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Abstract database workloads [4, 14, 27], web workloads [7, 28],

This paper explores the interaction of value prediction and desktop applications [15].

with thread-level parallelism techniques, including mul- This paper explores the correctness issues that arise
tithreading and multiprocessing, where correctness is from the interaction between these two techniques. To
defined by a memory consistency model. Value predic- date, most value prediction research has assumed a single-
tion subtly interacts with the memory consistency model threaded uniprocessor system and has ignored multi-
by allowing data dependent instructions to be reordered. threading and input/output (1/O) issues. While the correct
We find that predicting a value and later verifying that  implementation of value prediction in the context of a sin-
the value eventually calculated is the same as the value gle-threaded uniprocessor system without coherent 1/O is
predicted is not always sufficient. well-understood, we will show that naive implementations
of value prediction inTLP systems-systems with multi-
threading, multiprocessing, or coherent I/O—can produce
incorrect executions.

We present an example of a multithreaded pointer
manipulation that can generate a surprising and errone-
ous result when value prediction is implemented without
considering memory consistency correctness. We show What do we mean by correctness? In a system with a
that this problem can occur with real software, and we  single-threaded uniprocessor without coherent I/O, cor-
discuss how to apply existing techniques to eliminate the rectness is simply defined by program order (i.e., unipro-
problem in both sequentially consistent systems and sys- cessor correctness). In this scenario, value prediction is

tems that obey relaxed memory consistency models. correct if and only ifsimple verificatiorsucceeds, i.e., the
. value predicted equals the actual value eventually
1 Introduction obtained. However, when multiple threads, processors, or

One prominent trend in micro-architectural research devices concurrently access a logically shared memory,
is improving system performance by adding prediction the definition of correctness becomes more complicated.

and speculation to a processor’s core. Value prediction In TLP systems, correctness is defined byrnemory

[26] is a type of prediction that has recently emerged from consistency moddlLl]. The memory consistency model,
the research community, and numerous recent papers havgnforced jointly by the processor and the memory system,
demonstrated its performance potential. With value pre-js the interface between the hardware and (low-level) soft-
diction, a mechanism predicts a complete value (€.g., @ 64+yare that defines the legal orderings of loads and stores to
bit integer), in contrast to a one-bit branch outcome result- §ifferent memory locations. For example, the memory
ing from branch prediction. In principle, value prediction consistency model of the system answers questions such
can enable program execution in less time than the lowergg: “If 3 thread writes to two different memory locations,
bound determined by the dataflow limit. in what order are other threads or devices in the system

Another trend in micro-architectural research exploits allowed to observe these writes?” and “Will all of the
thread-level parallelism (TLP) in the form of simultaneous threads in the system observe these writes in the same
multithreading (SMT) [13], coarse-grained multithreading order?” Memory consistency models are defined as part of
(CMT) [2, 6], single-chip multiprocessing (CMP) [5, 11], the instruction set architecture (ISA), and the hardware
or traditional multiprocessing (MP) [10]. From the soft- must obey the consistency model, just as the hardware
ware’s perspective, hardware multithreading and multipro- must correctly implement all instructions as specified by
cessing are the same, and we treat them similarly in thisthe ISA. Thus, TLP system implementations that use value
paper. These techniques have been shown to improve perPfEdiCtiOﬂ must ensure that value prediction does not
formance substantially for important applications such as cause consistency model violations.



How can value prediction violate the consistency sistency, and we show that these existing mechanisms are
model? The key insight is thatalue prediction allows a  still sufficient when value prediction is added. In Section 3,
processor to relax the ordering between data dependentwe investigate relaxed consistency models and demonstrate
operations Normally these dependencies are enforced by that simple implementations of some relaxed consistency
dataflow in the processor, but value prediction allows the models are insufficient when value prediction is added.
processor to break the dataflow of a program, allowing Mechanisms similar to those used in aggressive sequen-
dependent operations to speculatively execute out of pro-tially consistent implementations can be added to ensure
gram order. More generally, any current or future micro- correctness, but these mechanisms are conservative. We
architectural optimization that allows the relaxation of pro- then present ideas for less conservative schemes, but
gram order between data dependent operations can lead tdetailed evaluation of their relative performances is beyond
consistency violations, but we focus on value prediction in the scope of this paper. A potential criticism of this work is
this paper. that the value prediction problems we illuminate might

