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A Callgraph-Based Search Strategy
for Automated Performance Diagnosis1

Abstract. We introduce a new technique for automated performance diag-
nosis, using the program’s callgraph. We discuss our implementation of this
diagnosis technique in the Paradyn Performance Consultant. Our implemen-
tation includes the new search strategy and new dynamic instrumentation to
resolve pointer-based dynamic call sites at run-time. We compare the effec-
tiveness of our new technique to the previous version of the Performance
Consultant for several sequential and parallel applications. Our results show
that the new search method performs its search while inserting dramatically
less instrumentation into the application, resulting in reduced application
perturbation and consequently a higher degree of diagnosis accuracy.

1 Introduction

Automating any part of the performance tuning cycle is a valuable activity, especi
where intrinsically complex and non-deterministic distributed programs are concer
Our previous research has developed techniques to automate the location of per
ance bottlenecks [4,9], and other tools can even make suggestions as to how to f
program to improve its performance [3,8,10]. The Performance Consultant (PC) in
Paradyn Parallel Performance Tools has been used for several years to help aut
the location of bottlenecks. The basic interface is a one-button approach to perform
instrumentation and diagnosis. Novice programmers immediately get useful results
help them identify performance-critical activities in their program. Watching the P
formance Consultant in operation also acts as a simple tutorial in strategies for loc
bottlenecks. Expert programmers use the Performance Consultant as a head star
agnosis. While it may not find some of the more obscure problems, it saves the
grammer time in locating the many common ones.

An important attribute of the Performance Consultant is that it uses dynamic ins
mentation [5,11] to only instrument the part of the program in which it is currently
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terested. When instrumentation is no longer needed, it is removed. Insertion and re
al of instrumentation occur while the program is running unmodified executables.
strumentation can include simple counts (such as function calls or bytes of I/O
communication), process and elapsed times, and blocking times (I/O and synchro
tion).

While the Performance Consultant has shown itself to be useful in practice, t
are several limitations that can reduce its effectiveness when operating on comple
plication programs (with many functions and modules). These limitations mani
themselves when the PC is trying to isolate a bottleneck to a particular function i
application’s code. The original PC organized code into a static hierarchy of mod
and functions within modules. An automated search based on such a tree is a poo
to direct a search for bottlenecks, for several reasons: (1) when there is a large nu
of modules, it is difficult to know which ones to examine first, (2) instrumenting mo
ules is expensive, and (3) once a bottleneck is isolated to a module, if there is a
number of functions within a module, it is difficult to know which ones to examine fir

In this paper, we describe how to avoid these limitations by basing the search o
application’s callgraph. The contributions of this paper include an automated pe
mance diagnostic strategy based on the application’s callgraph, new instrument
techniques to discover callgraph edges in the presence of function pointers, and a
onstration of the effectiveness of these new techniques. Along with the callgraph-b
search, we are able to use a less expensive form of timing primitive, reducing run-
overhead.

The original PC was designed to automate the steps that an experienced pro
mer would naturally perform when trying to locate performance-critical parts of an
plication program. Our callgraph enhancements to the PC further this theme. The
eral idea is that isolating a problem to a part of the code starts with consideration o
main program function and if it is found to be critical, consideration passes to eac
the functions it calls directly; for any of those found critical, investigation continu
with the functions that they in turn call. Along with the consideration of called fun
tions, the caller must also be further assessed to determine whether or not it is a b
neck in isolation. This repeats down each exigent branch of the callgraph until all o
critical functions are found.

The callgraph-directed Performance Consultant is now the default for the Para
Parallel Performance tools (as of release 3.0). Our experience with this new PC has
uniformly positive; it is both faster and generates significantly less instrumenta
overhead. As a result, applications that previously were not suitable for automate
agnosis can now be effectively diagnosed.

The next section describes Paradyn’s Performance Consultant in its original f
and later Section 4 describes the new search strategy based on the application prog
callgraph. The callgraph-based search needs to be able to instrument and resolve
tion pointers, and this mechanism is presented in Section 3. We have compared t
fectiveness of the new callgraph-based PC to the original version on several seria
parallel applications, and the experiments and results are described in Section 5.
Appears in Euro-Par 2000, Munich, Germany, August 2000
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2 Some Paradyn Basics

Paradyn [9] is an application profiler that usesdynamic instrumentation[5,6,11] to in-
sert and delete measurement instrumentation as a program runs. Run-time selec
instrumentation results in a relatively small amount of data compared to static (com
or link time) selection. In this section, we review some basics of Paradyn instrume
tion, then discuss the Performance Consultant and its original limitations when tr
to isolate a bottleneck to particular parts of a program’s code.

