 cache, so that if the store is squashed before

reaching commit, the load cannot have read incorrect speculative data.

• potential inter-thread match: there are prior stores with unresolved

addresses from another thread that may conflict. In this case, we assume

loads speculatively issue (if stalling on unresolved addresses hurts perfor-

mance in single-threaded processors, it will also hurt in multithreaded pro-

cessors).

• no inter-thread match: there are no prior unresolved address stores or con-

flicting stores from another thread.

Based on these assumptions, the value-based replay mechanism would

work as follows: in the no inter-thread match case, it would function identically to

the non-SMT implementation. There is no need to replay a load unless one of the
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action with another processor), because the load is guaranteed to receive the cor-

rect value with respect to stores issued from the local processor, regardless of

which thread may issue them.

In the potential inter-thread match case, the replay mechanism and filters

would also function identically to the non-SMT implementation: the no-unre-

solved store address filter would cause the load to be replayed because there is a

prior store with an unresolved address at issue time, forcing the replay load to

obtain the correct value from the cache in case the premature load read the incor-

rect value. In the definite inter-thread match case, instead of forwarding data from

the store to the load (as would happen in a non-SMT implementation), the load is

stalled until the store has written its data to the cache. When the premature load

subsequently issues, it will be guaranteed to receive the correct data from the

cache.

Other multi-threading implementations such as fine-grained multithreading

(as implemented in the Tera computer system [8]) and coarse-grained multithread-

ing (as implemented in the IBM RS-64 III processor [14]) have relied on in-order

instruction issue within a single-thread, eliminating the need for explicit memory

ordering detection/correction hardware.

4.3.3 Potential for power savings

Due to the growing importance in reducing microprocessor power con-

sumption [83], there has also been much recent research exploring energy-saving

alternatives to conventional microarchitectural structures. In terms of power con-
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tional load queues, because it only requires at most O (number of dynamic loads)

comparisons (one for cache tag match and one for value comparison) per dynamic

load instruction. Conventional load queues require at least O (number of load

queue entries) address comparisons per dynamic store instruction (plus dynamic

load instructions if weak ordering, plus incoming invalidates if snooping load

queue).

Extrapolating any quantitative power estimates would be unreliable with-

out using a detailed underlying power model. Instead, one can get a rough estimate

of the difference in dynamic energy using a simple model:

The primary energy cost for the value-based replay mechanism is the

energy consumed by replay cache accesses and word-sized comparison operations.

This cost is multiplied by the number of replays, which we have empirically deter-

mined to be relatively small. In the equation above, overheadreplay includes the

energy cost of the two extra pipeline latches and replay filtering mechanism.

Because the number of replays is quite small (on average 0.02 replay loads per

committed instruction using the no-recent-snoop/no-unresolved-store filter config-

uration, as shown in Chapter 5), if an implementation’s load queue CAM energy

expenditure per committed instruction is greater than 0.02 times the energy expen-

diture of a cache access and word-sized comparison, we expect the value-based

replay scheme to yield a reduction in power consumption. Technology scaling is

∆Energy Ecacheaccess Ewordcomparison+( ) replays×( )
Eldqsearch ldqsearches×( ) overheadreplay+–

=



.

67increasing both the absolute and relative contribution of static power dissipation to

overall power dissipation [108]. In terms of static power dissipation, value-based

memory ordering should also be advantageous, because it should require less area

than conventional memory ordering due to the elimination of the large address

matching CAMs.

4.4 Related Work

There has been much recent research on scaling structures in ways that are

amenable to high clock frequencies without negatively affecting IPC. Much of this

work has focused on the instruction issue queue, physical register file, and bypass

paths, but very little has focused on the load queue or store queue [4][87][97]. To

prevent this access time from affecting a processor’s overall clock cycle time,

recent research has explored variations of conventional load/store queues that

reduce the size of the CAM structure through a combination of filtering, caching,

or segmentation. Sethumadhavan et al. employ bloom filtering of LSQ searches to

reduce the frequency of accesses that must search the entire queue [97]. Bloom fil-

ters are also combined with an address matching predictor to filter the number of

instructions that must reside in the LSQ, resulting in a smaller effective LSQ size.

Akkary et al. explore a hierarchical store queue organization where a level-one

store queue contains the most recent n stores, while prior stores are contained in a

larger, slower level-two buffer [4]. A fast filtering mechanism reduces level-two

lookups, resulting in a common-case load queue lookup that is the larger of the

level-one store queue lookup latency and filter lookup latency. Their research does
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set predictor to reduce store queue search bandwidth by filtering those loads that

are predicted to be independent of prior stores. Load queue CAM size is reduced

by removing loads that were not reordered with respect to other loads, and a vari-

able-latency segmented LSQ is also explored [87]. Although each of these propos-

als offers a promising solution to the load or store queue scalability problem, their

augmentative approach results in a faster search but also adds significant complex-

ities to an already complex part of the machine. 

There has also been related work on low power alternatives to conventional

load queues, by Ponomorev et al. who explore the power-saving potential of a seg-

mented load queue design where certain portions of the load/store queue are dis-

abled when occupancy is low. However, this work does not address the scalability

problem of a fully occupied load queue [89].

Instead of the hardware mechanism presented here, Altman et al. use a

mechanism similar to value-based memory ordering to ensure the correctness of

instruction reorderings using software in the context of the DAISY binary transla-

tion system [7]. During aggressive optimization, loads may be hoisted above prior

conflicting stores and reordered in ways that could violate the consistency model.

To protect against potential violations while still allowing the reordering, a special

load-verify instruction is inserted at the original site of the load instruction, which

detects any incorrect reordering. Should such a violation occur, control is trans-

ferred to a software recovery routine.
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Experimental Evaluation of Value-based Memory 
Ordering

In this chapter, we present a detailed performance evaluation of the value-

based replay memory ordering mechanism. We compare our mechanism to an

aggressive eight-wide baseline machine (described in Section 5.1) to demonstrate

that value-based replay is able to keep up with a high-performance conventional

design, despite the replay-based machine’s associated performance penalties. We

find that the value-based replay mechanism is very competitive with the baseline

machine, averaging less than one percent performance degradation across this set

of benchmarks when using the best filter configuration, as shown in Section 5.2.

The baseline machine configuration utilizes a large unified load/store

queue, under the assumption that it can be accessed in a single cycle, which will

not be true as clock cycle times continue to decrease. In Section 5.3, we compare

the value based replay mechanism to machine configurations with smaller, more

realistically sized load queues. We find that when the CAM-based load queue size

is constrained, value-based replay can provide performance benefit through the

removal of this constraint.

Increased resource occupancy is primarily responsible for any performance

degradation caused by value-based replay: all instructions must pass through two

additional pipeline stages before freeing their associated resources, and some load

instructions must access the cache, stalling the machine until all prior stores have

committed and then for the duration of the cache access latency. The baseline
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machine used in the first part of this evaluation includes a large, 256 entry reorder

buffer, and an aggressive one cycle L1 data cache access latency, possibly masking

any performance degrading effects due to resource occupancy. In Section 5.4, we

evaluate the replay mechanism when assuming longer L1 data cache latencies, and

in Section 5.5, when assuming a smaller reorder buffer. In both cases, we find that

value-based replay is very competitive with the conventional machine configura-

tion, within 1% of the conventional machine’s performance on average.

5.1 Machine Configuration

Table 5-1 describes the machine configuration used for these experiments.

The experimental machine model uses a load/store queue sized equivalently to the

baseline machine. The baseline and experimental configurations use different

dependence predictors due to value-based replay’s inability to correlate depen-

dence mispredictions with the conflicting store. The baseline machine uses a store-

Table 5-1: Baseline machine configuration. 

Out-of-order

execution

5.0 GHZ, 15-stage 8-wide pipeline, 256 entry reorder buffer, 128

entry load/store queue, 32 entry issue queue, store-set predictor

with 4k entry SSIT and 128 entry LFST (baseline only), 4k entry

simple Alpha-style dependence predictor [28] (replay-based

only).

Functional Units

(latency)

8 integer ALUs (1), 3 integer MULT/DIV (3/12), 4 floating point

ALUs (4), 4 floating point MULT/DIV (4, 4), 4 L1D load ports

in OoO window, 1 commit stage L1D load/store port

Front-end fetch stops at first taken branch in cycle, combined bimodal (16k

entry)/gshare (16k entry) with selector (16k entry) branch predic-

tion, 64 entry RAS, 8k entry 4-way BTB

Memory System

(latency)

32k direct-mapped IL1 (1), 32k direct-mapped DL1 (1), 256k 8-

way DL2 (7), 256k 8-way IL2 (7), Unified 8MB 8-way L3 (15),

64 byte cache lines. 2k entry 2-way itlb, 2k entry 2-way dtlb.

Memory (400 cycles/100 ns best-case latency, 10 GB/S band-

width), Stride-based prefetcher modeled after Power4
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storing a single bit for loads that have caused a dependence misspeculation in the

past, as in the Alpha 21264 [28].

For the multiprocessor performance data, we augment the machine config-

uration from Table 5-1 with a Sun Gigaplane-XB-like interconnection network for

communication among processors and memory [24] that incurs an extra 32 cycle

latency penalty for address messages and 20 cycle latency penalty for data mes-

sages. We assume a point-to-point data network in which bandwidth scales with

the number of processors. For this multiprocessor machine configuration, we use a

sequential consistency memory model. Although a weaker consistency model

would reduce the number of required replays even further because there are fewer

instructions that must be ordered with respect to one another, we find that the num-

ber of replays due to consistency constraints is already so low (shown in Figure 5-

2) that further exploration is unwarranted.

5.2 Value-based Replay Relative to Large Conventional LSQ

Figure 5-1 presents the performance of value-based replay using four dif-

ferent filter configurations: no filters enabled (labeled replay all), the no-reorder

filter in isolation, the no-recent-miss and no-unresolved-store filters in tandem,

and the no-recent-snoop and no-unresolved-store filters in tandem. This data is

normalized to the baseline IPC reported at the bottom of each set of bars. 

The value-based replay mechanism is very competitive to the baseline

machine despite the use of a simpler dependence predictor. Without any filtering
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mechanism, value-based replay incurs a performance penalty of only 3% on aver-

age. The primary cause of this performance degradation is an increase in reorder

buffer occupancy. Figure 5-2 shows the increase in L1 data cache references for

each of the value-based configurations. Each bar is broken into two segments:

replays that occur because the load issued before a prior store’s address was

resolved, and replays that occur irrespective of uniprocessor constraints. Without

filtering any replays, accesses to the L1 data cache increase by 49% on average,

ranging from 32% to 87% depending on the percentage of cache accesses that are

caused by wrong-path speculative instructions and the fraction of accesses that are

stores. This machine configuration is limited to a single replay per cycle due to the

single back-end load/store port, which leads to an increase in average reorder

FIGURE 5-1. Value-based replay performance. (Relative to baseline)

FIGURE 5-2. Increased data cache bandwidth due to replay. (a) replay all, (b) no-reorder

filter, (c) no-recent-miss filter, (d) no-recent-snoop filter

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

N
o

rm
a
li
ze

d
 E

x
e
c
u

ti
o

n
 T

im
e

Replay All

No-Reorder Filter

No-Recent-Miss Filter

No-Recent-Snoop Filter

bz
ip2
1.94

cra
fty

2.42

eo
n

1.83

ga
p

0.93

gc
c

1.67

gz
ip

1.73

mcf
0.66

pa
rse

r
1.91

pe
rlb

mk
1.31

tw
olf

1.52

vo
rte

x
3.36

vp
r

1.72

ap
si

2.19

ar
t

1.59

wup
wise
1.97

sp
ec

jbb
20

00
0.97

tpc
-b

1.01

tpc
-h

1.32

ba
rn

es
-1

6p
28.66

oc
ea

n-
16

p
34.36

ra
dio

sit
y-1

6p
30.38

ra
ytr

ac
e-

16
p

32.63

sp
ec

jbb
20

00
-1

6p
23.56

sp
ec

web
99

-1
6p

14.84

tpc
-h

-1
6p

16.83 base IPC

0

20

40

60

80

100

%
 I

n
c

re
a

s
e

 L
1

D
C

a
c

h
e

 A
c

c
e

s
s

e
s

RAW Replays

Consistency Replays

bz
ip2
abcd

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x
vp

r
ap

si ar
t

wup
wise

sp
ec

jbb
20

00
tpc

-b
tpc

-h

ba
rn

es
-1

6p

oc
ea

n-
16

p

ra
dio

sit
y-1

6p

ra
ytr

ac
e-

16
p

sp
ec

jbb
20

00
-1

6p

sp
ec

web
99

-1
6p

tpc
-h

-1
6p



.

73

buffer utilization due to cache port contention (most dramatically in apsi and vor-

tex, as shown in Figure 5-3). This contention results in performance degradation

due to an increase in reorder buffer occupancy and subsequent reorder buffer allo-

cation stalls. Although this performance degradation is small on average, there are

a few applications where performance loss is significant.

When the no-reorder filter is enabled, the performance of value-based

replay improves, although not dramatically. The no-reorder filter is not a very

good filter of replays, reducing the average cache bandwidth replay overhead from

49% to 30.6%, indicating that most loads do execute out-of-order with respect to at

least one other load or store. The no-recent-snoop and no-recent-miss filters, when

used in conjunction with the no-unresolved-store filter, solve this problem. For the

single-processor machine configurations, there are no snoop requests observed by

the processor other than coherent I/O operations issued by the DMA controller,

which are relatively rare for these applications. Consequently, the no-recent-snoop

filter does a better job of filtering replays than the no-recent-miss filter. This is also

true in the 16-processor machine configuration, where an inclusive cache hierar-

chy shields the processor from most snoop requests. As shown in Figure 5-2, the

FIGURE 5-3. Average reorder buffer utilization. 
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74extra bandwidth consumed by both configurations is small, 4.3% and 3.4% on

average for the no-recent-miss and no-recent-snoop filters respectively. The large

reduction in replays leads to a reduction in average reorder buffer utilization

(shown in Figure 5-3), which leads to an improvement in performance for those

applications that were negatively affected in the replay-all configuration. For the

single processor results, value-based replay with the no-recent-snoop filter is only

1% slower than the baseline configuration on average. For the multiprocessor con-

figuration, the difference is within the margin of error caused by workload non-

determinism.

Many of the integer benchmarks whose resource occupancy was already

low do not suffer much performance degradation due to increased resource occu-

pancy, but are more affected by the change from the store-set predictor to the

Alpha-style dependence predictor. Neither predictor incurs many memory order

violations, but for some benchmarks the simple predictor more frequently stalls

loads due to incorrectly identified dependences, ultimately decreasing IPC. In one

case (art) the reverse is true, where the baseline machine’s store-set predictor stalls

a significant fraction of loads unnecessarily, resulting in a performance improve-

ment in the value-based replay configurations. We attempted to exacerbate the

negative effects of the simple dependence predictor relative to the store-set predic-

tor by repeating these experiments using a larger 256-entry issue queue, but found

that the results do not differ materially for this machine configuration.

One advantage of the value-based replay mechanism is its ability to filter

dependence misspeculation squashes if the misspeculated load happens to return
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based mechanism on average eliminates 59% of the dependence misspeculation

squashes caused by RAW uniprocessor violations, because the replay load hap-

pens to receive the same value as the premature load, even though the premature

load should have had its data forwarded by an intermediate store. However, the

frequency of squashes for these applications is so low (on the order of 1 per 100

million instructions), this reduction has little effect on overall performance.

The results are similar for consistency violations. In the multiprocessor

machine configuration, value-based replay is extremely successful at avoiding

consistency squashes, eliminating 95% on average. However we once again find

that such machine squashes occur so infrequently (4 per 10,000 instructions in the

most frequent case, SPECjbb2000) their impact on performance is insignificant.