The key result of this paper is that, in systems with occur in theory put not in practice. In Section 4, we show
multithreading, multiple processors, or coherent 1/O, veri- that the dynamic code sequences necessary to generate

fying value prediction by comparing the predicted and value _prediction errors _in a relaxed memory model can
actual values is not always sufficient and can cause erronedccUr n wquloads we simulated on a four-processor sym-
ous behavior. In a TLP system, unlike in a single-threaded metric multiprocessor (SMP).

gniprocessor, it _is possible for .a_value prediction to be 2 Value Prediction & Sequential Consistency
incorrect at the time of the prediction but ‘correct’ by the

time the value prediction is to be verified, since another ~ The simplest and most intuitive set of rules governing
thread, processor, or 1/O device could have modified thethe behavior and ordering of memory operations between
value in the interval between prediction and verification. threads and devices squential consisten¢$C) [24]. In
With simple verification, value prediction appears correct, this section, we describe SC, and we present an example in
but we will show cases in which the execution is incorrect Which a simple system (that implements SC without value
because it violates the memory ordering rules of the consis-Prediction) fails to implement SC when value prediction is

tency model. Any possible violation is sufficient to deter- added naively. We describe two techniques for the detec-
mine that the implementation is incorrect. tion of ordering violations, and these techniques restore the

simple system to a valid SC implementation. These two
i Id bl ider the followi techniques are the same methods used for the correct
lon could cause a problem, consider the following sce- implementation of SC in aggressive out-of-order proces-

nario, in which a professor plans to post the results of an g g [17]. Thus, adding value prediction to a system that

exam and an impatient student in the class cannot wait to L ; L
) “supports SC with simple processors can result in additional
see her score. The student, assigned student ID #5 for thi PP pep

| di hat th | aht b q bulleti %omplexity, while adding value prediction to an already
class, predicts that the results might be posted on bu etmdynamically scheduled SC implementation will have mini-

board B,. She arrives at bulletin board B and finds that stu- mal additional design impact due to memory consistency
dent #5's score is 60. Unbeknownst to her, the results that ; ;

i ) model considerations.
she is looking at are old results from another class. Later,
the professor posts the correct results (her actual score i9.1 SC and a Simple SC System
80) on board B, replacing the results the student had seen,
and announces that the results are posted on board B. Sincﬁow

that is where the student looked originally, she ‘verifies Many programmers would like to view a TLP system as a

her earlier prediction (of board B) and continues to incor- ; ; . : :
. multi-tasking uniprocessor. Lamport [24] formalized this
rectly assume that her score was 60. Throughout this paper, .. ; . .
. . . : . hotion when he defined a system todmgjuentially consis-
we will explore an analogous scenario that arises in multi-

threaded code used for reading and writing a linked list tent(SC) If. (1) the result of any execution is the same as if
data structure. the operations of all the processors (or threads) were exe-

cuted in some sequential order, and (2) the operations of

In Section 2, we examine the issues involved in imple- each individual processor (or thread) appear in this
menting value prediction in the context of sequential con- sequence in the order specified by its program. SC is the
sistency, the simplest consistency model. Through anmost restrictive consistency model that has been imple-
example, we show that adding simple value prediction to amented in commercial systems, including the MIPS
TLP system can be insufficient to implement sequential R10000 [34] and the HP PA-8000 [23], and it presents the
consistency. We then review techniques used to ensure corsimplest, most intuitive, and least surprising interface to the
rectness in aggressive implementations of sequential conprogrammer.

As an informal example of how simple value predic-

The memory consistency model of a system specifies
memory operations appear to the programmer [1].