2.1 Exclusive vs. Inclusive Timing Metrics
Paradyn supports two types of timing metrics,exclusiveandinclusive. Exclusive met-
rics measure the performance of functions in isolation. For example, exclusive C
time for functionfoo is only the time spent in that function itself, excluding its callee
Inclusive metrics measure the behavior of a function while it is active on the stack.
example, inclusive time for a functionfoo is the time spent infoo , including its
callees. Timing metrics can measure process or elapsed (wall) time, and can be
on CPU time or I/O, synchronization, or memory blocking time.

Paradyn inserts instrumentation into the application to make these measurem
For exclusive time (see Figure 1a), instrumentation is inserted to start the timer a
function’s entry and stop it at the exit(s). To include only the time spent in this functi
we also stop the timer before each function call site and restart it after returning f
the call. Instrumentation for inclusive time is simpler; we only need to start and stop
timer at function entry and exit (see Figure 1b). This simpler instrumentation also g
erates less run-time overhead. A start/stop pair of timer calls takes 56.5µs on a SGI Or-
igin. The savings become more significant in functions that contain many call site

2.2 The Performance Consultant
Paradyn’s Performance Consultant (PC) [4,7] dynamically instruments a program
timer start and stop primitives to automate bottleneck detection during program ex

(a) Exclusive Time (b) Inclusive Time

Figure 1 Timing instrumentation for function foo .

foo()
{

stopTimer(t)

startTimer(t)

}

bar();

car();
stopTimer(t)

stopTimer(t)

startTimer(t)

startTimer(t)

foo()
{startTimer(t)

}

bar();

car();

stopTimer(t)
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tion. The PC starts searching for bottlenecks by issuing instrumentation requests to
lect data for a set of pre-defined performancehypothesesfor the whole program. Each
hypothesis is based on a continuously measured value computed by one or more
dyn metrics, and a fixed threshold. For example, the PC starts its search by meas
total time spent in computation, synchronization, and I/O waiting, and compares t
values to predefined thresholds. Instances where the measured value for the hypo
exceeds the threshold are defined asbottlenecks. The full collection of hypotheses is or-
ganized as a tree, where hypotheses lower in the tree identify more specific prob
than those higher up.

We represent a program as a collection of discrete program resources. Reso
include the program code (e.g., modules and functions), machine nodes, applic
processes and threads, synchronization objects, data structures, and data files
group of resources provides a distinct view of the application. We organize the prog
resources into trees calledresource hierarchies, the root node of each hierarchy labele
with the hierarchy’s name. As we move down from the root node, each level of the
erarchy represents a finer-grained description of the program. Aresource nameis
formed by concatenating the labels along the unique path within the resource hiera
from the root to the node representing the resource. For example, the resource nam
represents functionverifyA  (shaded) in Figure 2 is < /Code/testutil.C/verifyA>.

For a particular performance measurement, we may wish to isolate the mea
ment to specific parts of a program. For example, we may be interested in measur
O blocking time as the total for one entire execution, or as the total for a single funct
A focusconstrains our view of the program to a selected part. Selecting the root n
of a resource hierarchy represents the unconstrained view, the whole program. S
ing any other node narrows the view to include only those leaf nodes that are imme
descendents of the selected node. For example, the shaded nodes in Figure 2 rep
the constraint: code functionverifyA running on any CPU in the machine, which is
labeled with the focus: </Code/testutil.C/verifyA, /Machine >.

Each node in a PC search represents instrumentation and data collection
(hypothesis : focus) pair. If a node tests true, meaning a bottleneck has been found,

Figure 2 Three Sample Resource Hierarchies: Code, Machine, and SyncObject.

vect::addel

verifyB

verifyA

printstatus

mainmain.C

testutil.C

vect.C
vect::findel

vect::print

CPU_1

CPU_2

CPU_3

CPU_4

Code Machine SyncObject
Semaphore

SpinLock

Barrier

Message
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Performance Consultant tries to determine more specific information about the bo
neck. It considers two types of search expansion: a more specific hypothesis and a
specific focus. A child focus is defined as any focus obtained by moving down alon
single edge in one of the resource hierarchies. Determining the children of a focu
this method is referred to asrefinement. If a pair (h : f) tests false, testing stops and th
node is not refined. The PC refines all true nodes to as specific a focus as possible
only these foci are used as roots for refinement to more specific hypothesis cons
tions (to avoid undesirable exponential search expansion).