Should consistency squashes be a problem with larger machine configurations or

applications where there is a greater level of contention for shared data structures,

value-based replay is a good means of improvement.

5.3. Constrained Load Queue Size

The previous set of performance data uses a baseline machine configura-

tion with a large, unified load/store queue. The primary motivation for value-based

replay is to eliminate the large associative load queue structure from the processor,

which does not scale as clock frequencies increase. Figure 5-4 presents a perfor-

mance comparison of the best value-based replay configuration (the no-recent-

snoop and no-unresolved-store filters) to a baseline machine configuration that

uses a separate smaller load queue, for two different sizes, 16-entries and 32-

entries. A 32-entry load queue is representative of current generation load queue
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sizes, and makes a fairly even performance comparison to the value-based replay

configuration. On average, the value-based replay configuration is 1.0% faster,

with art and ocean being significantly faster due to their sensitivity to load queue

size (7% and 15% respectively). In future technology generations, a 32-entry load

queue CAM lookup may not fit into a single clock cycle. When the load queue size

is constrained to 16 entries, value-based replay offers a significant advantage, at

most 34% and averaging 8% performance improvement.

5.4 Sensitivity to L1 Data Cache Latency

In this section, we evaluate value-based replay using two machine configu-

rations with increased L1 data cache latency: two cycles and four cycles, shown in

Figure 5-5 and Figure 5-6 respectively. In both cases the performance of value-

based replay relative to the baseline machine is nearly identical to its relative per-

formance using a single cycle cache. Because there are so few load instructions

that must be replayed, it is rare for a load instruction to stall the pipeline. In many

applications (apsi, art, gap, mcf, barnes, ocean, radiosity, raytrace, and tpc-h), the

FIGURE 5-4. Performance of constrained load queue sizes. Relative to value-based replay

with no-recent-snoop/no-unresolved-store filters.
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average reorder buffer occupancy actually decreases when increasing the L1 data

cache latency. Since the reorder buffer size is kept constant, this creates an extra

cushion of reorder buffer that helps hide any extra replay latency.

When using a four-cycle cache latency, the relative performance of gap and

parser improve. For gap, this is also caused by the simple dependence predictor

stalling fewer loads than the store-set predictor. For parser, there is no single root

cause of the performance difference. The branch predictor, simple dependence pre-

dictor, and data cache all performed slightly better than in the baseline execution,

resulting in a small (3%) performance improvement. 

FIGURE 5-5. Value-based replay performance relative to baseline. (2 cycle L1 data cache

latency)

FIGURE 5-6. Value-based replay performance relative to baseline.  (4 cycle L1 data cache

latency)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

bz
ip2

1.87

cr
af

ty
2.29

eo
n

1.75

ga
p

0.89

gc
c

1.58

gz
ip

1.60

m
cf

0.65

pa
rs

er
1.78

pe
rlb

m
k

1.23

tw
olf

1.43

vo
rte

x
3.21

vp
r

1.63

ap
si

2.14

ar
t

1.57

wup
wise

1.90

sp
ec

jbb
20

00
0.95

tp
c-

b
0.99

tp
c-

h
1.27

ba
rn

es
-1

6p
27.82

oc
ea

n-
16

p
34.13

ra
dio

sit
y-

16
p

29.98

ra
ytr

ac
e-

16
p

32.50

sp
ec

jbb
20

00
-1

6p
22.89

sp
ec

web
99

-1
6p

14.28

tp
c-

h-
16

p
16.50 base IPC

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Replay All

No-Reorder Filter

No-Recent-Miss Filter

No-Recent-Snoop Filter

bz
ip2

1.94

cr
af

ty
2.42

eo
n

1.83

ga
p

0.93

gc
c

1.67

gz
ip

1.73

m
cf

0.66

pa
rs

er
1.91

pe
rlb

m
k

1.31

tw
olf

1.52

vo
rte

x
3.36

vp
r

1.72

ap
si

2.19

ar
t

1.59

wup
wise

1.97

sp
ec

jbb
20

00

0.97

tp
c-

b

1.01

tp
c-

h

1.32

ba
rn

es
-1

6p

28.66

oc
ea

n-
16

p

34.36

ra
dio

sit
y-

16
p

30.38

ra
ytr

ac
e-

16
p

32.63

sp
ec

jbb
20

00
-1

6p

23.56

sp
ec

web
99

-1
6p

14.84

tp
c-

h-
16

p

16.83 base IPC



78

5.5 Sensitivity to Instruction Buffering Resources

Because value-based replay can increase resource occupancy, it is only fair

that we also present performance results using a machine configuration with fewer

resources than the 256 entry ROB, 128 entry LSQ machine used above. Figure 5-7

and Figure 5-8 show the performance of value-based replay relative to the base-

line, using a machine with 64 ROB/32 LSQ and 128 ROB/64 LSQ respectively.

For this data, we also use a more realistic two-cycle level one data cache latency.

As can be seen in the graphs, the data looks almost exactly like the previ-

FIGURE 5-7. Value-based replay performance relative to baseline.  (64 entry reorder

buffer, 32 entry LSQ)

FIGURE 5-8. Value-based replay performance relative to baseline. (128 entry reorder

buffer, 64 entry LSQ)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Replay All

No-Reorder Filter

No-Recent-Miss Filter

No-Recent-Snoop Filter

bz
ip2

1.94

cr
af

ty
2.42

eo
n

1.83

ga
p

0.93

gc
c

1.67

gz
ip

1.73

m
cf

0.66

pa
rs

er
1.91

pe
rlb

m
k

1.31

tw
olf

1.52

vo
rte

x
3.36

vp
r

1.72

ap
si

2.19

ar
t

1.59

wup
wise

1.97

sp
ec

jbb
20

00

0.97

tp
c-

b

1.01

tp
c-

h

1.32

ba
rn

es
-1

6p

28.66

oc
ea

n-
16

p

34.36

ra
dio

sit
y-

16
p

30.38

ra
ytr

ac
e-

16
p

32.63

sp
ec

jbb
20

00
-1

6p

23.56

sp
ec

web
99

-1
6p

14.84

tp
c-

h-
16

p

16.83 base IPC

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

bz
ip2

1.84

cr
af

ty
2.29

eo
n

1.71

ga
p

0.84

gc
c

1.58

gz
ip

1.60

m
cf

0.63

pa
rs

er
1.70

pe
rlb

m
k

1.23

tw
olf

1.42

vo
rte

x
3.18

vp
r

1.61

ap
si

2.06

ar
t

1.47

wup
wise

1.90

sp
ec

jbb
20

00
0.91

tp
c-

b
0.99

tp
c-

h
1.25

ba
rn

es
-1

6p
27.69

oc
ea

n-
16

p
32.54

ra
dio

sit
y-

16
p

29.80

ra
ytr

ac
e-

16
p

32.48

sp
ec

jbb
20

00
-1

6p
22.31

sp
ec

web
99

-1
6p

14.06

tp
c-

h-
16

p
16.95 base IPC



.

79ous sets of data, even when using a 64 entry ROB/32 entry LSQ, averaging 1%

performance degradation across all applications. As the size of the instruction win-

dow shrinks, there are fewer instructions in flight so there are consequently fewer

operations reordered, resulting in fewer replays being triggered. This effect

reduces the number of replays by a minor amount moving from the 256 entry ROB

to the 128-entry reorder buffer, but the reduction is significant with the 64-entry

ROB, resulting in 13% fewer replays on average compared to the 256 entry ROB

machine (34% fewer in gcc, the largest reduction). In the 64 entry ROB machine,

the average reorder buffer occupancy increases by no more than two in any appli-

cation other than apsi. Also, most applications have an average reorder buffer

occupancy of less than 50, indicating that there is usually a cushion of a few entries

to tolerate the latency penalty caused by value-based reordering.

5.6 Summary

In this chapter, we evaluated the performance of value-based replay rela-

tive to an aggressive microarchitecture using a large conventional load queue. We

have shown that value-based replay is competitive in terms of performance, aver-

aging 1% performance degradation across benchmarks using machine configura-

tions with a variety of instruction window resources and data cache latencies. We

consider this small of a reduction in performance to be more than offset by the

reduction in complexity garnered by the elimination of the conventional CAM-

based load queue. With value-based ordering, we have eliminated one obstacle to

the creation of very large instruction windows by allowing load instructions to



80reside in a simpler reorder buffer-like structure, rather than the CAM-based struc-

ture which does not scale well.

Additionally, we have shown that value-based replay requires very little

extra cache bandwidth, resulting in an average increase of 3.5% across the applica-

tions studied here. Given this small number of replays (0.02 per committed

instruction on average), we believe that value-based replay may pose a more

energy-efficient alternative to conventional load queues in future microarchitec-

tures as well.

The success of value-based replay has been enabled by the creation of sev-

eral replay reduction heuristics that are quite successful at eliminating replays. The

invention of these heuristics was spurred by our thinking about the problem in

terms of the constraint graph, specifically ways in which an acyclic constraint

graph can be inferred based on locally observable information. Although the topic

of Chapter 4 and the performance analysis presented in this chapter have been

focused on reducing the complexity of one small part of a processor’s microarchi-

tecture, this example illustrates the depths to which many aspects of a design are

affected by the choice of memory consistency model and its implementation, and

the benefits provided by a better understanding of the necessary requirements for

supporting the model.



81Chapter 6

Edge-Chasing Delayed Consistency: A New 
Implementation of Weak Ordering

There is a close relationship between the performance of shared-memory

multiprocessors and the fraction of memory operations that can be satisfied from

local cache hierarchies. Due to the growing disparity between off-chip access

latency and processor core clock frequencies, cache misses are the dominant

source of processor stalls for many systems and applications. Inter-processor com-

munication through invalidation-based coherence protocols is the dominant source

of cache misses for many shared memory parallel applications. When one proces-

sor writes a memory location, all copies of that location must be removed from the

caches of other processors. When those processors subsequently access the loca-

tion, their accesses incur coherence misses. The latency of these misses is exacer-

bated in multiprocessor systems where cache misses must potentially navigate

multiple levels of interconnect before they are serviced. Most current generation

out-of-order microarchitectures are designed such that the processor’s out-of-order

instruction window can tolerate misses that are satisfied from the level-two cache.

However, level-two cache misses cause the instruction window to fill and to stall

waiting for the miss to return. It is projected that as cache hierarchies grow larger,

conflict and capacity misses will be reduced, resulting in an even greater propor-

tion of processor stalls attributed to coherence misses [55].

Figure 6-1 shows the number of misses per 1000 committed instructions

for a set of parallel applications running on a four-processor shared memory sys-
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tem with a directory-based MESI coherence protocol.1 Each bar is broken into its

cold, coherence, and capacity/conflict components [47]. The top of each bar addi-

tionally includes upgrade transactions, caused by writes that touch a block for

which there is already a local shared copy, which causes inter-processor communi-

cation but no data transfer. Many of the applications incur a significant number of

coherence misses, especially the four commercial workloads at the right side of the

figure. Such misses cause significant performance penalties, particularly in home-

based protocols where they must typically make three network hops: from the

requester to the home node, from the home node to the current owner, and back to

the requester. These three-hop misses average 150 ns latency in current generation

directory-based Alpha systems [31]. Coherence misses are also expensive in

snooping protocols, especially considering the trend toward hierarchical snooping

designs. Although cache-to-cache transfers may cost only 70 ns for misses within a

local coherence domain, misses satisfied by external coherence domains can incur

directory-like latencies of 160 ns in “snooping” Sun Fireplane systems [23]. Con-

sidering the multi-gigahertz clock rates of current microprocessors, these miss

FIGURE 6-1. Misses per thousand instructions for 16MB L3 cache

1. Machine configuration details for this data are found in Chapter 7.
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83latencies account for significant lost instruction execution opportunity.

In an invalidation-based coherence protocol, a block may be invalidated

from the cache but the previous copy of the data will remain cache-resident until a

subsequent cache miss to that set; the block is marked invalid, but the tag-match

logic will indicate a match. The fraction of misses labeled coherence in Figure 6-1

illustrates the frequency of this scenario, in which there is a prior version of the

block already cache-resident. In many instances, this data may be useful to the pro-

cessor. If a cache controller could identify those situations in which it is correct to

use the stale data, it could return the stale data non-speculatively rather than stall

the processor. This will reduce the latency observed by the processor reading the

data, but can also aid the processor that currently has a modified copy of the data.

If a new copy is not requested by the reader, then the writing processor maintains

an exclusive copy and can continue writing the block without sending an upgrade

message.

In this chapter, we describe an implementation of weak ordering called

edge-chasing delayed consistency (ECDC). ECDC is a hardware mechanism that

identifies stale blocks that can be used non-speculatively, while continuing to pro-

vide a coherent and consistent shared memory image to software. Our ECDC

implementation improves upon prior versions of delayed consistency by extending

the lifetime of stale cache blocks beyond the execution of memory barrier or syn-

chronization instructions by a processor. By detecting cycles in the constraint

graph, ECDC allows the use of stale data until a processor becomes causally

dependent upon the write that caused the block to become stale. 



84ECDC is not a new consistency model; it is simply a new way of imple-

menting weak ordering. The principles behind edge-chasing delayed consistency

may be applied to the implementation of other consistency models, however due to

reasons that will be explained in more detail below, an ECDC implementation of

stronger consistency models, such as sequential consistency and processor consis-

tency, will be difficult. However, many commercial architectures utilize relaxed

memory models (e.g. PowerPC, IA-64, Alpha), in which an ECDC implementa-

tion may improve performance.

We begin our discussion of ECDC in Section 6.1 with a presentation of

programming paradigms and microarchitectural artifacts illustrating those scenar-

ios in which it is useful for a processor to continue using stale data after it has been

invalidated. In Section 6.2, we describe how the constraint graph representation

can be used to identify those cache blocks that can safely be read when stale. In

Section 6.3, we present a conceptual description of the edge-chasing delayed con-

sistency protocol, which maintains the constraint graph in a distributed fashion,

allowing a processor to use stale blocks from its cache until a cycle has been iden-

tified. For clarity, the presentation in Section 6.3 makes no attempt to optimize the

protocol in terms of implementation overhead. In Section 6.4, we present an

ECDC implementation taking finite resources into account, and discuss the addi-

tional hardware structures and modifications that must be made to a conventional

shared-memory multiprocessor. We conclude this chapter with a discussion of

prior work related to the edge-chasing delayed consistency mechanism in Section

6.5. In Chapter 7, we present a detailed evaluation of the edge-chasing delayed
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6.1 Why Delayed Consistency?

It may not be immediately obvious why it would ever be useful to continue

using a cache block after it has been invalidated. The programmer updated that

data for a reason, right? If she intended to communicate new data from one thread

to another, then why would it ever be useful to delay that communication? Of

course there are some cases where using stale data will not be useful, even though

it may be safe with respect to the consistency model. For example, if a processor

acquiring a lock continues to observe the held value of the lock after it has been

released, then its acquire will be delayed, reducing performance. However, there

are other cases where it does not matter whether the reader observes the old value

or the new value; it is more important that the reader reads either of them quickly

than wait on the newer value. In the next two subsections, we present examples of

applications in which the use of truly shared stale data will improve performance:

linked data structures shared among threads, and data-race tolerant iterative con-

vergent algorithms. 

Due to false sharing [43] and silent sharing [63], there are also instances in

which a block has been invalidated but subsequent loads to that block will read the

same value regardless of whether the stale data is returned or the new copy is

fetched. This avoidable communication represents another opportunity to benefit

from delayed consistency, which we discuss in Section 6.1.3.