We first consider a simple in-order processor that Example execution.The example code sequence works
implements coarse-grained hardware multithreading incorrectly with our SC system implementation without
which multiple hardware contexts share a cache. The pro-value prediction (returns only 42 or 80), but simple value
cessor performs all memory operations from each thread inprediction can generate a surprising result (the value 60).
order, and thus it implements SC. A system without multi- We first examine how value prediction can change the exe-
threaded processors, but with multiple processors and staneution of this exampleT, 4o  €Xecutes first. Assume that
dard invalidation-based cache coherence, exhibits similarT,e5qer Value predicts the result of instructiaf . Since
interactions between value prediction and memory consis-any value can be predicted, we assume that the hardware
tency. We will consider more aggressive processor designgredicts the valud. (The student predicts that her grade is

in Section 2.3. on board B.) Notice that iappearsthat this value predic-
tion will be incorrect, since the value éfead is actuallyA
2.2 Simple Value Prediction Can Violate SC and notB at this time.T,q5qer  CONtinues executing specu-

We now show that extending our example system with latively and instruction2 reads the value 60. (The student

simple value prediction (i.e., using only simple verifica- Sees a score of 60.) Read'T‘g. an |mp935|ble value while
tion) violates SC. speculating is allowed, and it is only discarded when the

value prediction is ultimately determined to be incorrect.
Simple value prediction.When an instruction is value Before T, 4 resolves its value prediction, a thread
predicted, the processor predicts the value produced by thaswitch occurs, and,e; €Xecutes instructions1-w4,
instruction and continues executing instructions from the effectively inserting a new node at the beginning of the list.
same thread (including dependent instructions) specula{The professor posts grades on board B.) The memory sys-
tively. For simplicity, we conservatively assume that our tem now processe$,.,qer 'S load for Head and returns
implementation waits for any value predictions to be veri- ‘B’, the current value.T,e5qe; NOW compares the pre-
fied before executing any store instructions encountereddicted value (board B) with the actual value (the professor
while speculating. When the predicted instruction com- announces that results are on board B) and surprisingly
pletes, possibly many cycles later due to cache misses odecides the value prediction was correct. Since the value
other delays, the processor compares the actual value wittprediction was pronounced corre@igager CONtinues to
the predicted value. If the value matches, the prediction isexecute. This execution violates SC because instruc#ion
determined to have been successful and execution continfeads the value 60 (and the student thinks her score is 60).

ues. Otherwise, the processor aborts execution and roli§q,ition. Why was the value prediction ‘correct’ when it
back the thread using a mechanism similar to that used iny a5 clearly initially wrong? By the time the value predic-
recovering from a branch misprediction. tion was resolved, the thread had the new value. In essence,
lllustrative example. Figure 1 illustrates a problem with it predicted the future, and this allowed it to read a location

the simple implementation of value prediction, and it will that was not ready to be observed. (The student ‘verified’
serve as our illustrative example throughout the paper. Thethat she was looking at the right set of grades, but she was
example is a pointer-based data structure manipulation thaf?ot actually looking at the right gradeehen she made the
is analogous to our informal example of the professor post-Prediction so she incorrectly believed that her score was 60
ing grades and the student checking her grade. One thread'Sté@d of 80.) The key observation is that adding simple
(the professor) is inserting at the front of the list, while the Value prediction allows us to perform tvaependenopera-
other thread (the student) is reading the first element of thefions €1 andr2 ) out of program order. By executing these
list. No further synchronization is necessary if there is only data dependent memory operations out of order, SC was
one writer and one reader. The reader or writer may execute/iolated. Moreover, while this particular example was for a
its code first, or the instructions may occur interleaved. '0ad value prediction, value prediction of other types of
Under SC, this code segment allows only two possible out_mstructhns faces the same issues. Fgr instance, if a load
comes: the read happens before the insert, resulting in théddress is dependent upon an instruction whose output has
reader observing the data value 42, or the insert occurd?®en value predicted, a similar violation is possible.
before the read, and the reader observers the data value 8Bormal explanation of why the value 60 is not validFor
(the student’s grade). Because, under SC, the store thathe above execution to be correct, the definition of SC
changesB.data from 60 (an old grade from a previous requires that we construct a total order of memory opera-
class) to 80 must occur before the store that changes theions (i.e., loads and stores). Instructiod precedesl in
head pointer to point @, T,eaqer Should never observe the global order, because4 writes the value read byl .
the stale value 60. Instructionr2 precedesvl, because2 reads the value 60
beforewl writes the value 80. SC's second requirement,