Each (hypothesis : focus) pair is represented as a node of a directed acyclic gra
called the Search History Graph (SHG). The root node of the SHG represents the
(TopLevelHypothesis : WholeProgram), and its child nodes represent the refinemen
chosen as described above. An example Paradyn SHG display is shown in Figur

2.3 Original Paradyn: Searching the Code Hierarchy
The search strategy originally used by the Performance Consultant was based o
module/function structure of the application. When the PC wanted to refine a bottlen
to a particular part of the application code, it first tried to isolate the bottleneck to p
ticular modules (.o/.so/.obj/.dll file). If the metric value for the module is above
the threshold, then the PC tries to isolate the bottleneck to particular functions w
the module.

This strategy has several drawbacks for large programs.

1. Programs often have many modules; and modules often have hundreds of func
When the PC starts to instrument modules, it cannot instrument all of them e
ciently at the same time and has no information on how to choose which one
instrument first; the order of instrumentation essentially becomes random. As
sult, many functions are needlessly instrumented. Many of the functions in e
module may never be called, and therefore do not need to be instrumented. By
the callgraph, the new PC operates well for any size of program.

2. To isolate a bottleneck to a particular module or function, the PC uses exclu
metrics. As mentioned in Section 2.1, these metrics require extra instrumenta
code at each call site in the instrumented functions. The new PC is able to us
cheaper inclusive metrics.

3. The original PC search strategy was based on the notion that coarse-grain in
mentation was less expensive than fine-grained instrumentation. For code hiera
searches, this means that instrumentation to determine the total time in a mo
should be cheaper than determining the time in each individual function. Unfo
nately, the cost of instrumenting a module is the same as instrumenting all the f
tions in that module. The only difference is that we have one timer for the en
module instead of one for each function.

This effect could be reduced for module instrumentation by not stopping and s
ing timers at call sites that call functions inside the same module. While this te
nique is possible, it provides such a small benefit, it was not worth the complex
Use of the callgraph in the new PC avoids using the code hierarchy.
Appears in Euro-Par 2000, Munich, Germany, August 2000
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Figure 3 The Original Performance Consultant with a Bottleneck Search in Progress.
The three items immediately below TopLevelHypothesis have been added as a result
of refining the hypothesis. ExcessiveSyncWaitingTime  and ExcessiveIOBlocking-

Time have tested false, as indicated by node color (pink or light grey), and CPUbound
(blue or dark grey) has tested true and been expanded by refinement. Code hierarchy

module nodes bubba.c , channel.c , anneal.c , outchan.c , and random.c  all tested
false, whereas modules graph.c  and partition.c  and Machine nodes grilled  and brie

tested true and were refined. Only function p_makeMG in module partition.c was sub-
sequently found to have surpassed the bottleneck hypothesis threshold, and the final

stage of the search is considering whether this function is exigent on each Machine node
individually. (Already evaluated nodes with names rendered in black no longer contain
active instrumentation, while instrumented white-text nodes continue to be evaluated.)
Appears in Euro-Par 2000, Munich, Germany, August 2000
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3 Dynamic Function Call Instrumentation

Our search strategy is dependent on the completeness of the callgraph used to dir
search. If all caller-callee relationships are not included in this graph, then our se
strategy will suffer from blind spots where this information is missing. Paradyn’s st
dard start-up operation includes parsing the executable file in memory (dynamic
linked libraries are parsed as they are loaded). Parsing the executable requires ide
ing the entry and exits of each function (which is trickier than it would appear [6]) a
the location of each function call site. We classify call sites asstaticor dynamic. Static
sites are those whose destination we can determine from inspection of the code. Dy
ic call sites are those whose destination is calculated at run-time. While most call
are static, there is still a non-trivial number of dynamic sites. Common sources of
namic call sites are function pointers and C++ virtual functions.