6.1.1 Linked data structures
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Linked data structures are pervasively used in both sequential and parallel

applications to create anything from simple linked lists to hash tables to more com-

plex graphs and trees. If a shared data structure is a source of contention in a paral-

lel application, elaborate locking schemes are frequently used to maximize

concurrent access by readers and writers. Some algorithms allow readers of a

linked data structure to continue to traverse the structure despite the presence of

one or more concurrent writers. In such algorithms, a delayed consistency mecha-

nism should provide performance benefit by shielding a processor traversing the

data structure from observing (and stalling) to read newly inserted nodes.

For example, Figure 6-2 illustrates a lock-free list insertion occurring in

two steps, in which a new node is inserted between two existing nodes. As in any

list insertion, the new node’s next pointer is first set to the address of the subse-

quent node. In the second step, a compare & swap (CAS) operation is performed,

replacing the old value of prev’s next pointer with the new value. If the CAS suc-

ceeds, then the new node has been successfully inserted and the operation is com-

plete. A CAS failure indicates that another writer has either deleted prev or

inserted a new node between prev and cur, in which case the insertion process

must restart. After this insertion occurs, should a reader be traversing this list

searching for the node cur, or some node after cur, there is no reason why that

FIGURE 6-2. Lock free list insertion, (a) before CAS, (b) after CAS

prev cur

new

prev cur

new

((a)

prev curnewprev curnew

(b)
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87reader should observe the newly inserted node. If it observes the old version of

prev, whose next field points to cur, then it will simply continue its search at cur,

without having to stall waiting to read the new node out of a processor’s cache

across the system.

Lock-free algorithms of this type have been the subject of much recent

research [45][76][77][79] and are gaining acceptance at the operating system level

with their use in the Linux kernel, IBM/Sequent’s Dynix/PTX operating system

[75], and IBM’s experimental K42 operating system [38]. We present a

microbenchmark study of the performance of ECDC running a lock-free list

manipulation algorithm of this type in Chapter 7.

6.1.2 Asynchronous communication and convergent iterative algorithms

Delayed consistency should also be useful as a method of implementing

asynchronous communication in shared memory multiprocessors. Some applica-

tions benefit from the ability to read certain memory locations without caring

whether or not the read returns a new version of the data or a previous version. Due

to the latency of fetching the data from the most recent writer, the reader can make

more forward progress by computing using the old data, rather than stalling while

waiting on the new data. Implementing this type of communication is difficult

using current instruction sets because they do not support any kind of “don’t care”

loads. A load reads the newest data, wherever it exists in the system. Using non-

binding prefetches is also difficult, because the prefetch must be timed perfectly to

return the data before the binding load that subsequently reads the data is executed.

Convergent iterative algorithms are one class of algorithm that use this



88model of communication. In parallel versions of such applications, there is typi-

cally a shared data structure representing the current state of the solution. Although

barrier synchronization may be performed between iterations, the shared copy of

the solution is often accessed without synchronization. After a number of itera-

tions, the application converges on a solution. Algorithms of this type include a

plethora of parallel equation solvers, sparse matrix factorization (e.g. cholesky

from SPLASH2 [111]), and many parallel genetic algorithms [106].

6.1.3 False sharing and silent sharing

False sharing, originally defined by Goodman and Woest, is an artifact of

the coherence granularity being larger than the smallest addressable unit of mem-

ory [43]. A processor pwriter may write some portion of a cache block, invalidating

that block from another processor preader’s cache, and cause a miss at preader even

if preader never subsequently touches the written parts of the block. As will be

shown in the next chapter, there is a significant amount of false sharing in some of

the workloads studied here, creating communication that we would like to avoid.

Lepak and Lipasti identified another source of unnecessary communica-

tion, silent sharing, caused by writes that either overwrite a value with the value

already resident at that memory location [65], or revert a location’s value to a

value that previously existed at that location [66]. Because a read to the stale ver-

sion of a silently written block will consume the same value that would be con-

sumed if the new data were fetched, delayed consistency can reduce the

performance impact of this class of cache misses by using the stale data rather than

waiting for the cache miss to return. Lepak found that between 18% and 44% of all
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89coherence misses were attributable to silent sharing across a set of benchmarks

[63].

Delayed consistency protocols can mitigate the performance impact of

both false sharing and silent sharing misses. However, not all of these misses will

be avoidable. If a processor is already causally dependent upon the write that

invalidated a cache block, then it can no longer use the stale block in the ECDC

protocol, even if the block is stale due to false sharing or silent sharing.

6.2 Identifying Usable Stale Data

Assuming that we would like to allow a processor to use stale data when

possible, how can we identify those blocks for which it is safe? Using the con-

straint graph, we can identify instances of communication between processors by

examining the source and destination processors of each edge. Each ,

, and  edge whose two endpoint instructions were executed by

different processors equates to a single miss or upgrade between processors in an

invalidation-based coherence protocol. Inter-processor  edges correspond

to a read miss that is satisfied by a dirty copy of the memory location residing in

another processor’s cache. Similarly, inter-processor  edges correspond to

write misses satisfied by remote processors. Interprocessor  edges corre-

spond to writes that result in either a miss or an upgrade message between proces-

sors.

Given a coherence miss caused by a load instruction, we can determine

dyn raw–

dyn waw– dyn war–

dyn raw–

dyn waw–

dyn war–



90whether or not that miss is avoidable using the constraint graph based on the fol-

lowing criterion: a  edge e emanating from writer node w and connecting

to reader node r is necessary if there exists a directed path in the constraint graph

from w to r that does not include edge e. This observation follows from Landin’s

proof that if a constraint graph is acyclic then the execution corresponding to that

constraint graph is correct [59]. If e is deemed avoidable, then we are essentially

transforming the  edge from w to r into a  edge from r to w. If

there is already a directed path from w to r, this new  edge would create a

cycle in the graph, and would thus be incorrect. If there is no directed path from w

to r, then the  edge cannot create a cycle, and the coherence miss is unnec-

essary.

An illustration of a necessary coherence miss under sequential consistency

is shown in Figure 6-3. In this example, processor p1 is about to perform its second

load to cache block A, but the cache block containing A has been invalidated. In

order to determine whether or not p1 can avoid this cache miss, we look at the con-

straint graph node that would provide the value to the miss (the “W” in RAW), in

this case processor p2’s store to A. We would like to use the stale value from the

cache, thus creating a  edge from p1’s load A to p2’s store A (indicated by

the dotted arrow). However, if there already exists a directed path from this store

node to the load miss node, then we know that this miss is necessary, because the

load is already transitively causally dependent upon the store. As we can see in the

figure, a directed path already exists from p2’s store A to p1’s load A through a

dyn raw–

dyn raw– dyn war–

dyn war–

dyn war–

dyn war–
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RAW dependence on memory location B. If this path did not exist, p1 could safely

use the stale value of A. However, because it does exist p1 must not use the stale

value, thus the dotted  edge must be transformed to a  edge, elim-

inating the cycle.

Figure 6-4 illustrates a similar code segment, however in this case the load

miss to location A by p1 is avoidable. The miss is avoidable because we can create

a legal schedule of operations such that the load miss will return the old value of A.

FIGURE 6-3. A necessary coherence miss.
(Time progresses from top to bottom.)

FIGURE 6-4. An unnecessary coherence miss

Processor p1

ld [A]

ld [B]

ld [A]

Processor p2

st [A]
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Location A is cache-

resident at p1

with valid == 1

Location A is cache-

resident at p1

with valid == 0
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sync
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sync
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Processor p1

ld [A]

ld [B]

ld [A]

Processor p2

st [B]

st [A]
dyn-raw

dyn-war

wrmoi

rdmoi

Location A is cache-

resident at p1

with valid == 1

Location A is cache-

resident at p1

with valid == 0

dyn-war

sync

moiwr

sync

moird

dyn war– dyn raw–



92In this example, p2 performs the stores to memory location A and B in reverse

order. Consequently, at the time of p1’s load miss, there is not already a directed

path from p2’s store of A to p1’s load of A, therefore the  edge caused by

using the stale value does not create a cycle, and this coherence miss is avoidable.

Speculative mechanisms might guess that it is safe for p1 to use the stale

data in A because the store to A by p2 may have been a silent store or may have

been to a different word within the same cache line. These mechanisms require a

verification step to ensure that p1 did indeed load the correct value. Given the long

latencies associated with fetching data from another processor’s cache, this verifi-

cation operation will most likely stall the processor. However, using the constraint

graph, we can detect cases where it is safe to use the stale value, without the need

for verification.

6.3 Edge-Chasing Delayed Consistency: A Conceptual Descrip-

tion

In this subsection, we describe the concepts behind an implementation of

the weak ordering memory model called edge-chasing delayed consistency. In

order to provide a clear description of this new caching algorithm, we separate the

idea from the implementation and present a purely theoretical description in this

subsection, not subject to any hardware constraints. In Section 6.4, we describe a

hardware implementation of the algorithm, which we experimentally evaluate in

Chapter 7.

Edge-chasing delayed consistency derives its name from a class of dead-

dyn war–
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93lock detection algorithms proposed for distributed database systems [22][54]. Pro-

cesses in such systems can optimistically acquire and release locks as desired (i.e.

do not follow rigid deadlock-free locking disciplines), and in the event of dead-

lock, abort one of the transactions participating in the deadlock, thus freeing that

transaction’s held locks and allowing the other transactions to proceed. Many algo-

rithms perform detection through the construction of a waits-for-graph (WFG), a

directed graph whose nodes correspond to processes, and whose edges represent

the dependences among processes (specifying which processes “wait-for” which

other processes). For example, if a process A is blocked attempting to acquire a

lock held by process B, there will be an edge from A to B in the WFG. A deadlock

can be detected by testing the WFG for a cycle; if a cycle exists, then there must be

a cyclic dependence of resources held by processes. 

Edge-chasing algorithms detect cycles in the WFG in a distributed fashion

through the propagation of special messages called probes communicated along

the edges of the graph. When a process suspects the existence of a deadlock due to

a timeout, it creates a probe and sends the probe to the process on which it waits.

The recipient of the probe forwards the message on to the process on which it

waits. The reception of a probe created by the receiving process indicates that the

process is part of a cycle in the graph, causing the process to abort.

The problem of maintaining consistency in a shared-memory multiproces-

sor resembles the deadlock detection problem. Instead of checking the WFG for

cycles, we will check the constraint graph for cycles using a similar mechanism.

Keep in mind that in neither the deadlock detection scenario nor the memory con-



94sistency scenario do we need to explicitly construct or communicate the entire

graph. Instead, the occurrence of a cycle can be inferred by the receipt of a locally

created probe.

At a high level, edge-chasing delayed consistency works as follows: every

write operation that invalidates a cache block from a remote cache initiates the cre-

ation of a probe.1 A probe is a globally unique identifier that is passed from pro-

cessor to processor at the occurrence of certain events. A copy of this probe is kept

with the stale copy of the invalidated cache block. The stale block may be used

until the block’s associated probe is received from another source.

When communicating with other processors through loads and stores to

shared memory, the creator of a probe ensures that stale copies are not used incor-

rectly by passing the probe on to the other processors whenever the other proces-

sor’s load or store will follow the probe-initiating write in the constraint graph. For

example, after invalidating a remote cache block c and creating probe pb, proces-

sor pwriter writes a different memory location that is subsequently read by another

processor preader. When pwriter sends the new data to preader, it also sends

probe pb, because preader is now causally dependent upon processor pwriter’s

write, meaning that if preader subsequently reads cache block c, it should observe

the new copy of the block. By passing probes only along edges in the constraint

graph, edge-chasing delayed consistency ensures stale data will remain useful as

1. Unfortunately, the term “probe” is sometimes used as a synonym for invalidation mes-

sages in coherence protocols. In this thesis, we exclusively use the term “invalida-

tion” to refer to write messages such as the upgrade and get exclusive transactions 

found in coherence protocols, and exclusively use the term probe to refer to the addi-

tional identifiers used in edge-chasing algorithms.
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95long as possible: until the processor using the data becomes causally dependent

upon a newer version of the stale block.

In order to support this communication, edge-chasing delayed consistency

maintains sets of probes for each processor and memory location, indicating the

writes on which they causally depend. When a coherence message is sent, the

probe set corresponding to that memory location is sometimes attached to an out-

going message. When a coherence message is received, the probe set attached to

the incoming message is added to a per-processor probe set and the memory loca-

tion’s probe set. A more precise description follows. We present a simple example

of ECDC operation in Section 6.3.2.1, which should clarify the purpose of various

choices specified in the formal description.

6.3.1 Formal description

We assume a weakly ordered (PowerPC) system model consisting of a set

of (in-order issue) processors P = { p1 ... pn }, where each processor can execute

load and store operations to an associated cache c1 ... cn, and can also execute

memory barrier instructions that order these operations1. To simplify our discus-

sion, we assume each cache has unlimited capacity and initially contains the con-

tents of the entire memory. Instructions are ordered with respect to one another as

described in Chapter 2 for weak ordering. Each cache block can be in one of three

states corresponding to the three states in a standard MSI invalidation-based coher-

ence protocol. A load access reading a block at address a that is in the invalid state

1. Assuming in-order issue processors is not a fundamental limitation, but simplifies this 

discussion. When discussing our ECDC implementation in the next section, we 

describe the minor support needed for out-of-order microprocessors.



96initiates a broadcast ReadRequest(a) message, which results in a ReadResponse(a,

d) message containing data d from other caches that contain a valid copy of the

block. A store operation writing a block at address a that is in the shared or invalid

state initiates a broadcast WriteRequest(a), which results in a WriteResponse(a, d)

message containing data d from those other caches in the system that contain a

valid copy of the block.

Edge-chasing delayed consistency makes the following additions to this

system model:

• Extra Stable State: The MSI states are augmented with an additional

state, the stale (ST) state. Loads to the stale state may be satisfied locally,

and stores to the stale state are handled identically to stores to the invalid

state.

• Supplanter Probes: For each cache cachei and cache block a in the stale

state in cachei, a probe supplanter,i,a is maintained. This probe is a copy of

the probe corresponding to the write that invalidated a, and it is used to

determine when a can no longer be read. (The term supplanter is used

because the stale version of the cache block has been supplanted by the

version corresponding to this probe’s write).

• Processor Upstream Set: Each processor proci maintains a set of probes

procupstream,i called its upstream set. The upstream set contains those

probes on which the processor is currently causally dependent (that will be

“upstream” in the constraint graph from instructions subsequently executed

by the processor).

φ
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97• Per Location Read and Write Upstream Sets: For each cache cachei,

each cache block a also has two associated upstream sets, a read upstream

set readupstream,i,a and write upstream set writeupstream,i,a. These sets

contain those probes that a sub sequent reader, or writer, respectively, will

be causally dependent upon after reading or writing cache block a.

• Probes in Messages: In addition to the usual fields included in each mes-

sage sent between processors, response messages carry a probe set, i.e.

ReadResponse(a, d, ), and WriteResponse(a, d, ). Write requests addi-

tionally carry a single probe, i.e. WriteRequest(a, ). We also add a new

message that carries two probe sets PropePropagate( keys, new), which

is sometimes broadcast at memory barrier executions in order to convey

new causal dependences that a supplanting write should be dependent upon

if the corresponding stale block is subsequently read. Upon receiving a

ProbePropagate message, processors respond by sending a ProbePropaga-

teResponse() message, which carries no data or probes.

Initially, for each cache block a and processor i, the supplanter,i,a, readup-

stream,i,a, writeupstream,i,a and procupstream,i structures are set to null. Table 6-1

specifies invariants concerning the contents of each probe set, which are main-

tained using the operations specified in Table 6-2. Table 6-2 only specifies the pro-

tocol operation for those transitions where the protocol differs from a typical MSI

protocol. The upper part of the table specifies the actions that are taken when han-

dling load and store operations, the first four corresponding to miss events and the

next two corresponding to hit events. The lower part of the table specifies the

Φ Φ

Φ Φ
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actions taken at memory barrier operations. The event that first sets the ECDC pro-

tocol in motion (labeled 1.) is a store miss that invalidates a cache block from one

or more other processors’ caches. When the store miss occurs, the processor cre-

ates a probe and attaches it to an outgoing broadcast WriteRequest message. The

probe is also added to the processor’s upstream set.