Code for Tyyiter Code for T,eader

wl: store mem[B.data] — 80 rl: load regl — mem[Head]
w2: load reg0 — mem[Head] r2: load reg2 — memregi]
wa3: store mem[B.next] — reg0
w4: store mem[Head] — B

(a) Racing code

Head | A Head | B /w
final
B.data] 60 B.data 80 state
42 42
A.data B.next| null A.data B.nex{ A
A.next | null A.next | null
(b) Initial State (c) Final State
Head | B prediction rl: load regl —« mem[Head] //value predict regl— B
r2: load reg2 — memi[regl] //speculatively load: reg2- 60
wl: store mem[B.data] — 80
w2: load reg0 — mem[Head]
B.datal 60 wa3: store mem[B.next] — reg0
w4: store mem[Head] — B
Adata | 42 | Bnext| null Il Preaderverifies regl=mem[Head]=B
PreadercOmMmits with {regl1,reg2} = {B,60}

A.next | null

(d) Incorrect Execution

Figure 1. Example Showing Failure of Simple Value Prediction

Part (a) presents code faFiter  (left) that raceT eager (right). Tysiter  S€ts elemer®’s value to 80 and

links elemenB to the beginning of the lisT,qa4er reads the value of the first element.

Part (b) gives the initial state of memory for a singly-linked list witHead currently-linked elemer#, and
unlinked elemenB. Each element has a data value field and a next pointer.

Part (c) shows the final state, aft@i,,ier atomically inserts elemel® T,oaqer CaN execute either before or
after the atomic insert, obtaining 42 fr@xor 80 fromB, respectively.

Part (d), however, shows that value prediction with simple verification can dljgye, to obtain the incor-

rect, stale value 60. Technically, this result assumes sequential consistency (SC), but, as we will see, similar
problems exist for other memory consistency models.



Code for Tyyiter Code for Teader

w1l: store mem[B.data] — 80) rl:load regl mem[Head])
w2: load reg0 — mem[Head] r2:load reg2 —« mem[regl]

w3: store mem[B.next] — reg(;
w4: store mem[Head] -~ B Q

Figure 2. Value Prediction with Simple Verification Violating SC. The example execution
of Figure 1(d) forms a cycle, violating SC.

called program ordey requires thatl precedes?2 and multithreaded processors can implement this similarly, by
thatwl precedesv2, w2 precedesv3, andw3 precedesv4. keeping a per-thread table of speculatively loaded
The instructions cannot be put in a sequential order (SC’saddresses and checking all the stores of the other threads
first requirement), because the required order of instruc-(from any processor) against this table. We refer to the pro-
tions forms a cycle, as shown in Figure 2. Therefore, this cess of comparing other threads’ stores and other proces-
execution does not obey SC, and the example system usingors’ invalidations against the set of addresses that a thread

simple value prediction does not correctly enforce SC. has loaded speculatively asad set trackingThis scheme
is overly conservative in that false squashes can be trig-
2.3 Restoring Correctness gered by false sharing (in multiprocessors) or writing the

Several alternatives exist for correctly implementing same value [17] (i.e., a silent store [25]).

value prediction in a sequentially consistent system. These  In Figure 1, the relaxation of program order between
schemes—which are based on previously developed techfl andr2 thatis enabled by value prediction is analogous
nigues for implementing dynamically scheduled processorsto the relaxation of program order between load instruc-
that support SC—can be used to detect when value predictions that are not data dependent. Since SC requireslthat
tion has violated SC. These techniques suffice for detectingand r2 appear to occur in order in both cases, read set
ordering violations caused by value prediction and recover-tracking is sufficient for identifying all ordering violations.
ing from them, but they add complexity and increase the In our example, ifT,gaqer detects thall s  Writes to
cost of the simple processor implementations consideredmem[regl] (detected by comparing the store address
thus far. We first discuss how both techniques enforce SCfrom T,iter 0 the address speculatively loaded 2y

in systems without value prediction, and then we explain in T,eaqer ) between the prediction and retirement, it
how these mechanisms also detect ordering violationsknows that simple verification of the prediction might be
introduced by value prediction. insufficient. No special check to enforce dependence order
is needed, since guaranteeing the appearance of program