Our new instrumentation resolves the address of the callee at dynamic call site
inserting instrumentation at these sites. This instrumentation computes the appro
callee address from the register contents and the offsets specified in the call instru
New call destination addresses are reported to the Paradyn front-end, which
updates its callgraph and notifies the PC. When the PC learns of a new callee, it i
porates the callee in its search. We first discuss the instrumentation of the call site
discuss how the information gathered from the call site is used.

3.1 Call Site Instrumentation Code
The Paradyn daemon includes a code generator to dynamically generate machin
cific instrumentation code. As illustrated in Figure 4, instrumentation code is inse

Figure 4 Simplified Control Flow from Application to Instrumentation Code.
A dynamic call instruction in function foo is replaced with branch instructions to the base
trampoline. The base trampoline saves the application’s registers and branches to a se-
ries of mini trampolines that each contain different instrumentation primitives. The final

mini trampoline returns to the base trampoline, which restores the application’s registers,
emulates the relocated dynamic call instruction, and returns control to the application.

foo:

Relocated
Instruction(s)

Trampoline
Base

Restore Regs

Trampoline(s)
Mini

StopTimer(t)

Program
Application

Save Regs

CallFlag++

Calculate Callee
Address

(*fp)(a,b,c);
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into the application by replacing an instruction with a branch to a code snippet ca
thebase-trampoline. The base-trampoline saves and restores the application’s state
fore and after executing instrumentation code. The instrumentation code for a spe
primitive (e.g. a timing primitive) is contained in amini-trampoline.

Dynamic call instructions are characterized by the destination address residing
register or (sometimes on the x86) a memory location. The dynamic call resolution
strumentation code duplicates the address calculation of these call instructions.
code usually reads the contents of a register. This reading is slightly complicated,
(because we are instrumenting a call instruction) there are two levels of registers s
the caller-saved registers as well as those saved by the base trampoline. The or
contents of the register have been stored on the stack and may have been overw
To access these saved registers, we added a new code generator primitive (abstra
tax tree operand type). We have currently implemented dynamic call site determina
for the MIPS, SPARC, and x86, with Power2 and Alpha forthcoming.

A few examples of the address calculations are shown in Table 1. We show an
ample of the type of instruction that would be used at a dynamic call site, and mini-tr
poline code that would retrieve the saved register or memory value and calculat
callee’s address.

3.2 Control Flow for Dynamic Call Site Instrumentation
To instrument a dynamic call site, the application is paused, instrumentation inse
and the application resumed. The call site instrumentation is inserted on demand
only when the caller function becomes relevant to the bottleneck search. For exam
if function foo contains a dynamic call site, this site is not instrumented until the
identifiesfoo as a bottleneck, at which point we need to know all of the callees offoo .
By instrumenting these sites on demand, we minimize the amount of instrumentatio
the application. The flow of control for these steps is shown as steps 1 and 2 in Figu

The call site instrumentation detects the first time that a callee is called from
site. When a callee is first called from a site, the instrumentation code notifies the P
dyn daemon (step A in Figure 5), which notifies the PC in the Paradyn front-end (

Table 1: Dynamic callee address calculation.

Instruction
Set

Call Instruction
Mini-Trampoline

Address Calculation
Explanation

MIPS jalr $t9 ld $t0, 48($sp) Load$t9  from stack.

x86 call [%edi] mov %eax,-160(%ebp)
mov %ecx,[%eax]

Load%edi  from stack.
Load function address
from memory location
pointed to by%eax.

SPARC jmpl %l0,%o7 ld [%fp+20],%l0
add %l0,%i7,%l3

Load%l0  from stack.
%o7 becomes%i7  in
new register window.
Appears in Euro-Par 2000, Munich, Germany, August 2000
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B). The new caller-callee edge is added to the callgraph and, if desired, instrument
can be inserted in the newly discovered callee (steps C and D).

We do not want to incur this communication and instrumentation cost each t
that a dynamic call site is executed. Fortunately, most call sites only call a few diffe
functions, so we keep a small table of callee addresses for each dynamic call site.
time that a dynamic call site is executed and a callee determined, we check this ta
see if it is a previously known caller-callee pair. If the pair has been previously seen
bypass the steps A-D.