If the receiver of the WriteRequest message (event 2) has a valid copy of

the cache block, the receiver sets the block’s state to ST, and sets the block’s sup-

planter to the incoming probe. The receiver responds with a WriteResponse mes-

sage containing a copy of the data and the write upstream set for the requested

cache block. The cache block’s write upstream set contains those probes on which

any subsequent writer to the cache block will causally depend., including proci’s

store.

Upon the reception of the WriteResponse message (event 3), the writing

processor inspects the probe set attached to the message. If the probe set contains

any probes that correspond to the supplanter probe for any of its cache’s stale

blocks, that block’s state is set to invalid; the reception of this probe indicates that

Table 6-1: The invariants of probe sets

Probe Set Invariant Definition

Per processor 

upstream set

For each miss-causing write w on which processor pi is 

causally dependent, there exists a probe w that is a mem-

ber of pi’s upstream set procupstream,i

Per location read set After a memory location a has been written by a processor 

pi, the read set readupstream,i,a contains the union of pi’s 

per processor upstream set and the previous contents of 

readupstream,i,a.

Per location write set After a memory location a has been read or written by a 

processor pi, the write set writeupstream,i,a contains the 

union of pi’s per processor upstream set and the previous 

contents of writeupstream,i,a. Consequently readup-

stream,i,a is a subset of writeupstream,i,a.
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the processor is now causally dependent upon the write that originally invalidated

the stale cache block, and therefore the stale data should no longer be used. The

incoming probe set is also added to the processor’s upstream set, and the read and

write upstream sets for that particular cache block. It is added to both sets because

both subsequent reads and subsequent writes to the block will be causally depen-

dent upon this write.

Table 6-2: Edge-chasing delayed consistency state transition table. Load/store opera-

tion in upper section, memory barrier operation in lower section.

Event Action(s)

(1) Store by proci to block b in 

state I or S

Create probe . 

Send WriteRequest(a, ) to all processors.

Add  to procupstream,i.

(2) Reception of WriteRequest(a, 

), by procj from proci, to block a 

in state M or S

Set state of cache block to ST, set supplanter,j,a to .

Send WriteResponse(a, data, writeupstream,j,a) to proci.

(3) Reception of WriteResponse(a, 

data, ), or ReadResponse(a, 

data, ), by proci from procj

For each probe  in :

For all blocks b in cachei in state ST:

if  = supplanter,i,b, set block b’s state to I.

Add  to procupstream,i.

Add  to writeupstream,i,a.

If message was WriteResponse, also add  to readupstream,i,a.

(4) Reception of ReadRequest(a), 

by procj from proci, to block a in 

state M or S

Send ReadResponse(a, data, readupstream,j,a) to proci.

(5) Store by proci to block a in 

state M

For each probe  in procupstream,i :

Add  to writeupstream,i,a.

Add  to readupstream,i,a.

(6) Load by proci to block a in 

state M, S

For each probe  in procupstream,i :

add  to writeupstream,i,a.

(7) memory barrier executed by 

proci

Broadcast ProbePropagate( keys, procupstream,i), where keys con-

tains supplanter,i,b for all blocks b in the ST state at cachei.

Disable stale data use.

(8) Reception of ProbePropa-

gate( keys, new) by proci from 

procj

For each probe key in keys:

if procupstream,i contains key

For each probe new in new: 

Add new to procupstream,i.

For all blocks b in cachei in state ST:

if new = supplanter,i,b, set block b’s state to I.

Send PropePropagateResponse() to procj

(9) Reception of ProbePropagate-

Response() from all processors

Enable stale data use.
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100Read requests in the ECDC protocol occur identically to reads in a conven-

tional coherence protocol, except responses include a copy of the read upstream set

for that block in addition to data. The read upstream set contains those probes on

which a reader to the cache block will causally depend. Just like the handling of

the WriteResponse message, when the ReadResponse message returns, this probe

set is used to transition stale cache blocks to the invalid state if the reading proces-

sor now causally depends on the write that forced the cache block to become stale.

Also like the handling of a WriteResponse message, we add the incoming probe set

to the upstream set of this processor, and to the write upstream set of this memory

location (the incoming probe set is not added to the block’s read upstream set

because subsequent reads by other processors will not be causally dependent upon

this read, i.e. no RAR dependences).

Cache hits (events 5 and 6 from Table 6-2) update the contents of the refer-

enced cache block’s upstream set (write upstream set in the case of loads, both

read upstream set and write upstream set in the case of stores) by adding all of the

probes in the processor’s upstream set to the block’s appropriate upstream set, thus

ensuring that those probes on which the processor currently causally depends will

be passed to processors that may read or write the memory location in the future.

After a block enters the ST state, a processor may still become dependent

on a new probe. Should the processor subsequently use that block while in the ST

state, the original supplanting writer will also need to become causally dependent

upon this new probe. Propagating these extra dependences after a block’s initial

invalidation are the purpose of the events labeled 7 through 9 in Table 6-2. When a
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101processor executes a memory barrier, it sometimes broadcasts a ProbePropagate

message to the other processors in the system with one probe set containing the

supplanting probes for each of the blocks in the ST state (the “keys” set), and a

second probe set corresponding to the processor’s upstream set (the “new” set).1

The processor then temporarily disables the use of stale data until a ProbePropa-

gateResponse message has been received from all of the other processors. The

ProbePropagate message does not need to be sent at every memory barrier opera-

tion, because sometimes either the keys probe set or the new probe set in the out-

going message will be empty, eliminating the need to send it.

When a processor receives a ProbePropagate message, it checks to see if

its upstream set contains any of the probes in the incoming message’s keys probe

set. If so, this indicates that this processor is already causally dependent upon that

probe, so the processor should also become causally dependent upon the new

probes in the message. As in the other cases, when becoming causally dependent

upon new probes, any blocks in the ST state whose supplanting probe corresponds

to the new probe are forced to transition from ST to I.

This concludes our theoretical description of the edge-chasing delayed

consistency protocol. Before describing a feasible hardware implementation, we

present two short examples illustrating the operation of the protocol.

6.3.2 Examples of operation

1. A broadcast operation is a sufficient mechanism for correctly propagating probes. In 

large systems, it may be advantageous to send ProbePropagate messages to the subset 

of processors that are causally dependent upon the supplanting write, rather than the 

entire system.
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In this subsection, we present a set of examples illustrating the operation of

the theoretical edge-chasing delayed consistency protocol. We begin with a simple

example in which the communication of probes by ProbePropagation messages

sent at memory barrier instructions is unneeded. The subsequent example

described in Section 6.3.2.2 illustrates the use of these messages.

6.3.2.1 A simple example

Figure 6-5 shows two different executions that can occur for a two-proces-

sor code segment, even though the instructions are executed in an identical order in

both examples (the execution order is labeled next to each instruction). Depending

on the initial state of blocks A and B in processor p1’s cache, the ECDC protocol

may or may not allow p1 to use stale copies of either block. In Figure 6-5(a), p1 is

able to use stale copies of the cache blocks. This is not the case for the example

shown in Figure 6-5(b), resulting in a different outcome for the execution (also

resulting in two different constraint graphs).

For the example shown in Figure 6-5 (a), let’s assume that both block A

and block B are initially in the M state at p1. Processor p2’s store to block A (oper-

ation 1) will be a cache miss, resulting in the creation of a new probe and the initi-

ation of a WriteRequest message sent from p2 to p1 containing this probe.

Processor p2 also adds the probe to its upstream set. If we assume that p2 does not

(a) (b)

FIGURE 6-5. Simple ECDC example:(a) Initially, p1’s cache contains blocks A and B in

the M state. (b) Initially, p1’s cache contains block A in the M state, but block B is invalid.
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103currently have any blocks in state ST, when it executes its sync operation, it does

not need to broadcast a ProbePropagate message, because the probe set keys in

the outgoing message would be empty. When p2 executes its store to block B

(operation 3), it performs the same actions it performed when executing its first

store: create and send a probe with its invalidation message and add the probe to its

upstream set.

Since processor p1’s cache contained blocks A and B in the M state (this

example would be identical if they were in the S state) before p2’s writes, when it

receives each of p2’s invalidation messages, it will transition the state of each

block to the ST state, and keep a copy of the incoming probe in the block’s sup-

planting probe field supplanter. When p1 subsequently performs its load operations

(operations 4 and 6), because it has not received p2’s probes via any incoming

messages, the blocks will still be in the ST state, and p1’s loads can read them and

retire without fetching the new data from p2. In between the two load operations,

p1 executes a sync operation. If we assume that p1 has not added any probes to its

upstream set since its last sync operation, then it will not need to broadcast a

ProbePropagate message either, because the outgoing message’s set of new probes

( new) will be empty.

Given this initial cache state, processor p1 is able to use stale versions of

both cache blocks, saving it from stalling while fetching the newest copy of the

data. The outcome is different if one of the cache blocks is not initially cache resi-

dent at p1. Starting this example over, lets assume that p1’s cache initially contains

block A in the M state, but block B is invalid. Shown in Figure 6-5 (b), the exam-
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104ple would begin similarly: when p2 performs its store to block A, it would send an

invalidate containing an associated probe  to p1, and p1 will associate  with the

stale copy of A by setting A’s supplanter field. However, when p2 performs its

store to block B, because p1 does not have a valid copy of B, p1 will not necessar-

ily observe the invalidate. When p1 performs its load to block B, it will fetch the

new copy from p2. Processor p2 will respond to p1 with a ReadResponse message

containing the contents of block B’s read upstream set (including probe ). When

p2 receives the response, it will check to see if there are any blocks in the ST state

with a supplanter field set to . In this case, it will find block A, and set its state to

I. Consequently, when p1 performs its load to A, it will be forced to fetch the new

copy from p2 instead of using a stale copy, thus preventing a cycle from forming in

the constraint graph.

6.3.2.2 Dekker’s algorithm

Our next example is similar to the first, except it illustrates two processors

that attempt to ignore each other’s writes, as opposed to the previous single-writer

example. For the execution in Figure 6-6, initially, processor p1’s cache contains a

modified copy of block A, and p2’s cache contains a modified copy block B. The

execution begins with a write miss to block B by p1 and a write miss to block A by

p2. When each of these write misses is initiated, a probe is created by each proces-

sor, and sent along with the WriteRequest message. At the reception of this mes-

sage, each processor transitions the appropriate cache block to the ST state, copies

the incoming probe to the block’s supplanter field, and responds with a WriteRe-

sponse message containing a copy of the block’s writeupstream probe set (which is

φ φ
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currently empty).

When each processor executes its sync instruction, it broadcasts a

ProbePropagate message to the other processors in the system. This message

includes a keys probe set containing the supplanting probes for each of the blocks

in the ST state (for p1’s message, this will contain the probe for block B, for p2’s

message, the probe for block A), and a new probe set (For p1 this will contain the

probe for block A, and for p2, this will contain the probe for block B). After send-

ing the ProbePropagate message (and waiting for its writes to be ordered, as usu-

ally happens at memory barrier instructions), each processor can continue

executing instructions. However, the processor cannot use any stale data until

receiving a ProbePropagateResponse message from the other processors. 

In this example, each processor will receive a ProbePropagate message,

with a keys set containing the probe for the block that it just invalidated. Processor

p1 receives p2’s ProbePropagate message with keys set containing the probe for

p1’s initial write to block B. This block is part of p1’s upstream set, indicating that

p1 is already causally dependent upon the write, which means that p1 should also

become causally dependent upon the probes in the incoming message’s new set.1

Once a processor becomes causally dependent on a new probe, it must throw out

any stale blocks whose supplanter field matches the new probe, in this case block

FIGURE 6-6. Dekker’s algorithm. Initially, p1’s cache contains blocks A

and B in the M state.
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106A. The arrival of p1’s ProbePropagate message at p2 causes a similar sequence of

events, resulting in the transition of block B from state ST to state I in p2’s cache.

After each of these blocks transition to the I state, the processors perform

their loads, which incur a cache miss to fetch the new data, and result in the con-

straint graph shown in Figure 6-6. Of course, depending on timing, it is also possi-

ble that one of the loads read the stale data if the load happens to execute before

the arrival of the other processor’s ProbePropagate message. However, because

neither processor can use stale data until its ProbePropagate message has been

acknowledged by the other processors in the system, it is not possible for both pro-

cessors to use the stale data, thus preventing an incorrect execution of Dekker’s

algorithm.

This example can also be used to explain why an implementation of edge-

chasing delayed consistency that implements stricter models will be difficult.

Under sequential consistency (and some other strict models), if each of the loads

returns the stale value, it would result in an inconsistent execution, regardless of

the presence of memory barriers separating the stores and loads. Consequently, an

ECDC implementation would need to propagate probe information every time a

processor becomes causally dependent on a new probe, rather than delaying this

propagation until the next memory barrier. These extra probe propagations are

necessary to ensure that once a processor becomes causally dependent upon a new

1. We preemptively force p1 to become causally dependent upon these probes under the 

assumption that p2 will use the blocks that are in its cache in the ST state. This 

assumption is conservative. For example, p2 keeps a stale copy of B, but if we assume 

operation 6 doesn’t exist, p2 may never use the stale copy. If this is the case, then it is 

safe for p1 to use the stale version of A. However, in the absence of an oracle mecha-

nism that can predict whether a stale block will be used in the future, the ECDC pro-

tocol must conservatively disallow use of the stale blocks.
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107probe, this new probe will be passed through any WAR edges that will be created

when that processor uses stale data in the future.

6.4 Mapping Edge-Chasing Delayed Consistency to Hardware

In this section, we describe a hardware implementation of the edge-chasing

delayed consistency protocol. Because ECDC communicates probe information as

part of response messages to write requests (in addition to other messages), it is

best suited to a multiprocessor design utilizing a home-based coherence protocol

which already requires invalidate acknowledgment messages. Such protocols,

although originally intended for large scale multiprocessing [60][62][102], have

been gaining traction recently in small-to-medium scale multiprocessors

[3][15][41] due to their advantages in interconnect flexibility (no need for ordered

interconnect). 

Our ECDC implementation is based on an SGI-Origin-like MESI direc-

tory-based coherence protocol. Figure 6-7 illustrates one processing node in such a

system, including shaded boxes highlighting the new or modified components

needed for implementing the ECDC protocol. Our implementation requires the

addition of three main components: the stale address buffer (STAB), the probe

propagation buffer (PPB), and the cast-out PPB. A single STAB and PPB is asso-

ciated with each processor in the system, and a cast-out PPB with each direc-

tory/memory controller. Additionally, each processor’s data caches are slightly

modified, with one extra stable state (the ST state), and one extra bit per cache

block (used to identify potential synchronization locations). We make no modifi-
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cations to the processor core itself. At a high level, the purpose of the STAB is to

maintain the supplanter,a set for each stale cache block a, monitoring incoming

probe sets and signaling the cache to invalidate the stale block appropriately. The

PPB is used to maintain a superset approximation of the read upstream set readup-

stream,i,a and write upstream set writeupstream,i,a for each block recently touched by

the processor. Certain outgoing coherence response messages are augmented with

an upstream probe set determined by the PPB. To avoid the loss of probe informa-

tion when writing back a cache block to memory (including write backs caused by

coherence messages), we also include a simplified version of the PPB at the mem-

ory/directory controller, which we call the CastoutPPB.

This section is organized as follows: we first describe the representation

FIGURE 6-7. ECDC system modifications. (Not drawn to scale.)
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109that we use for probes and probe sets, a choice that affects all other aspects of the

protocol. We then describe the ECDC-related components highlighted in the fig-

ure. We conclude with a few examples of ECDC operation for typical protocol

events, and a discussion of other miscellaneous effects of the ECDC implementa-

tion.