Address-based detectionDynamically scheduled (out-of-
order also guarantees the appearance of dependence order.

order) processors that implement SC (e.g., the MIPS
R10000 [34]) allow memory operations to occur specula- Returning to our running analogy of the student and
tively out of program order and then rollback if a possible her test score, the student must detect if the professor posts
memory ordering violation is detected [17]. To enforce SC, grades between her prediction and her verification that bul-
a processor must detect when another thread, processor, detin board B was the correct prediction. Thus, the student
device writes to an address that has been speculatively readsks a friend to stand by bulletin board B and report if any-
from the cache by an unretired instruction. When an order-one changes the posted grades. In the case where the pro-
ing violation is detected, the processor rolls back the execu-fessor posts to board B after the student’s prediction, the
tion of the speculative thread to a known consistent and student’s friend would tell her the information on the board
non-speculative state. The R210000 implements thischanged, and thus the student would know to check her
approach by augmenting the load/store queue to (1) trackscore again. If the friend reports no violation, the grade is
the addresses that have been speculatively loaded until th&nown to be correct and no further validation is required.
loads retire_ and (2) compare the addresses to the addre_ss%lue—based detectionln this approach, all loads that exe-
that are written by other processors. These external W”_tescute with directly or transitively predicted address oper-
are revealed through the coherence protocol by the arrival

. S ands are replayed when their operands become non-
of invalidation messages for these addresses [34]. Future Pay P



speculative (e.g., immediately before retirement) [17]. A mechanisms are already sufficient. In the next section, we
speculative load must wait for its own operands to becomewill explore the ramifications of adding value prediction to
non-speculative, read its value from the cache a secondsystems that exploit relaxed consistency models.

time, and then compare this non-speculative value with its o

earlier speculatively loaded value. If the values match, no3 Value Prediction & Relaxed Memory Models
ordering violati(_Jn has_ o_ccurred. If the values_do r_10t_ match, Many common instruction set architectures [18, 19,
the standard misprediction recovery mechanism is |nvoked.20, 30, 33] do not require the strict semantics of sequential

This approach avoids false squashes due to either fals@snsistency. These systems are said to implement relaxed

sharing or silent_stor_es. However, this approach has a C_O”'memory consistency models. Relaxed memory models
siderable downside in that some loads must execute twiceg|iow the hardware to potentially employ optimizations

thus increasing the contention for cache read ports. such as store queues and write buffers, and they can sim-

Dynamic verification [3], a recently introduced tech- plify the implementation of out-of-order execution. How-
nique for tolerating transient and design errors in a micro- ever, relaxed models require the programmer to add
processor, can be used to implement value-based detectiogxplicit annotations to enforce some memory orderings.
of memory consistency ordering violations. One proposed Value prediction interacts with relaxed models much like it
implementation of dynamic verification uses separate coreinteracts with SC, and thus similar challenges exist for
and checker processors, each with a dedicated data cachéalue prediction with many relaxed consistency models.
[8]. This organization miFi_gatgs the cache _p_ort pressure Defining relaxed memory consistency models is com-
problem and removes verification from the critical path, by pjex. \we refer the reader to Adve and Gharachorloo [1] for
allowing the main processor to proceed with executing andg yorial on the subject and the references to many primary

speculatively retiring instructions. Using this decoupled sources. Broadly, there are two classes of relaxed models
approach can reduce the cost/performance penalty associat e will address in this section. One class—sometimes

ated With more traditional implementations of value-based calledprocessor consistent (PC) modelss similar to SC,

detection. except that the models allow for FIFO, non-coalescing
Value-based detection also fits into our simple analogy. store buffers by relaxing the order from a thread’s write to