Once the Paradyn daemon has notified the Performance Consultant of a new
namic caller-callee relationship, the PC can take advantage of this information. I
dynamic caller has been previously determined a bottleneck, then the callee must
strumented to determine if it is also a bottleneck. A possible optimization to this
quence is for the Paradyn daemon to instrument the dynamic callee as soon as it
covered, thus reducing the added delay of conveying this information to the Para
front-end and waiting for the front-end to issue an instrumentation request for the ca
However, this optimization would require knowledge by the Paradyn daemon of
type of instrumentation timing primitive desired for this callee, and would also limit t
generality of our technique for dynamic callee determination.

4 Callgraph-based Searching

We have modified the Performance Consultant’s code hierarchy search strategy
rect its search using the application’s callgraph. The remainder of the search hierar
(such as Machine and SyncObject) are still searched using the structure of their h
chy; the new technique is only used when isolating the search to a part of the Cod
erarchy.

When the PC starts refining a potential bottleneck to a specific part of the cod
starts at the top of the program graph, at the program entry function for each dis

Figure 5 Control Flow between Performance Consultant and Application.
(1) PC issues dynamic call-site instrumentation request for function foo . (2) Daemon in-
struments dynamic call sites in foo . (A) Application executes call instruction and when
a new callee is found, runtime library notifies daemon. (B) Daemon notifies PC of new
callee bar  for function foo . (C) PC requests inclusive timing metric for function bar .

(D) Daemon inserts timing instrumentation for bar .

Paradyn Front-End Paradyn Daemon Application

Performance
Consultant

main()
fp=bar;

foo()

(*fp)();

bar()
{

1. 2.

A.B.

C.
D.

Code

}

{

}

. . .Generator/
Splicer

Notifier
Runtime
Library
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executable involved in the computation. These functions are instrumented to colle
inclusive metric. For example, if the current candidate bottleneck wereCPUbound, the
function would be instrumented with the CPU time inclusive metric. The timer asso
ated with this metric runs whenever the program is running and this function was on
stack (presumably, the entire time that the application is running in this case).

If the metric value for the main program function is above the threshold, the
uses the callgraph to identify all the functions called from it, and each is similarly
strumented with the same inclusive metric. In the callgraph-based search, if a funct
sustained metric value is found to be below the threshold, we stop the search fo
branch of the callgraph (i.e., we do not expand the search to include the function’s
dren). If the function’s sustained metric value is above the threshold, the search co
ues by instrumenting the functions that it calls. The search in the callgraph continu
this manner until all possible branches have been exhausted either because the ac
lated metric value was too small or we reached the leaves of the callgraph.

Activating instrumentation for functions currently executing, and therefore fou
on the callstack, requires careful handling to ensure that the program and instrum
tion (e.g., active timers and flags) remain in a consistent state. Special retroactiv
strumentation needs to be immediately executed to set the instrumentation conte
any partially-executed and now instrumented function, prior to continuing program
ecution. Timers are started immediately for already executing functions, and co
quently produce measurements earlier than waiting for the function to exit (and b
moved from the callstack) before instrumenting it normally.

The callgraph forms a natural organizational structure for three reasons. Fir
search strategy based on the callgraph better represents the process that an expe
programmer might use to find bottlenecks in a program. The callgraph describes
overall control flow of the program, following a path that is intuitive to the programm
We do not instrument a function unless it is a reasonable candidate to be a bottle
its calling functions are currently be considered a bottleneck. Second, using
callgraph scales well to large programs. At each step of the search, we are addre
individual functions (and function sizes are typically not proportional to the over
code size). The total number of modules and functions do not effect the strategy. T
the callgraph-based search naturally uses inclusive time metrics, which are (often
nificantly) less costly in a dynamic instrumentation system than their exclusive t
counterparts.

An example of the callgraph-based Paradyn SHG display at the end of a com
hensive bottleneck search is shown in Figure 6.

While there are many advantages to using this callgraph-based search meth
has a few disadvantages. One drawback is that this search method has the poten
miss a bottleneck when a single resource-intensive function is called by numerous
ent functions, yet none of its parents meet the threshold to be considered a bottle
For example, an application may spend 80% of its time executing a single function
if that function has many parents, none of which are above the bottleneck threshold
search strategy will fail to find the bottleneck function. To handle this situation, it
worth considering that the exigent functions are more than likely to be found on
Appears in Euro-Par 2000, Munich, Germany, August 2000
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stack whenever Paradyn is activating or modifying instrumentation (or if it were to
riodically ‘sample’ the state of the callstack). A record kept of these ‘‘callstack sa
ples’’ therefore forms an appropriate basis of candidate functions for explicit consi
ation, if not previously encountered, during or on completion of the callgraph-ba
search.