6.4.1 The representation of probes and probe sets

The choice of probe representation is the most important aspect of this

design, affecting the complexity of every other part of the implementation. Logi-

cally, a probe is a globally unique identifier, and a probe set is collection of such

identifiers. The representation choice is based on a trade-off between allowing the

most opportunity for using stale cache blocks, by building a system functionally

equivalent to the theoretical ECDC description from Section 6.3, while optimizing

the protocol to be feasible in terms of the hardware’s physical area and complexity.

A good probe representation should have the following properties: 

• space-efficient: it should be frugal in terms of hardware resource con-

sumption, and allow space efficient probe set implementations that can

contain an arbitrary number of probes.

• reusable names: because the probe namespace is finite, there must be a

simple way to reuse a probe name after every processor in the system is

causally dependent upon the write that created that probe (rendering the

associated stale data and probe useless).

• precise representation of causality: If the first two requirements are opti-

mized too aggressively, causal information may be lost, resulting in a con-
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gained from using this technique. An ideal representation will be efficient

in terms of area and complexity, while also precisely maintaining the

causal relationships among processors.

The edge-chasing delayed consistency protocol has been through several

revisions, each simplifying the probe representation while attempting to accurately

reflect causality. Due to the importance of the representation itself, in this section

we describe the evolution of our choice, giving insight into its design rather than

simply stating “here it is”.

In the original version, probes are identified by a unique <processor id,

integer probe id> pair, and each processor maintains its own namespace by assign-

ing probe identifier integers arbitrarily based on availability. Once allocated, probe

identifiers are reused only after there are no remaining stale copies of the corre-

sponding block in the system. Determining this termination condition requires a

probe garbage collection protocol, adding significant complexity and increasing

the bandwidth demands of the system. Furthermore, probe sets become quite large,

limiting the feasibility of the implementation.

The representation’s second version eliminates the garbage collection

problem by augmenting probes with a timeout value. Timeout values dictate the

expiration of stale cache blocks (in the supplanter field), the expiration of a probe

from a probe set, and the time at which the processor that created the probe can

reuse the name of the probe. The timeout associated with each probe is initialized

with a global constant that we refer to as the stale block lifetime. The stale block

φ
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opportunity to use stale data, but not so long that the associated probe is alive long

after the stale block can no longer be used, consuming excess space. (During our

performance evaluation in Chapter 7, we explore various settings for this impor-

tant parameter.) The probe timeout is maintained as a counter that is decremented

every n processor clock cycles. We assume this clock is based on a loosely syn-

chronous clock, similar to the global clock used for the construction of checkpoint

numbers in Sorin et al.’s SafetyNet implementation, whose skew is less than the

message communication time between any two nodes [104]. The parameter n,

which we call the decrementer constant, affects the trade-off between probe stor-

age and timer resolution. For the data collected in this thesis, we assume a decre-

menter constant of one, however larger decrementer constants may be used in

practice in order to save space consumed by counters or to ease the maintenance of

counters (should decrementing every counter every cycle prove difficult). In Chap-

ter 7, we present an analysis of how the size of various structures would be

affected by larger decrementer constants.

The second version also improves upon the first by reducing probe set size

by assigning integer probe names using consecutive integers reflecting the single-

thread ordering of the writes that create the probes. For example, if a processor has

two store misses, the probe identifiers corresponding to those stores will be

assigned such that the earlier store in program order will have a smaller probe

identifier. If those misses were initiated out of program order (e.g. due to a non-

binding exclusive prefetch), the identifier for the earlier instruction (earlier in pro-
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less than the outstanding miss probe identifier.

Because store misses initiated by each single processor are ordered by

probe identifier, a probe set in an n-processor system must contain no more than n

probes; any more would be redundant. The probes are redundant because if a pro-

cessor or memory location is causally dependent upon the newer of two writes by a

single processor, it must also be dependent upon the earlier write. In this represen-

tation, probe identifiers become the triplet <processor id, integer probe id, integer

timeout value>. Probe sets become arrays of these triplets, with one entry per pro-

cessor in the system, resembling the vector clock representation that has been

widely used in the context of distributed systems [68][88][105]. When adding a

new probe to a probe set, the probe set entry corresponding to the new probe is

overwritten only if the new probe identifier is greater than the existing identifier.

The third (and final) representation is based on the second version, except

its size is reduced by discarding the integer probe identifier. Rather than detecting

the existence of a cycle in the constraint graph by comparing the integer probe

identifiers, we can detect a cycle by comparing timeout values. If any supplanter

probe timeout value is less than or equal to the corresponding entry in an incoming

message’s upstream set, we know that the supplanting write is causally dependent

on the incoming data, and must throw away the stale data. In this representation,

when probes are stored individually (i.e. as the supplanter field for a memory loca-

tion), they are stored as the tuple <processor id, integer timeout value>. To repre-

sent probe sets in systems with a small number of processors, the processor id field

φ
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within the probe set vector. When used in systems with a large number of proces-

sors (resulting in sparse probe sets that commonly only contain probes created by

many fewer processors than the number of processors in the system), it will be

advantageous to explicitly maintain the processor id, and condense the vector so

that it contains tuples for only those processors with active probes. We use the rep-

resentation tailored to small systems for this thesis.

To summarize, probes are represented by a <processor id, timeout> tuple.

Probe sets are represented by a vector of timeouts, with the procid corresponding

to each timeout being positionally inferred. Maintaining probe timeout values in

the ECDC protocol is not as difficult as in other distributed timestamping network

protocols [70][94], because the ECDC protocol does not require as much precision

from its timers. So long as supplanter probes do not expire late, and probes that are

part of an upstream set do not expire early, the protocol will operate correctly.

Both timers can be approximated as long as the approximations skew the time in

the correct direction. This flexibility eases some of the implementation burden

associated with timestamp maintenance. For example, we can avoid decrementing

timeout values for in-flight probes at each network switch. Instead when the

receiving processor receives an invalidate and associated probe, it can set the sup-

planter field for the stale block by subtracting a maximum network transit time from

the stale block lifetime parameter. Consequently the probe identifier does not even

need to be included in the invalidate message; instead, the identifier can be con-

structed at the destination. At worst, the invalidate has arrived much earlier than

φ

φ



114the maximum transit time, unnecessarily reducing the lifetime of the stale cache

block (a performance divot, but not a correctness problem). Similar optimizations

exist for storage structures containing probe sets (described in detail in the next

few subsections); if it is difficult to decrement the timer value every cycle for

every probe in a probe set, timer decrements can be delayed, causing the probe to

expire later (consuming more space, but not causing a correctness problem).

One drawback of the timer-based representation is that it is not possible to

exactly maintain a weakly ordered constraint graph using a single integer per pro-

cessor; instead, a conservative approximation is maintained. As shown in Figure 2-

4 on page 20, there may be multiple strands of ordered instructions between two

memory barriers. The use of a single integer flattens these strands into a single

strand, ordered by the time at which each store miss occurs. Consequently, the

timer-based scheme may order some stores that do not necessarily need to be

ordered (e.g. from the figure, unnecessarily ordering one of the stores to A with

respect to one of the stores to C). Because there can be arbitrarily many indepen-

dent strands of execution between memory barriers (subject to the limits of the

machine’s address space), there is no feasible hardware representation that can

exactly describe this constraint graph. We believe that the compactness provided

by the timer-based representation outweighs the benefits that could be obtained by

more precisely ordering a processor’s writes that occur between two memory bar-

riers.

6.4.2 Stale address buffer (STAB)

The stale address buffer (STAB) is used to control the transition of cache
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blocks from state ST to state I, preventing the processor from reading stale data

when doing so would be incorrect. This job is performed by maintaining the sup-

planter probe for each cache block that is currently in the stale state. Functionally,

probe maintenance involves two operations: 1) decrementing the timer values of

each supplanter probe; and 2) monitoring the probe sets attached to incoming mes-

sages, removing supplanter probes when a probe originating from the same proces-

sor is observed whose timeout is greater than the supplanter probe’s timeout. Once

a supplanter probe expires for either of these reasons, a signal is sent to the cache

hierarchy, which transitions the block’s state from ST to I.

The STAB consists of a set of FIFO queues, one per other processor in the

system. Figure 6-8 illustrates a STAB logical design in the context of a four-pro-

cessor system. Each FIFO entry contains the supplanter probe and block address

for an incoming invalidation. At the arrival of an invalidation message, the invali-

FIGURE 6-8. STAB design for a 4-processor system
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116dation is sent to both the cache hierarchy and the STAB. If the block is valid in the

cache hierarchy, the block’s state transitions to the ST state, and the STAB is noti-

fied that the block has entered the ST state, causing the STAB to store the incom-

ing invalidate’s address and probe in the appropriate FIFO queue (whose tail is at

the top of the diagram).

When an upstream set arrives with an incoming message, the timeout value

at the head of each queue is compared (in parallel) to the corresponding timeout

value in the incoming probe set. If the head’s timeout value is less than or equal to

the incoming probe set entry’s timeout value, the head FIFO entry is removed and

its address is sent to the cache to invalidate the stale block. The process is then

repeated for the new head of the queue, continuing until either the queue is empty

or the timeout value at the head of the queue is larger than the incoming probe set

timeout.

In terms of the STAB’s physical design, the task of individually decre-

menting a large set of counters at a constant rate is unattractive in terms of both

power and area. It is unattractive in terms of power because the amount of switch-

ing is proportional to the number of counter decrements per cycle. It is unattractive

in terms of area because it would be difficult to build the STAB out of SRAM if

each counter were to be individually decremented (plus a larger area consumes

more static power). Consequently, our design uses a slightly different representa-

tion that allows for an easy SRAM implementation. Rather than decrementing

each counter, only a single counter per FIFO buffer is decremented. This counter

(pictured at the bottom of each queue in Figure 6-8), corresponds to the head of the
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contains a timeout value relative to the FIFO entry ahead of it. For example, the

absolute timer value is shown in parentheses for the rightmost queue from

Figure 6-8, and the relative timer values are contained in the queues. In order to

calculate this delta value at FIFO insertion, each FIFO additionally maintains a

sum of the FIFO’s current timeout entries, which is subtracted from the incoming

probe timeout value’s before insertion. This representation reduces the number of

decrements per cycle to the number of other processors in the system. Using a

linked list-based queue implementation, we can make efficient use of the dedicated

SRAM by allowing the queues to dynamically load-balance, with some queues

consuming more than their share when other queues are not filled.

Because the STAB is a finite resource, when its capacity is reached the

cache hierarchy can be signaled that an incoming invalidation should trigger a

state transition to the I state instead of the ST state. These dropped probes result in

subsequent reads to that block being stalled while the data is fetched from across

the system, losing performance but still maintaining correctness. In general, the

design of the STAB can be quite flexible. In the design presented here, we are able

to expire probes in the order in which they arrive, allowing us to continue using

stale blocks as long as possible. However, correctness does not depend on the pre-

cise relative expiration of supplanter probes with respect to one another. So long as

each STAB entry expires no later than the associated probe maintained in the

external PPB(s), the protocol will continue to function correctly, allowing for addi-

tional implementation flexibility if needed.
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6.4.3 Probe propagation buffer (PPB)

Each processor pi’s probe propagation buffer (PPB) implements the pro-

cessor’s upstream set procupstream,i and an approximation of the read upstream set

readupstream,i,a and write upstream set writeupstream,i,a for each recently touched

cache block a. The PPB’s purpose is to associate with each address the processor’s

upstream probe set at the time of the processor’s last read or write. Illustrated in

Figure 6-9, the PPB consists of two tables: a probe timer table (shown at the right

of the figure) and a timer index table. The probe timer table contains snapshots of

the processor’s upstream probe set at different times in the past and is organized as

a FIFO with each FIFO entry containing one probe set (i.e. in an n-processor sys-

tem, each entry contains n timers). As the processor becomes causally dependent

upon new probes (through the arrival of an incoming response message from

another processor, or the creation of a new probe due to a local store miss), the

FIGURE 6-9. PPB Organization
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expire, they are removed from the head of the FIFO (at the bottom of the figure).

Consequently, the tail of the probe timer table always contains the processor’s cur-

rent upstream set. 

The timer index table implements a mapping from cache block physical

address to the entry in the probe timer table containing the processor’s probe set at

the last time that address was read or written. Each load or store instruction

accesses the timer index table (through the hash function), storing a pointer to the

tail of the probe timer table at the hashed entry. When response messages are sent

from this processor to other processors, a timer index table lookup occurs using the

physical block address of the coherence message, and the corresponding entry

from the probe timer table is read and attached to the outgoing message. Because

these coherence message induced lookups may need to read any entry (not just the

head or the tail), each timer in each entry must maintain a precise timer value (dec-

remented every cycle) to allow easy attachment to the outgoing message.

Because there is no mapping from a probe timer table entry back to the

probe index table entries which point to it, when a probe expires, it is not possible

to reset those entries in the timer index table that point to the timer table entry.

Consequently, those index table entries will continue to point to the deallocated

entry, even after is has been reallocated for a new probe set. This could create a

performance problem, because once the timer index table is full of mappings, if the

probe timer table is full, it will appear that every address has a mapping to a live

probe set. We probabilistically solve this problem by augmenting timer index table
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table. The probe timer table maintains this count using a single non-saturating

counter that is incremented each time the timer table FIFO wraps around. Timer

index table entries consist of the concatenation of this timer and the index of the

probe timer table. When performing a PPB lookup, this portion of the index table

entry is compared to the current value of the timer table wrap-around counter.

Based on the current position of the PPB head pointer and this comparison, it can

be determined if the PPB index table entry truly points to the contents of the corre-

sponding PPB timer table entry.

In an ideal PPB implementation (unconstrained by physical resources), the

timer index table would be large enough to store two mappings from address to

upstream set for every address touched until the oldest probe inherited by the pro-

cessor expires. One mapping would map the address to the probe set at the last

time the block was touched by a read, the other for the last time it was touched by

a write (thus implementing the readupstream,i,a and writeupstream,i,a for a block a).

Due to physical size limitations, an approximation of the readupstream,i,a and

writeupstream,i,a sets is maintained, by using a single mapping for each block

address (coalescing the location’s readupstream,i,a and writeupstream,i,a sets). In

Chapter 7 we evaluate the effect of this decision, and find that there is little to be

gained by maintaining separate mappings.

Because there are fewer timer index table entries than addresses touched

during the lifetime of a probe set (and the hash function is imperfect), there will be

collisions in the table, causing some addresses to be mistakenly associated with
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Φ
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errors occur in the correct direction (i.e. addresses are never mistakenly associated

with probe sets older than they should be), this physical limitation may affect per-

formance but not correctness.

The probe timer table is also limited in size, limiting the number of unique

probe sets that can be associated with block addresses. Consequently, as probes are

added to a processor’s upstream set, a new probe timer table entry cannot always

be allocated. When the timer table is full, we continue adding new probes to the

current tail entry, by performing a max operation on the current tail entry and

incoming probe set. Once the probes in the probe set at the head of the probe timer

table expire, then subsequently arriving probes will be added to a new tail entry.

This policy causes cache blocks that were previously associated with that probe set

to become causally dependent upon the newly added probes, when they do not

need to be, but enables a compact and correct implementation.

Another, smaller, PPB called the CastoutPPB is maintained at the directory

controller. Because we are using a directory protocol in which dirty data is written

back to memory when servicing a read request, writebacks occur more frequently

than they do in most snoop-based systems. Rather than assume that any read ser-

viced from memory returns data that causally precedes all of the supplanting write

probes in the STAB (wiping out all of the stale blocks), we add a smaller version

of the PPB at the directory controller. The version at the directory controller is

smaller than the processor-side PPB because such writebacks still occur much less

frequently than the loads and stores that update the processor-side PPB.
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associated with cache blocks in the lazy-release consistency protocol, and in recent

work detecting violations of sequential consistency [21][51]. Xu, Bodik, and Hill

use a similar method based on a scalar clock in which a last-touch instruction

count is associated with cache blocks and passed among processors in order to

track inter-processor dependences [112].