Once the professor has announced where the scores ariés subsequent reads. The other class, generally referred to

posted, the student (or a friend) must go to bulletin board B asweakly ordered modelsallows much more reordering of

and double-check the score, just in case. In the situationreads and writes.

where the speculatively observed score is 60 and the re-

observed score is 80, the student would know that her pre-3.1 Processor Consistency

diction was wrong. PC models, such as SPARC Total Store Order (TSO)
Discussion.Some have noted a connection between mem-[33] and IA-32 [19], allow relaxation of the order from a
ory value prediction andsoftware-directed binding thread's write to its subsequent reads. Since PC models do
prefetching With binding prefetching, data is brought into not allow relaxation of read-to-read program order, simple
registers early under the direction of software. Software implementations must, in our example, exeaudteandr2

must guarantee high-level language semantics, possiblyin program order. If, on the other hand, a more sophisti-
with hardware assistance (e.g., 1A-64's ALAT [20]). In cated implementation allows reads to be reordered by out-
contrast, memory value prediction should be implementedof-order execution, it must guarantee the appearance of
in hardware without disturbing the low-level memory con- program order execution by either of the two methods
sistency model. described in Section 2.3.

2 4 Value Prediction & SC Conclusion AIt_hough PC_ relaxes_ write-to-read order, th_e result
] ] ) . . from Figure 1(d) is not valid under PC models. Going back
Broadly, SC |mplemenFat|or'13 are either simple (i.e., to Figure 2 from the SC example, the only difference for
coarse-grained multithreading, in-order, and non-specula-p g that, since PC relaxes write-to-read ordering, the arc
tive) or aggressive (i.e., SMT or out-of-order and highly o1 tow2is not present. Nevertheless, the arc freth
speculative). Correctly applying value prediction in a sim- to w3 is still part of a cycle. Therefore, as with SC, correct

ple SC system moves the implementation complexity jyjementations of value prediction for PC models must
toward that of an aggressive SC implementation, becausgmt return the surprising result from Figure 1(d).
the mechanisms for verifying value prediction are similar

to those that enable aggressive SC implementations. Imple- ~ The issues for correctly implementing value prediction
menting value prediction in a system that supports dynamicunder P(_: models_are su_bstantlally similar to those issues
scheduling and SC is straightforward, because the existingfor SC discussed in Section 2, because PC models and SC



both enforce read-to-read ordering. A mechanism which cCode for T,yiter
guarantees the appearance of read-to-read program order

suffices to guarantee the appearance of read-to-read depenW!: store mem[B.data] — 80 rl: load regl - mem[Head]
dence order, since two loads serialized by dependence
order are also serialized by program order. Thus, as with
SC, adding value prediction to a simple processor that sup- W3: store mem[B.next] — reg0
ports PC would require an additional mechanism to detectl\,\,3b:memOry barrier |
violations introduced by value prediction. Adding value
prediction to a more complicated processor—one that W4: store mem[Head]— B

already speculatively relaxes read-to-read order and con- Figure 3. Correct Code for Weak Ordering with
tains a mechanism to detect violations—would not require Data Dependence Enforced

an additional mechanism.

Code for Treader

w2: load reg0 — mem[Head] r2:load reg2 — mem[regl]

through a register, as in Figure 25 andr2 ), while other
3.2 Weakly Ordered Models models always require a memory barrier to enforce the

ordering of two reads (even if the reads are data depen-

This section concentrates on the other class of relaxeddem)_ We say that the former models enfodzea depen-
memory consistency models, including weak ordering and gence orderWe now discuss both alternatives in turn.
release consistency, that allows a processor to reorder reads

and writes, provided that a processor sees its own reads anlylodels that enforce data dependencéVe first discuss
writes in order. Commercial models in this class include Models, including SPARC RMO [33], PowerPC [9, 18],
Alpha [30], PowerPC [9, 18], IA-64 [20], and SPARC and 1A-64 [20], that require a memory barrier to order