Figure 6 The Callgraph-based Performance Consultant after Search Completion.
This snapshot shows the Performance Consultant upon completion of a search with the
OM3 application when run on 6 Pentium II Xeon nodes of a Linux cluster. For clarity, all
hypothesis nodes which tested false are hidden, leaving only paths which led to the dis-
covery of a bottleneck. This view of the search graph illustrates the path that the Perform-
ance Consultant followed through the callgraph to locate the bottleneck functions. Six

functions, all called from the time_step  routine, have been found to be above the spec-
ified threshold to be considered CPU bottlenecks, both in aggregation and on each of the
6 cluster nodes. The wrap_q , wrap_qz  and wrap_q3  functions have also been deter-
mined to be synchronization bottlenecks when using MPI communicator 91 and mes-

sage tag 0.
Appears in Euro-Par 2000, Munich, Germany, August 2000
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5 Experimental Results

We performed several experiments to evaluate the effectiveness of our new s
method relative to the original version of the Performance Consultant. We use thre
teria for our evaluation: the accuracy, speed, and efficiency with which the PC perfo
its search. The accuracy of the search is determined by comparing those bottlenec
ported by the Performance Consultant to the set of bottlenecks considered true ap
tion bottlenecks. The speed of a search is measured by the amount of time require
each PC to perform its search. The efficiency of a search is measured by the amo
instrumentation used to conduct a bottleneck search; we favor a search strategy th
serts less instrumentation into the application. We describe our experimental set-u
then present results from our experiments.

5.1 Experimental Setup
We used three sequential applications, a multithreaded application and two paralle
plication for these experiments. The sequential applications include the SPEC95 be
marksfpppp (a Fortran application that performs multi-electron derivatives) andgo (a
C program that plays the game of Go against itself), as well asDraco (a Fortran hydro-
dynamic simulation of inertial confinement fusion, written by the laser fusion group
the University of Rochester and University of Wisconsin). The sequential applicati
were run on a dual-processor SGI Origin under IRIX 6.5. Thematrix application is
based on the Solaris threads package and was run on an UltraSPARC Solaris 2.
processor. The parallel applicationssTwod solves the 2-D Poisson problem using MP
on four nodes of an IBM SP/2 (this is the same application used in a previous
study[7]). The parallel applicationOM3 is a free-surface,z-coordinate general circula-
tion ocean model, written using MPI by members of the Space Science and Engine
Center at the University of Wisconsin.OM3 was run on eight nodes of a 24-node SG
Origin under IRIX 6.5. Some characteristics of these applications that affect the Pe
mance Consultant search space are detailed in Table 2. (All system libraries are e
itly excluded from this accounting and the subsequent searches.)

Table 2: Application search space characteristics.

Application
(Language)

Lines of
code

Number of
modules

Number of
functions

Number of
dynamic call sites

Draco (F90) 61,788 232 256 5

go (C) 26,139 18 376 1

fpppp (F77) 2,784 39 39 0

matrix (C/Sthreads) 194 1 5 0

ssTwod (F77/MPI) 767 7 9 0

OM3 (C/MPI) 2,673 1 28 3
Appears in Euro-Par 2000, Munich, Germany, August 2000



13

C,
start

saved
and

iza-
ap-

d
t to

ach
ach

s, the
due
ble 3
uired
nt im-

ittle
com-

com-
ickly

ays

t. The
r for
We ran each application program under two conditions: first, with the original P
and then with the new callgraph-based PC. In each case, we timed the run from the
of the search until the PC had no more alternatives to evaluate. For each run, we
the complete history of the performance search (using the Paradyn export facility)
recorded the time at which the PC found each bottleneck.

A 5% threshold was used for CPU bottlenecks and 12% threshold for synchron
tion waiting time bottlenecks. For the sequential applications, we verified the set of
plication bottlenecks using theprof profiling tool. For the parallel applications, we use
Paradyn manual profiling along with both versions of the Performance Consultan
determine their bottlenecks.