6.4.4 Other aspects of the ECDC implementation

In this section, we describe a few additional details that were not discussed

in the previous sections.

6.4.4.1 Critical write detection

Because delaying the observance of writes until a stale block’s probe timer

expires would sometimes decrease performance by delaying time-critical writes

such as lock releases, we use two heuristic mechanisms to detect such situations.

In the absence of accurate detection, the eventual expiration of the probe timer

ensures that the application will continue to make forward progress. 

The first heuristic detects potential critical cache blocks by assuming that

the observance of a write to any block that has been previously touched by a store

conditional instruction should not be delayed. To implement this heuristic, we aug-

ment each cache block with a single bit, set when the block is touched by a store

conditional. This bit is communicated with the block data when the cache block is

transferred among processors. The bit is not stored in memory when the block is

cast out, allowing the bit to be reset periodically (so that a block will not always be

associated with synchronization after it is reallocated for another purpose). When a
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stale block, but a coherence transaction is immediately initiated to fetch the new

copy of the block.

The second heuristic is used to detect polling behavior to cache blocks that

have never been touched by a store conditional instruction. Should two read

requests to the same physical address from the same static instruction be issued to

the data cache consecutively, we conservatively assume that the processor is poll-

ing that location for a new value. The cache may return a stale value to the request,

but immediately issues a coherence transaction to obtain the new copy of the

block.

For the applications used in this thesis, we find that these heuristics per-

form quite well, because the applications do not suffer a performance penalty (or

else the performance penalty is offset by performance gains from using stale data),

as will be presented in the next chapter.

6.4.4.2 Atomic synchronization primitives

The ECDC protocol has little effect on the implementation of atomic syn-

chronization primitives. Primitives such as test & set, and fetch & op are handled

identically to a typical coherence protocol, in which an exclusive copy of the block

must be obtained prior to completing the operation. Should an implementation of

compare and swap delay obtaining an exclusive copy of a block until after a suc-

cessful comparison, we recommend that this comparison not be based on stale data

for reasons of forward progress. When implementing PowerPC’s load-linked syn-

chronization primitive in our infrastructure, we allow the load linked to return stale
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issued for the new copy of the block.

6.4.4.3 Interaction with speculative loads

Should an implementation detect memory ordering violations using a

snooping load queue, the load queue must be snooped when a block transitions

from the stale state to invalid just as when it transitions to invalid from other states.

This policy prevents a case in which a speculative load instruction may read stale

data, followed by an earlier instruction becoming causally dependent upon a probe

that forces the stale block to transition to the I state, in which case the load instruc-

tion should not have read the stale data. When a block initially transitions to the ST

state, there is no need to snoop the load queue, because the ST state is essentially

the same as the S state.

6.4.5 Examples of operation

In this section we describe the protocol events and actions that are affected

by the ECDC implementation. Supporting ECDC requires no changes to the origi-

nal directory protocol other than 1) the addition of ProbePropagate and ProbePro-

pagateResponse messages, which require no ordering properties with respect to

any other coherence messages, 2) the addition of the ST state to each cache hierar-

chy, which functions identically to the shared state (except initiating a miss when

touching a potential synchronization block), and 3) the augmentation of protocol

response messages (other than NACKs) with probe sets.

Our discussion here focuses on two common scenarios: 1) a store miss to a

cache block in shared state at other processors; and 2) a load miss to a block that is
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dirty in another processor’s cache.

Figure 6-10 illustrates the messages passed in a typical directory-based

coherence protocol as a result of a store miss to a cache block in the shared state at

the directory. In this example the block is shared by two other processors S1 and

S2. The ECDC protocol uses the same set of messages, but augments the messages

with probe sets depending on the current contents of the PPB. Table 6-4 describes

the messages and event handlers for each transition, with modifications made for

the ECDC protocol listed in bold.   

Table 6-3: Actions taken in typical handling of store miss

Event Action(s)

1. Store miss 1. Requestor sends ReadExclusive message 

to home node.

2. Requestor adds new probe to its PPB 

corresponding to the block address.

2(a). Reception of ReadExclusive 

message by directory controller at 

home node, with block in the shared 

state

1. Send invalidation message to each sharer.

2. Send response to requestor, with number of 

sharers and data.

3. Reset list of sharers, set block to owned 

state with requestor as owner.

2(b), (c) Reception of Invalidate mes-

sage by sharer

1. If present, transition block to the ST 

state. (Rather than the I state in typical proto-

col.)

2. If present, add entry to the STAB for the 

incoming invalidation using the stale block 

lifetime timeout value minus the maximum 

transit time.

3. Send invalidate acknowledgment message 

to requestor, augmented with the block’s 

upstream set obtained from the PPB.

3(a), 3(b) Reception of invalidate 

acknowledgment messages from shar-

ers

1. Lookup STAB using incoming probe set, 

transition blocks from ST to I state as 

needed.

2. Update PPB’s timer index table with 

block address.

3. Transition block to modified state, notify 

processor of store completion.
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All other write miss events are handled similarly. When receiving an

upgrade transaction, the directory responds with the number of sharers and probe

set, but no data. If the block is in the modified state at the directory, the request is

forwarded to the owner, who similarly responds with data and an upstream set. If

the block is in the invalid state at the directory, the data is returned with an

upstream set, should one exist in the CastoutPPB.

A typical load miss that finds the directory in the modified state, illustrated

in Figure 6-11, is handled similarly to the occurrence of write misses that reach the

directory in the modified state. Table 6-4 specifies the set of events and actions,

with changes needed for supporting ECDC in bold. In this case, when the owner of

the block sends a sharing writeback message to the directory, it attaches the

block’s upstream set to the message, which is subsequently saved in the Castout-

FIGURE 6-10. Read Exclusive Request Events ((R)equestor, (H)ome,
(S)harer1, (S)harer2)

FIGURE 6-11. ReadShared to Block in Modified State ((R)equestor, (H)ome,
(O)wner)
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PPB when received by the directory.

This concludes our ECDC implementation description. In the next section,

we discuss prior work related to delayed consistency and the edge-chasing delayed

consistency protocol that was not discussed earlier. In Chapter 7, we evaluate the

proposed implementation.

6.5 Related Work

There has been a significant amount of related work on mechanisms that

prevent the performance penalty associated with inter-thread communication,

including optimizations at the algorithm level, language level, compiler level, and

run-time system/hardware implementation level. The discussion here will be lim-

Table 6-4: Actions taken in typical dirty miss handling

Event Action(s)

1. Load miss 1. Send ReadShared request to home node

2. Reception of ReadShared request by 

directory controller at home node

1. Forward ReadShared to owner on interven-

tion network

2. Add requestor to list of sharers

3. Set block state to BusyShared

3(a). Reception of ReadShared request 

by owner

1. Set the block’s state to shared

2. Send response with data to the requestor, 

augmented with the block’s upstream set 

obtained from the PPB.

3. Send SharingWB message to home node, 

augmented with the block’s upstream set 

obtained from the PPB.

3(a). Reception of SharingWB by direc-

tory controller at home node

1. Add upstream set attached to incoming 

message to the CastoutPPB entry for that 

block

2. Write data back to memory.

3. Transition the block to the shared state.

3(b). Reception of response message by 

requestor

1. Add upstream set attached to incoming 

message to the tail PPB entry.

2. Install cache block in the shared state.
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be a hardware-based implementation or software-based implementation. We limit

this discussion to other single-writer protocols that improve communication per-

formance through the use of stale values or by delaying the observance of writes,

and related work that specifically targets the false sharing problem.

6.5.1 Hardware systems

Edge-chasing delayed consistency is closely related to prior implementa-

tions of delayed consistency. Motivated by the problem of false sharing, Dubois et

al. proposed the first delayed consistency protocols, which delayed either the send-

ing of all invalidates (sender-delayed protocols) or the application of all invali-

dates (receiver-delayed protocols) or both until a processor performs a

synchronization operation [34][36]. Their work found significant reductions in

cache miss rates from delayed consistency, however their studies did not deter-

mine if performance benefits could be obtained from these reductions. Dahlgren

and Stenstrom more thoroughly explore sender delayed protocols implemented

through the addition of a write cache that buffers outbound invalidate messages

until an acquire or release is performed [32]. Their work focuses on update proto-

cols and hybrid update/invalidate protocols. These proposals have demonstrated a

reduction in multiprocessor coherence misses, but unfortunately each relies on

properly-labeled synchronization operations1. Edge-chasing delayed consistency

1. With the exception of IA-64, there are no commercial instruction set architectures 

which require using special labeled operations for synchronization. In the majority of 

commercial architectures, it is possible to implement synchronization using ordinary 

load and store operations. Consequently, it is not advisable for an implementation to 

delay such operations, limiting the practicality of previous delayed consistency mech-

anisms.
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constructs, and timeout mechanisms to prevent permanently delaying write obser-

vance for synchronization that is not captured by the heuristics. In addition, edge

chasing delayed consistency extends the useful lifetime of stale cache blocks by

allowing a processor to use them until that processor becomes causally dependent

on a newer copy of the cache block. In this sense, edge-chasing delayed consis-

tency approximates the behavior of the entry consistency model, which orders

operations that are related to one another (e.g., stores to the same data structure),

while eliminating ordering requirements for operations that don’t need to be

ordered [12]. In comparison, the work by Dubois et al. and Dahlgren and Sten-

strom take an all or nothing approach to the delaying of writes, in which all writes

are delayed until a synchronization operation occurs, after which all pending inval-

idations are applied. The prior studies by Dubois et al. and Dahlgren and Sten-

strom have also been limited in terms of experimental methodology.

Demonstrating a reduction in miss rates is a positive outcome, however such

reductions do not necessarily lead to performance improvement.

Lebeck and Wood’s work on dynamic self-invalidation also included sup-

port for a form of receiver-delayed consistency by marking certain blocks in a

directory-based coherence protocol as “tear-off blocks”, which would be automati-

cally invalidated by the cache controller upon the next miss (under sequential con-

sistency) or the next synchronizing operation (under weak ordering) [61]. Until a

miss or synchronization, a processor could continue to use the potentially stale

copy of the block. The tear-off blocks would not need to be tracked by the direc-
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was written by another processor. This work focused on the reduction in write

latency gained by shortening the list of sharers and thus avoiding the correspond-

ing invalidation/acknowledgment latency; the extent of benefit obtained from

lengthening the useful lifetime of cache blocks is unclear.

Lepak evaluates a mechanism that speculatively returns stale data on a

coherence miss, allowing the processor to continue executing dependent instruc-

tions until the cache miss returns and the speculation has been verified [63]. Huh et

al. also describe a class of speculative protocols which include the mechanism pro-

posed by Lepak [48]. Their mechanism increases the accuracy of stale data specu-

lation by occasionally updating the stale data or by using a confidence predictor to

decrease the number of misspeculations. These speculative protocols are comple-

mentary to the edge-chasing delayed consistency mechanism presented here if

used by a processor that supports speculation. When the edge-chasing consistency

mechanism indicates that a stale cache block can be used, it can be used non-spec-

ulatively, allowing the processor to commit the instruction, whereas the specula-

tive mechanism would have forced the instruction to wait for the cache miss to

return, potentially stalling the machine. The speculative mechanism will be useful

in cases where the edge-chasing consistency mechanism indicates that it is not safe

to use stale data. In the context of in-order processors that do not support a method

for speculative run-ahead, only non-speculative schemes like the edge-chasing

delayed consistency mechanism can provide performance benefit.

Rajwar, Kagi, and Goodman describe a delayed mechanism of a different
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delaying the transfer of ownership until the subsequent store-conditional operation

completes, thereby improving the throughput of synchronization [92]. Like edge-

chasing delayed consistency, this optimization removes the overheads of some

communication by delaying the visibility of writes. However, because it is tailored

specifically to synchronization variables it can exploit common synchronization

variable access patterns (acquire->release->acquire...), but its usefulness is also

limited to synchronization variables.

There have been several proposed hardware mechanisms that attack the

false sharing problem in addition to the work described above. Dubnicki and Leb-

lanc evaluate a coherence protocol that utilizes an adjustable block size, dynami-

cally detecting false sharing misses and splitting cache blocks in half accordingly

[33]. Chen and Dubois propose a sub-blocked cache in which coherence messages

invalidate only part of a cache block, allowing other parts of the cache block to be

used [25]. Anderson and Baer propose a similar protocol that uses a large transfer

size and small coherence unit in order to take advantage of spatial locality while

avoiding false sharing [9]. Each of these proposals is successful at reducing false

sharing misses, however their benefit is limited by the amount of false sharing in

the application. Edge-chasing delayed consistency can eliminate false sharing

misses, but it can also reduce misses to truly shared data as well.

Afek et al. and Brown describe theoretical delayed consistency algorithms

similar to Dubois et al.’s in the context of update-based coherence protocols and

invalidate-based protocols, respectively [2][16]. These algorithms limit a proces-
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that processor. Their work includes formal presentations of the caching algo-

rithms, but does not include any experimental evaluation.

Rechtschaffen and Ekanadham describe a cache coherence protocol that

allows a processor to modify a cache line while other processors continue to use a

stale copy [93]. Their protocol ensures correctness by conservatively constraining

certain processors from reading stale data or performing a write while stale copies

exist. Published only in patent form, their proposal is accompanied by no experi-

mental data. Their proposal is limited by the effectiveness of heuristics that dictate

when stale data can be used. Because edge-chasing delayed consistency tracks the

constraint graph, it can better identify when stale data can or cannot be used, and it

should be able to more frequently use stale data than the more approximate method

proposed by Rechtschaffen and Ekanadham.

6.5.2 Software systems

Keleher, Cox, and Zwaenepoel’s lazy release consistency protocol is a

sender delayed protocol that is similar to the receiver-delayed edge-chasing imple-

mentation discussed here [51]. Like edge-chasing delayed consistency, Keleher’s

proposal delays the observance of writes until a processor’s read operation

becomes causally dependent upon a write, at which point all writes that causally

precede the observed write will become observable to the reading processor. Like

the hardware-based delayed consistency work, lazy release consistency is depen-

dent upon properly labeled synchronization operations, limiting its applicability to

current architectures. Also, because lazy release consistency was proposed and
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ing coherence granularity at the size of a page, the trade-offs involved are quite

different from those involved in a hardware based multiprocessor. An interesting

avenue of future work would be to compare the overheads of a software-based

implementation of edge-chasing delayed consistency to lazy release consistency.

Tambat and Vajapayem present the performance advantages of a non-

blocking memory access primitive called Global_Read in the context of a soft-

ware-based distributed shared memory machine [106]. The Global_Read primitive

returns new data once communication has completed, but until that time returns

the previous copy of the data, allowing the application make forward progress

using stale data until the new data is locally available. The mechanism is targeted

at data-race tolerant applications such as iterative equation solvers, genetic algo-

rithms, and probabilistic inference in Bayesian belief networks. At a high-level,

this mechanism is similar to the edge-chasing delayed consistency mechanism pre-

sented here, because they both allow stale shared data to be read in order to tolerate

communication latency. However, the Global_Read primitive provides an explicit

interface to the programmer who can then dictate whether or not stale data should

be used for a particular access. This is a powerful mechanism, but places a signifi-

cant burden on the programmer, whereas the ECDC mechanism potentially

improves the performance of arbitrary programs without programmer intervention.