Relaxed Memory Order (RMO) [33]. These models differ independent reads but not dependent reads. In the latter
in subtle ways, but they all require that the programmer CaSe; hardware is required to preserve the dependence

insert one or morenemory barrierda.k.a.,MBs, barriers order. Even without considering value prediction, program-

membarsfencesor sync$ or annotations to assert required Mers that want the linked list code to allow only the two
orderings. expected outcomes of Figure 1 must add a memory barrier

] ) ) before instructiorw4, as shown in Figure 3. The memory
Unlike with SC and PC, dynamically scheduled pro- parrier beforew4 asserts that instructiongl, w2, andw3
cessors that support most weaker models do not need tQinjtializing element B) should be ordered before instruc-
implement memory ordering detection mechanisms like (jon w4 (which inserts element B at the head of the list).
those described in Section 2.3. Processors can allow memyyithout the memory barriew4 could be ordered before
ory operations to speculatively execute out of order without any of the other three operations, resulting in the addition

requiring additional inter-thread detection mechanisms. 4t 5 (partially) uninitialized node to the head of the linked
These re-orderings are no longer violations but rather cor-|jst.

rect semantics allowed by the memory model. ]
To extend the informal analogy of the professor post-

However, these processors must enforce orderinging grades, consider a different situation in which the pro-
across memory barriers. For simplicity, when a thread fegsor s too busy to post the results, but instead sends a
encounters a memory barrier in our examples, order iSteaching assistant (TA). Assume that the professor gives
enforced by stalling the execution of all instructions fol- e results to the TA to post and then immediately sends an
lowing the memory barrier until it retiresThe thread only e-mail to the class. If the TA is delayed in posting the
continues execution when all speculative instructions results, the student might see the e-mail, go to check her
(including any value predicted instructions) have com- score, and once again believe erroneously (despite not
pleted. This implementation is perhaps conservative, but it sing value prediction) that her score was 60. The professor
is similar to that of the Alpha 21264 [12, 22]. can prevent this problem by waiting for the TA to report

One subtle difference among weak memory models, back—acknowledging that the results have been posted—
which affects their interaction with value prediction, is before sending the e-mail. Waiting for the TA to return is
whether they establish order between two data dependen&nalogous to inserting a memory barrier betwaghand
reads from the same processor. Some models do not requiré4 (which is required of all weak models, regardless of
a memory barrier between data dependent operations (e.gWhether they enforce data dependence order).

Weak models allow the relaxation of most read-to-read
ordering, so it would appear that our example should
1. To simplify the discussion, we assume one type of memory barrier that require the insertion of an additional memory barrier

enforces all orderings. In reality, most relaxed models have multiple fla-
vors of barriers or annotations with different ordering requirements. betweerrl andr2 to enforce order between these reads.




However, we are now only considering those models that code for T.
Wi
enforce data dependence order. Our example does not
require a memory barrier between instructiohs andr2 wl: store mem[B.data] - 80  ri:load regl  mem[Head]
beca_luse thg dat_a dependence betw&e_rand r2 orders w2: load reg0 — mem[Head] Irlb:memory barrier |
the instructions in dependence order in RMO [33, page
260], PowerPC [18, page 106], and IA-64 [20, section w3: store mem[B.next] — reg0 r2: load reg2 — mem[regl]
13.2.1.7].

dWhile the addition of the mhemory Ibarrier gfet\{vama. w4 store mem[Head] — B
oes mothing 1o prevent ncotrect execution with naive  FIdure 4. Correct Code for Weak Ordering
2 ; . without Data Dependence
value prediction. (The student can still predict that her
grade is on board B, see that her score is 60, later verifytwo expected outcomes of Figure 1 must insert two mem-
that board B was the correct location, and still erroneously Ory barriers (shown in Figure 4). First, just as for models
believe that her grade was 60 and not 80.) Thus, this simplethat do enforce data dependence, a memory barrier must be

implementation of value prediction violates weak memory inserted before instruction4. Second, Alpha also requires
models that enforce data dependence order. a memory barrier between instructiors andr2 , because

the Alpha model does not enforce data dependence order.