5.2 Results
We ran both the original and modified versions of the Performance Consultant for e
of the applications, measuring the time required to locate all of the bottlenecks. E
experiment is a single execution and search. ForOM3, the SGI Origin was not dedicat-
ed to our use, but also not heavily loaded during the experiments. In some case
original version of the PC was unable to locate all of an application’s bottlenecks
to the perturbation caused by the larger amount of instrumentation it requires. Ta
shows the number of bottlenecks found by each version of the PC, and the time req
to complete each search. As we can see, the size of an application has a significa
pact on the performance of the original PC. For the smallfpppp benchmark andmatrix
application, the original version of the PC locates the application’s bottlenecks a l
faster than the callgraph-based PC. This is because they have few functions and no
plex bottlenecks (being completely CPUbound programs, there are few types and
binations of bottlenecks). As a result, the original Performance Consultant can qu
instrument the entire application. The new Performance Consultant, however, alw
has to traverse some portion of the application’s callgraph.

For the larger applications, the new search strategy’s advantages are apparen
callgraph-based Performance Consultant performs its search significantly faste

Table 3: Accuracy, overhead and speed of each search method.

Bottlenecks found in
complete search

Instrumentation
mini-tramps used

Required search time
(seconds)

Application Original Callgraph Original Callgraph Original Callgraph

Draco 3 5 14,317 228 1,006 322

go 2 4 12,570 284 755 278

fpppp 3 3 474 96 141 186

matrix 4 5 439 43 200 226

ssTwod 9 9 43,230 11,496 461 326

OM3 13 16 184,382 60,670 2,515 957
Appears in Euro-Par 2000, Munich, Germany, August 2000
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each program other thanfpppp andmatrix. ForDraco, go, andOM3, the original Per-
formance Consultant’s search not only requires more time, but due to the additiona
turbation that it causes, it is unable to resolve some of the bottlenecks. It identifies
three ofDraco’s five bottleneck functions, two ofgo’s four bottlenecks, and 13 of
OM3’s 16.

We also measured the efficiency with which each version of the Performance C
sultant performs its search. An efficient performance tool will perform its search wh
inserting a minimum amount of instrumentation into the application. Table 3 a
shows the number of mini-trampolines used by the two search methods, each of w
corresponds to the insertion of a single instrumentation primitive. The new versio
the Performance Consultant can be seen to provide a dramatic improvement in ter
efficiency. The number of mini-trampolines used by the previous version of the P
more than an order of magnitude larger than used by the new PC for bothgo andDraco,
and also significantly larger for the other applications studied. This improvement in
ficiency results in less perturbation of the application and therefore a greater degr
accuracy in performance diagnosis.

Although the callgraph-based performance consultant identifies a greater num
of bottlenecks than the original version of the of the performance consultant, it suf
one drawback that stems from the use of inclusive metrics. Inclusive timing met
collect data specific to one function and all of its callees. Because the performance
collected is not restricted to a single function, it is difficult to evaluate a particular fu
tion in isolation and determine its exigency. For example, only 13% of those functi
determined bottlenecks by the callgraph-based performance consultant are truly b
necks. The remainder are functions which have been classified bottlenecks en ro
the discovery of true application bottlenecks. One solution to this inclusive bottlen
ambiguity is to re-evaluate all inclusive bottlenecks using exclusive metrics. Wor
currently underway within the Paradyn group to implement this inclusive bottlen
verification.

6 Conclusions

We found the new callgraph-based bottleneck search in Paradyn’s Performance
sultant, combined with dynamic call site instrumentation, to be much more efficien
identifying bottlenecks than its predecessor. It works faster and with less instrume
tion, resulting in lower perturbation of the application and consequently greater acc
cy in performance diagnosis.

Along with its advantages, the callgraph-based search has some disadvantage
remain to be addressed. Foremost among them are blind spots, where exigent fun
are masked in the callgraph by their multiple parent functions, none of which th
selves meet the threshold criteria to be found a bottleneck. This circumstance ap
to be sufficiently rare that we have not encountered any instances yet in practice
also necessary to consider when and how it is most appropriate for function exig
consideration to progress from using the weak inclusive criteria to the strong exclu
criteria that determine true bottlenecks. The exclusive ‘refinement’ of a function fou
exigent using inclusive criteria can be considered as a follow-on equivalent to ref
Appears in Euro-Par 2000, Munich, Germany, August 2000
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ment to its children, or as a reconsideration of its own exigency using the stronge
teria. Additionally, it remains to be determined how the implicit equivalence of t
main program routine and ‘Code’ (the root of the Code hierarchy) as resource spec
can be exploited for the most efficient searches and insightful presentation.
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