Wang and Weihl describe a software caching algorithm used in an imple-

mentation of concurrent B-trees that allows multiple versions of memory such that

local stale versions of the B-tree can be read without incurring a cache miss (simi-



134lar to the example in Section 6.1.1), saving the latency of fetching the new version

[109]. Their implementation improves performance over 300% for a highly con-

tended B-tree microbenchmark. The ECDC protocol can provide similar perfor-

mance benefits as multi-version memory for a similar microbenchmark (which we

show in Chapter 7), however ECDC is a more general solution, creating benefits

for unmodified programs when potential exists, and requiring no additional pro-

grammer effort.
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Experimental Evaluation of Edge-Chasing Delayed 
Consistency

In this chapter, we present a detailed performance evaluation of the edge-

chasing delayed consistency mechanism. We compare the protocol to a baseline

machine utilizing a conventional directory coherence protocol, based on the SGI

Origin [60], whose configuration is detailed in In Section 7.1. In Section 7.2, we

characterize the relevant behavior of coherence misses across a set of scientific

and commercial applications to gauge the opportunity for performance gains from

edge-chasing delayed consistency and to provide insight into the subsequent eval-

uation. In Section 7.3, we evaluate the ECDC protocol assuming unlimited probe

timeouts, with unlimited STAB and PPB storage space, to determine its potential

without being subject to physical constraints. We complete our evaluation in Sec-

tion 7.4 with a study of the protocol’s performance when using realistic resource

constraints, followed by a summary in Section 7.5.

7.1 Machine Configuration

Table 7-1 describes the machine configuration used for these experiments.

We use a four-processor baseline machine, whose processor core and cache hierar-

chy (except for the larger L3 cache) are identical to the baseline configuration used

Chapter 5’s value-based memory ordering evaluation. The modeled interconnect

topology (and latencies and bandwidths) are based on the Alpha 21364 network

[84].  We replace the 21364’s dynamic routing protocol with a simpler static
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dimension-ordered routing mechanism.

7.2 Coherence Miss Characterization

Figure 7-1 shows the number of misses per 1000 committed instructions

for a set of parallel applications (this graph is repeated from Chapter 6). Each bar is

broken into its cold, coherence, and capacity/conflict components [47]. The top of

each bar additionally includes upgrade transactions, caused by writes that touch a

shared copy of the block, creating inter-processor communication but no data

transfer. Many of the applications incur a significant number of coherence misses,

especially the four commercial workloads at the right side of the figure. Such

misses cause significant performance penalties, particularly in home-based proto-

cols where they must typically make three network hops: from the requester to the

home node, from the home node to the current owner, and back to the requester.

Table 7-1: Baseline machine configuration. 

Out-of-order

execution

5.0 GHZ, 15-stage 8-wide pipeline, 256 entry reorder buffer,

128 entry load/store queue, 32 entry issue queue, store-set pre-

dictor with 4k entry SSIT and 128 entry LFST.

Functional Units

(latency)

8 integer ALUs (1), 3 integer MULT/DIV (3/12), 4 floating

point ALUs (4), 4 floating point MULT/DIV (4, 4), 4 L1D ports

Front-end fetch stops at first taken branch in cycle, combined bimodal

(16k entry)/gshare (16k entry) with selector (16k entry) branch

prediction, 64 entry RAS, 8k entry 4-way BTB

Cache hierarchy 

(latency)

32k direct-mapped IL1 (1), 32k direct-mapped DL1 (1), 64

entry write buffer, 512k 8-way DL2 (7), 512k 8-way IL2 (7),

Unified 16MB 8-way L3 (15), 128 byte cache lines. 2k entry 2-

way ITLB, 2k entry 2-way DTLB. Stride-based prefetcher mod-

eled after Power4.

Interconnect/Memory 2-D torus static dimension order routed interconnect. 15 ns (60

cycle) per link+route (40GB/S bandwidth)

400 cycles/100 ns best-case DRAM latency.

10 cycle directory access latency
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Because some of the applications do not incur many coherence misses (barnes,

cholesky, lu, radiosity, volrend, water-nsquared, and water-spatial), we omit these

applications from the rest of our results. We do not expect edge-chasing delayed

consistency to significantly improve their performance.

Edge-chasing delayed consistency should benefit applications most by

reducing the average latency of load instructions, because write buffers are able to

hide most of the performance degradation caused by upgrade misses for these

applications. Figure 7-2 further breaks down those coherence misses caused by

load instructions into three categories: false sharing misses, true sharing misses

FIGURE 7-1. Misses per 1000 committed instructions for 16MB L3 cache. 

FIGURE 7-2. Breakdown of coherence misses caused by load instructions. (The

number of load coherence misses per 1000 committed instructions is labeled beneath each bar).
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138that reference potential synchronization memory locations, and true sharing misses

that reference potential false sharing memory locations. False sharing and true

sharing misses are differentiated using the Dubois classification [35]. We separate

true sharing misses into potential data misses and potential synchronization misses

by labeling a miss as potential synchronization if the referenced cache block has

been touched by a load-linked or store conditional instruction during the simula-

tion, and all other misses are labeled as data. This classification is only approxi-

mate, because a memory location that is used once for synchronization may later

be reallocated for a different purpose, but will still be considered synchronization

using this classification. Consequently, the number of misses labeled synchroniza-

tion may be overestimated, but we expect the classification to be useful as a rough

estimate.

We expect edge-chasing delayed consistency to offer performance

improvement for those misses that are caused by false-sharing, and for some truly

shared misses to data. ECDC should not offer any performance improvement by

reducing misses to truly shared synchronization data (the black portion of each

bar), because these misses are likely fetching the release of a lock variable.

Although this class of misses is significant for each application, it represents no

more than half of all load coherence misses for any applications other than fft and

ocean. At 73%, the TPC-H decision support benchmark contains the largest per-

centage of misses caused by false sharing and true data sharing.

This data indicates that coherence misses occur frequently enough that

their avoidance should yield some performance benefits, particularly in the com-
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ECDC must maintain extra state for cache blocks while they are in stale state, it is

also important to determine the amount of time that typically passes between the

arrival of an invalidation for a cache block and a subsequent reference to that

cache block. Figure 7-3, Figure 7-4, and Figure 7-5 chart the cumulative distribu-

tion of this distance (in cycles) for all blocks, potential synchronization blocks, and

potential data blocks, respectively, that are subsequently referenced by the proces-

sor. In Figure 7-4, for example, in raytrace 88% of the invalidated cache blocks

that are subsequently referenced are referenced within 10,000 cycles of their inval-

idation (note log scale on x-axis).

In general, this distance can be quite large. When looking at the distribu-

tion for all cache blocks in Figure 7-3, it requires 100 million cycles to capture

90% of all of the coherence misses across all applications. There is significant

variability between applications, however; for instance raytrace requires only a

100,000 cycle window to capture 90% of the load coherence misses. When break-

ing this chart into potential synchronization and potential data components in

Figure 7-4, and Figure 7-5, we find that the behavior is quite different between the

two. The curves for potential synchronization cache blocks generally rise more

quickly than the curves for potential data. Presumably, this is a result of contended

lock locations which are likely to be read soon after being written. TPC-H is an

exception to this rule, demonstrating the complete opposite behavior, as the curve

for potential data cache blocks rises significantly earlier than the curve for poten-

tial synchronization cache blocks. In fact, for TPC-H, over 90% of potential data
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load coherence misses are initiated within 10,000 cycles of the block’s invalida-

tion. ECDC should perform best for those applications whose potential data coher-

FIGURE 7-3. Invalidation to miss cumulative distribution (All load coherence
misses). 

FIGURE 7-4. Invalidation to miss cumulative distribution (Potential
synchronization misses). 

FIGURE 7-5. Invalidation to miss cumulative distribution (Potential data
misses). 
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well for TPC-H.

7.3 ECDC Performance: Unlimited Stale Block Lifetime

In the previous section, we demonstrated that there is potential for the

ECDC protocol should it be able to keep a block in the stale state long enough to

capture its next reference. In this section, we evaluate a few variations of the

ECDC protocol when assuming an infinite STAB and PPB, and an unlimited time-

out for each probe, to gauge the potential for this technique without being subject

to resource constraints. Later in the chapter, we evaluate ECDC while placing real-

istic assumptions on these parameters. Our evaluation is broken into two parts, a

microbenchmark evaluation and an evaluation using the applications characterized

above.

7.3.1 Microbenchmark evaluation

As described in Chapter 6, edge-chasing delayed consistency offers perfor-

mance improvement potential for parallel applications that share linked data struc-

tures. In this section, we compare the performance of ECDC to a conventional

coherence protocol when running a lock-free list insertion microbenchmark, in the

context of a 16-processor machine. We use Michael’s hazard pointer-based lock-

free parallel list maintenance algorithm for our microbenchmark’s implementation

[78].

The microbenchmark consists of a set of threads randomly inserting, delet-

ing, or searching a linked list with some probability, where the probability x of a
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list insertion is always the same as the probability of a deletion. Each operation

randomly chooses a node for which it will search, delete, or insert a new subse-

quent node. We use 15 threads running this mix of operations, and a single thread

whose search operation latency is timed. Figure 7-6 charts the average list search

latency, varying the x parameter from 0 to 50, resulting in the percentage of list

modification operations ranging from 0% to 100%. The test was performed using

three different average list lengths: 10, 100, and 1000, with larger list lengths

decreasing the amount of contention in the microbenchmark. 

As one would expect, as the fraction of update operations increases the

average search time for the baseline machine also increases. For the highly con-

tended list of length 10, the time per search increases by a factor of 4.2. As the

fraction of update operations increases, the performance levels off; a point is

reached with such a short list length at which contention is high enough that the

probability of a cache miss occurring no longer increases. This is not true for the

FIGURE 7-6. Lock-free list insertion microbenchmark performance. 
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143longer list lengths, where performance continues to degrade as the fraction of

updates increases. For the list length of 100, the performance with 100% updates is

4.7 times worse than the performance with no updates. Moving to the 1000 entry

list, performance is less affected by the updates because there is less contention,

but degradation is still significant (48% worse performance) when moving from no

updates to 100% updates.

When using the ECDC protocol, performance stays relatively flat as the

percentage of updates is increased, because list searches are able to avoid many

coherence misses while traversing the list. The performance is not completely flat,

because some misses inevitably occur, creating a causal dependence on a recent

write that forces many of the reader’s stale blocks to the invalid state. However,

the ECDC protocol obtains significant speedups relative to the conventional proto-

col, measuring 2.74, 1.82, and 1.18 for the list of length 10, 100, and 1000 respec-

tively, when 30% of the operations are updates. When 100% of the operations are

updates, the ECDC protocol improves performance even more, with speedups of

3.11, 3.87, and 1.35 for these list lengths.

7.3.2 Application evaluation

In this section, we evaluate the performance of three variations of the

ECDC protocol relative to a conventional coherence protocol. In addition to the

full-blown ECDC protocol (labeled ECDC base in each chart), we also evaluate a

variation in which we maintain a single probe set per memory location by using a

single timer index table mapping in the PPB (labeled ECDC merged rw sets),

rather than the two mappings that the base ECDC protocol uses to precisely imple-
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ment the read and write upstream sets for each block. We also evaluate a variation

of the protocol that uses a scalar timeout value to represent probe sets (labeled

ECDC scalar probe set), rather than maintaining a vector of entries to individually

track a processor’s causal dependences on every other processor.

Figure 7-7 and Figure 7-8 illustrate the average lifetime of a STAB entry

from its allocation to its deallocation for scientific applications and commercial

applications, respectively. (The mean STAB entry lifetime is labeled above each

bar.) Because this machine configuration uses an infinite timer, entries never

expire due to a timeout, they may only expire due to the processor becoming caus-

ally dependent upon the supplanting write to which the STAB entry corresponds.

FIGURE 7-7. Average STAB entry lifetime for scientific applications. 

FIGURE 7-8. Average STAB entry lifetime for commercial applications. (Note dif-

ferent y-axis scale.)
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a maximum average of more than 700,000 cycles to a minimum of 4000 cycles. As

one would expect, as the ECDC implementation loses its granularity by first mov-

ing from two probe set mappings to a single mapping, and then from the vector

probe set to the scalar probe set, the average lifetime of each STAB entry

decreases because the implementation loses its precision, rounding conservatively.

This is the case for all applications, although for most applications the difference

between the base ECDC configuration and the single mapping configuration is

small enough that it is within the margin of error caused by application non-deter-

minism.

A measure of the protocol’s ability to use stale data is presented in

Figure 7-9. We define an intolerable load miss as those load misses to blocks in the

invalid state. A reference to a stale block is tolerable because it returns stale data,

but the reference may also initiate a coherence transaction (if it is determined to be

a synchronization reference). Only part of this reduction in intolerable misses will

result in improved performance, because for some of these misses the processor

may simply continue to poll a memory location waiting for a new value to appear,

without accomplishing any useful work. Each bar in Figure 7-9 is broken into true

sharing misses and false sharing misses, and the true sharing component is further

broken into potential synchronization and potential data misses. The rightmost

three bars correspond to the bars in the prior figure (ECDC base, ECDC merged

r/w sets, ECDC scalar), and the left-most bar corresponds to the baseline conven-

tional machine.
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We find that for many applications a significant fraction of intolerable

misses is removed when using the ECDC protocol. In raytrace, the application

with the largest reduction, as many as 52% of the intolerable misses are eliminated

for the base ECDC protocol. However, approximately half of these misses are

potential synchronization to truly shared data, which will probably not yield per-

formance improvement. The other half of the reduction comes from false sharing

misses. Across the remainder of the applications, nearly all of the reduction comes

from these categories; there is very little reduction in misses to truly shared data. It

is our understanding that AIX does not use any lock-free algorithms, and this set of

applications does not include any convergent iterative algorithms, in which we

would expect to observe a reduction in intolerable misses to truly shared data.

From this data, it appears that any performance gains from the ECDC protocol will

come from its reductions in false sharing miss, for which there is a significant

amount for many of the applications.

In terms of the relative ability of each of the three ECDC implementations

to avoid misses, the ECDC protocol with merged read and write sets performs sim-

FIGURE 7-9. Reduction in intolerable load coherence misses. (a) baseline (b) ECDC

base (c) ECDC with merged r/w sets (d) ECDC with scalar probe sets. The number of load coher-

ence misses per 1000 instructions for baseline is labeled beneath each bar.
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ilarly to the base ECDC protocol across all of the applications. The scalar ECDC

implementation, although sacrificing some of the gains from the base ECDC

implementation, still performs quite well despite the significant reduction in state

from the vector-based representation.

Figure 7-10 presents the most important metric, the normalized execution

time of each of the three ECDC variations relative to the baseline machine. Unfor-

tunately, for most applications, the ECDC protocol has little effect on perfor-

mance. There are two applications, SPECweb99 and TPC-H, in which the ECDC

protocol offers measurable improvements in performance (4% and 8%, respec-

tively, for the base ECDC implementation). Of all the applications, ECDC should

improve TPC-H most, because TPC-H has a significant number of coherence

misses, most of which are caused by false sharing, and of all the applications its

coherence misses occur the most quickly after the block was invalidated (as shown

in Figure 7-5), meaning that maintaining the corresponding STAB entry for a

small amount of time should capture a significant number of coherence misses. 

SPECweb99 does not incur as many load coherence misses as TPC-H, so

there is less potential for performance improvement. Although the average dis-

FIGURE 7-10. ECDC performance relative to baseline. 
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148tance from invalidation to subsequent load coherence miss is much longer in

SPECweb99 than in TPC-H, the ECDC protocol is able to retain STAB entries for

a longer period of time than in TPC-H (approximately 50,000 cycles as opposed to

5,000 cycles, as shown in Figure 7-7). Consequently, a significant fraction of false

sharing misses are avoided.

For the scientific applications, coherence misses simply do not occur fre-

quently enough for ECDC’s small reduction in misses to create a significant per-

formance benefit. With the exception of fmm, these applications are dominated by

true-sharing misses. Although fmm contains a significant number of false sharing

misses, the ECDC implementations are not able to eliminate these misses, indicat-

ing that before a processor is able to use a falsely shared stale data block, it usually

becomes causally dependent upon a more recent operation by the processor that

invalidated the block.

Of the commercial applications, the ECDC implementation is not able to

improve the performance of either SPECjbb2000 or TPC-B. TPC-B is dominated

by true sharing misses, and the false sharing misses that TPC-B does exhibit are

not avoided by ECDC because STAB entries are deallocated soon after they are

allocated (6600 cycles later, on average, for the base ECDC protocol). Although

ECDC is able to eliminate a significant fraction of false sharing misses in

SPECjbb2000 (30% of all false sharing misses, representing 14% of all load coher-

ence misses), SPECjbb2000 also incurs a significant number of non-coherence

misses, watering down any performance gains from a reduction in coherence

misses.
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149The slight performance degradation that occurs in a few applications (ray-

trace, SPECjbb, TPC-B) is due to the infinite probe timers used for this set of data,

which results in some applications polling a memory location for an excessively

long period of time before the processor finally becomes causally dependent upon

that write, allowing the processor to observe the new value. This is a result of

imperfect critical write/polling detection. When evaluating ECDC with realistic

probe timers, these slight degradations disappear, because the timers expire in a

shorter period of time, as will be shown in the next section.

The merged read/write probe set configuration obtains nearly all of the per-

formance of the base ECDC configuration, while the scalar probe set ECDC con-

figuration sacrifices half of the performance gains for SPECweb99. Consequently,

we use the merged read/write set for the remainder of our performance evaluation,

because it requires fewer resources while providing similar performance compared

to the full implementation.

The performance improvement obtainable via the ECDC protocol is depen-

dent upon the length of time that each entry is able to remain in the STAB after its

allocation. STAB entries are deallocated when a probe set attached to an incoming

message indicates that the processor is causally dependent upon the entry’s corre-

sponding write. Figure 7-11 categorizes STAB entry deallocations by the message

type that caused the deallocation: PropePropagation messages received from

another processor, intolerable miss response messages, and tolerable miss

response messages initiated when a stale block access has been deemed a critical

write by the critical write/polling heuristics. We find that there is no single type of
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message that dominates the removal of STAB entries across all applications; each

application behaves differently. The number of STAB entry deallocations due to

responses to references made by the hardware prefetcher was also measured, and

was found to be small for all applications.

The data in Figure 7-11 can be used to gauge possible future improvements

to the ECDC protocol. There is no potential improvement for the intolerable coher-

ence miss category (the middle part of each bar), because these cannot be avoided;

a processor must service the miss, and must consequently become causally depen-

dent upon prior writers of that cache block. However, tolerable miss responses

caused by the critical write/polling heuristics may be a source for improvement

because these heuristics may not be accurate. In early evaluations of this protocol,

we used a different policy for fetching new copies of stale blocks: a prefetch was

initiated the first time a stale cache block was referenced, to ensure that synchroni-

zation was not delayed. However, we found that these returning prefetches consis-

tently brought incoming probe sets that would force the removal of many probes

from the STAB, accounting for the vast majority of all STAB entry deallocations.

Consequently, we added the critical write/polling heuristics, which issue a coher-

FIGURE 7-11. Causes of STAB entry deallocation. 
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151ence transaction immediately for only those loads believed to be synchronization,

and otherwise allow a processor to use stale data without immediately fetching the

new data. Because a prefetch does not immediately fetch a new copy of the block,

STAB entries live longer. 

Another source of improvement may come from avoiding as many STAB

deallocations due to ProbePropagation messages. The ECDC protocol uses

PropePropagation messages to inform processors when they should become caus-

ally dependent upon a new probe. However, this propagation sometimes removes

STAB entries prematurely, because the sending processor may never use one of

the blocks that is stale in its cache. (ProbePropagation messages inform the proces-

sor that initiated the invalidation of a stale block that it should become causally

dependent upon a new probe received by the processor with the stale copy, just in

case the processor with the stale copy chooses to use it in the future. If the proces-

sor with the stale copy never uses it, there is no need to propagate the probe.) For

some workloads such as TPC-B, a significant number of STAB entries are deallo-

cated due to ProbePropagation messages. There may be a more intelligent mecha-

nism for propagating probes than the mechanism used here that will mitigate this

problem. We leave the exploration of these improvements to future work.

7.4 ECDC Performance Considering Resource Constraints

In the previous section, we showed that the ECDC protocol is capable of

improving the performance of at least two applications from our set of bench-

marks, when resource constraints were not modeled. In this section, we evaluate
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the effects of finite resources on the ECDC protocol. We first evaluate the use of a

finite stale block lifetime timer for each probe, comparing to the infinite timer ver-

sion evaluated above. We then evaluate the performance effects of finite STAB

and PPB resources on this implementation, followed by a discussion of ECDC

table storage requirements when assuming these finite buffers.

7.4.1 The effect of a finite stale block lifetime

Figure 7-12 illustrates the cumulative distribution function for useful

STAB entry lifetime, which we use to determine the proper setting for the stale

block lifetime parameter. This graph shows the number of cycles between STAB

entry allocation and deallocation for those STAB entries that are useful in the

ECDC protocol (whose corresponding stale block is ever used), when assuming no

resource or stale block lifetime limits. For example, for the benchmark ocean, 55%

of those STAB entries whose stale blocks are used are deallocated within the first

1000 cycles after the STAB entry was allocated. Across all applications, over 75%

of all useful STAB entries have expired within 4k cycles. At 8k cycles, this num-

FIGURE 7-12. Useful STAB entry allocation to death distance CDF. 
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ber increases to 89%, and at 16k, the number increases to 97%. The average STAB

entry lifetime is much longer than these amounts for most applications, as shown

in Figure 7-7, however the results from that figure are pulled upwards by those

STAB entries that are never used. STAB entries that are useful are eliminated

fairly quickly, as this data shows. Because no more than 3% of all STAB entries

would be deallocated early for any application when using a 16k probe timeout, we

choose this value as our probe lifetime timeout value, resulting in 14 bits of

counter space per STAB entry and probe set entry.

Figure 7-13 shows the performance of the ECDC protocol relative to the

baseline when using this stale block lifetime timer value. The chart also includes a

bar for ECDC performance when using an infinite timer. As we can see from this

data, the performance when using a 16k timer is comparable to the base ECDC

performance, within the margin of error for these simulations.

In addition to performance, another important factor is the number addi-

tional messages required to send ProbePropagate notices, which is presented in

Figure 7-14. This figure illustrates the number of memory barriers per 1000

FIGURE 7-13. ECDC performance with 16k cycle stale block lifetime. Relative to

the base ECDC unlimited lifetime case. Both with unlimited PPB and STAB resources.
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instructions, divided into those requiring ProbePropagation messages, and those in

which the extra probe propagation message can be avoided because either the pro-

cessor has no STAB entries at the time that it executes the memory barrier, or has

not added a new probe to its PPB since the last time it executed a memory barrier

instruction. In general, the number of additional messages is quite low for most

applications. In the worst case, TPC-B, one additional message is required per

3000 instructions executed.

7.4.2 The effect of finite STAB and PPB structures

Figure 7-15 illustrates the performance of the ECDC implementation

assuming finite STAB and PPB resources, for those applications that gain perfor-

FIGURE 7-14. Measurement of required ProbePropagation messages. 

FIGURE 7-15. ECDC performance with finite STAB and PPB resources. 
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155mance using the ECDC protocol. This data was collected using a 128 entry STAB

per processor and 32 entry CastoutPPB per directory controller. Each PPB imple-

mentation assumes a 256 virtual PPB namespace, so each timer index table entry

pointer (stored in the cache with each cache block for this evaluation) consists of 8

bits for the virtual PPB name, plus log2 (PPB timer table entries). The number of

PPB timer table entries is varied from 128 to 4.

As the figure illustrates, this configuration is able to capture nearly all of

the benefit that was gained by the ECDC protocol when assuming infinite buffer

space, within approximately 1% of the infinite STAB and PPB case for both appli-

cations. As the number of PPB timer table entries is varied, the difference in per-

formance is within the margin of error for these applications, although the mean

performance for each decreases slightly as the number of PPB timer table entries is

decreased. In the next section, we present a summary of the ECDC storage capac-

ity requirements for different ECDC configurations.

7.4.3 Analysis of ECDC storage overhead

In this section, we quantify the storage cost of the ECDC implementation

used to maintain the PPB, STAB and CastoutPPB. For this data, we assume a

machine with a 2 terabyte physical address space (41 bit physical addresses),

which affects the size of each STAB entry. We also assume that the number of

directory controllers is equal to the number of processors, resulting in one Castout-

PPB per processor.

Figure 7-16 illustrates the per-processor storage space (in KB) used to

implement the ECDC protocol, using the parameters that were used in the last
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evaluation section (16k stale data lifetime parameter, 128 entry STAB per proces-

sor, 32 entry PPB timer table per processor, 32 entry CastoutPPB per directory

controller, 256 entry virtual PPB namespace). The storage requirements are

charted for systems with different processor counts, which affects the size of each

PPB timer table entry. Because storage overhead is dominated by the size of the

pointers stored with each cache block (13 bits per block), which is independent of

the number of processors in the system, increasing processor counts have little

effect on the storage requirements of the protocol until very large processor counts

are used. A more significant effect of increasing processor count is the increased

bandwidth consumed by probe sets attached to coherence messages. In an n pro-

cessor system with a 16k stale data lifetime parameter, this becomes 14n bits per

response message. We believe that in large systems, however, a sparse probe set

representation would be more space efficient. We leave the exploration of such a

sparse representation to future work.

FIGURE 7-16. ECDC Storage overhead with different processor counts (probe
set entries). 
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1577.5 Summary

In this chapter, we have evaluated the performance of edge-chasing

delayed consistency relative to a conventional directory-based coherence protocol.

There exists some opportunity for improving performance using this protocol, but

not as much opportunity as was expected for the AIX applications evaluated. For

these applications, STAB entries are deallocated too quickly to be very useful for

most applications. Many of these deallocations occur due to probes attached to the

responses to tolerable misses that were initiated due to the critical write/polling

heuristics, which may be improved through better heuristics. However, many were

also deallocated due to incoming probes attached to the responses of unavoidable

misses. Those applications in which performance significantly improve, TPC-H

and SPECweb99, receive most of their performance improvement through a reduc-

tion in false-sharing misses. These reductions result in average improved perfor-

mance of 8% and 4%, for a realistic ECDC-based machine configuration running

TPC-H and SPECweb99, respectively.

Although the ECDC protocol demonstrated outstanding performance gains

for a lock-free linked-list manipulation microbenchmark, this programming para-

digm has not yet been adopted in these AIX applications. We expect that this pro-

tocol should provide more compelling performance results in other systems in

which the lock-free programming paradigm is more pervasively used, although it

is too early to say for sure.
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159Chapter 8

Conclusions

Thanks to ever-increasing on-chip transistor capacities, shared-memory

multiprocessors are becoming increasingly pervasive. Although smaller transistors

may allow multiple processors to fit on a single chip, as transistor sizes decrease

and clock rates increase, the relative latency of communicating with off-chip pro-

cessors, or distant on-chip processors, also increases. These scaling trends also cre-

ate difficulties implementing the microarchitectural structures commonly used to

enforce multiprocessor consistency models. In this thesis, we have presented two

solutions to these problems that take advantage of the knowledge of causal rela-

tionships among processors (or lack thereof). In the first part of the thesis, we

describe and evaluate a novel memory ordering scheme called value-based replay

that infers the presence of potential causal dependences in order to filter the perfor-

mance-degrading effects of load replays. In the second part of the thesis, we pro-

pose and evaluate a novel delayed consistency protocol called edge-chasing

delayed consistency, that allows a processor to continue to read from an invali-

dated cache block until the processor becomes causally dependent upon the new

copy of the block, by explicitly detecting potential violations of causality using the

constraint graph representation.

8.1 Value-based Replay

As transistor budgets increase, there is a great temptation to approach each



160new problem by augmenting an existing design with special purpose predictors,

buffers, and other hardware widgets. Such hardware may solve the problem, but

also increases the size and complexity of a design, creating an uphill battle for

architects, designers, and verifiers trying to produce a competitive product. We

have presented a simple alternative to conventional associative load queues and

shown that value-based replay causes a negligible impact on performance com-

pared to a machine whose load queue size is unconstrained. When comparing the

value-based replay implementation to processors whose load queues are con-

strained by clock cycle time, there is potential for significant performance benefits,

up to 34% and averaging 8% relative to a 16-entry load queue, as shown in Section

5.3.

The value-based memory ordering mechanism relies on several heuristics

to achieve high performance, which reduce the number of replays significantly.

We believe these heuristics are more broadly applicable to other load/store queue

designs and memory order checking mechanisms, and plan to explore their use in

other settings. Although the evaluation presented in Chapter 5 focuses on value-

based replay as a complexity-effective means for enforcing memory ordering, we

believe that there is also potential for energy savings. In future work, we plan to

perform a more thorough evaluation of value-based replay as a low-power alterna-

tive to conventional load queue designs.

The load queue is merely one part of a processor’s microarchitecture that

suffers from size constraints in conventional designs, there are many other parts of

the machine that will limit the scaling of an out-of-order microprocessor’s instruc-
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161tion window to arbitrarily large sizes. This is currently a fertile area of research,

and we believe that there is much potential future work for simplifying the con-

struction of large-window processors.

8.2 Edge-Chasing Delayed Consistency

The overheads of inter-processor communication in shared-memory multi-

processors is currently a source of much performance degradation, and will con-

tinue to be without continued research on its improvement. We have presented a

new algorithm for detecting causal relationships in shared memory multiproces-

sors, which we have used to implement a delayed consistency mechanism that

detects avoidable coherence misses. We have shown that edge-chasing delayed

consistency can dramatically improve performance for lock-free list manipulation

algorithms that operate on highly-contended data structures. However, the Pow-

erPC/AIX applications studied in this thesis do not exhibit this data-race tolerant

property, and consequently most of the performance gains offered by the edge-

chasing delayed consistency protocol stem from its ability to tolerate false-sharing

misses. We find that the ECDC protocol offers performance improvement for two

of the applications studied, improving the performance of the TPC-H decision sup-

port benchmark by 8% and the performance of the SPECweb99 web serving

benchmark by 4%.

Because edge-chasing delayed consistency can eliminate a significant

number of false sharing misses, it would also be interesting to measure its perfor-

mance as cache block size is increased beyond 128 bytes. Unfortunately, the soft-



162ware running in our full system simulator livelocks when increasing cache block

size beyond 128 bytes, due to an increased probability of store conditional failures

caused by the increased lock granule size. Regrettably, we must leave this explora-

tion to future work.

Although the edge-chasing delayed consistency protocol presented here

offers marginal performance benefits for many applications, its ability to improve

the performance of two applications illustrates that it has potential. This thesis con-

cludes with two open questions regarding the ECDC protocol, the solutions of

which may improve its performance across parallel applications. First, can probes

be propagated more intelligently than the brute force ProbePropagation messages

sent at memory barrier instructions? The ProbePropagation method tends to force

another processor to become causally dependent upon a probe simply because the

sending processor has another processor’s stale block, even if that stale block will

never be used. If there were a better way to detect those stale cache blocks that will

not be useful in the future, many of the STAB entry deallocations could be pre-

vented. Second, a significant percentage of STAB entries are deallocated due to

incoming probes attached to predicted critical miss response messages. Although

many of these deallocations are needed, because the incoming miss was correctly

predicted to contain a released lock value, if our critical write heuristics are incor-

rect, then the miss was not necessary and the STAB entry deallocations could be

avoided. The development of more accurate critical write detection heuristics may

alleviate this problem.
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