One appr«_:ach to restoring correct_ness is to change theWithout this second barrier, the surprising result of Figure
memory consistency model by removing the enforcementl(d) is valid under the Alpha memory consistency mddel.

of data erendence order. Th's change requires programBy adding the second barrier, this result is disallowed.
mers to insert a memory barrier between dependent instruc-

tions (such asl andr2 ). A memory barrier will explicitly One advantage of not enforcing dependence order is
order these instructions’ ensuring that 0n|y the expectedtha.t naive value prediction does not violate the ConSiStency
two outcomes of our examp|e can occur. (The student Caandel. A Straightforward implementation would not allow
predict that she should look on board B, but she cannot actvalue prediction across a memory barrier, preventing subtle
on her prediction until she observes the professor's reorderings due to value prediction. A side effect of adopt-
announcement) This approach, however, breaks backwardnd @ memory model that does not enforce dependence
compatibility, since changing the memory model definition order is that the programmer must insert a memory barrier
of an architecture to require additional memory barriers to explicitly enforce data dependence order (e.g., between
may break programs written for the old definition. For this 'l andr2) . Requiring these additional memory barriers

reason, we do not consider this to be a practical solution. increases the frequency of memory barriers, possibly
A . lution i h hreducmg performance, and it adds an extra burden on the
q .t():ogservlgtlvi solution is to Suge t j ;gm_e alpproac programmer by requiring barriers in “non-intuitive” loca-
escribed earlier for aggressive an implementas; )\« [20, section 13.2.1.7].

tions: enforce all read-to-read program order by specula-

tively executing and explicitly detecting possible 33 VP &R ‘
S ) . s : elaxed Memory ModelsConclusion

violations. As in the SC and PC cases, this technique is suf- o y _ _

ficient to avoid the subtle correctness issues induced by Value prediction can complicate some implementa-

value prediction. However, this solution can reduce perfor- tions of relaxed memory models that enforce read-to-read

mance due to false squashes, and it faces the same impleardering of dependent operations. Examples of these
mentation issues described in Section 2.3. relaxed models include SPARC TSO, |A-32, SPARC
) _ RMO, PowerPC, and IA-64. However, memory models
AIternaﬂ_ver, a more aggressive S”ategy_ could per- that do not enforce data dependence order (e.g., Alpha)
haps selectively enforce read-to-read ordering only for allow for simple implementations of value prediction, as

dependent operations or °”'Y while a value prediction is long as prediction across memory barriers is not allowed.
active in the processor, reducing unnecessary squashes. We

leave a detailed description, proof of correctness, and per4 Could Violations Occur in Real Code?
formance evaluation of more aggressive techniques for _ _ .
future work. The correctness issues described above are valid

regardless of the frequency with which these errors may
occur. Nevertheless, the issues might seem less important if

riter COde fOI’ Treader

|W3b:memory barrier I

Models that do not enforce data dependenc&he other

class of weak memory models, which includes Alpha [30],
requires a memory barrier to order two reads, regardless of
whether they are dependent. For example, Alpha program-2. Atleast one Alpha implementation leverages the relaxation of data

. . h I i Its if th
mers that want our linked list example to allow only the ggﬂ?:rdfgtﬁgﬁera%% lijssgﬁlfttcég rﬁ%‘flce undesired results if the memory




Table 1. Frequency of Consistency Model Violations
Caused by Value Prediction

As shown in Table 1, potential consistency model vio-
lations occur in two of the five applications. Although they

occur infrequently, any occurrence indicates a potential
Instructions ) system failure, which is not acceptable. We have examined
Aoplicati EX_‘E?“ted V'_Dciss‘_'b'e the code surrounding a few of these violations, and we have
pplication (millions) lofations found that many occur in locking routines called from the
TPC-W 3,688 161 operating system task dispatcher. We have found that many
Raytrace 979 0 of the loads and stores involved are normal load and store
SPECjbb2000 4,554 a operations, and they are not restricted to load and store
SPECINt rateds 724 cond_ltlgnal synchronlzatlc_)n opc_araﬂons for which value
- 1 prediction could be selectively disabled.
SPECweb99 1,651 f

5 Conclusions

they occurred only for contrived code sequences instead of  We have shown that micro-architects must consider
real ones. In this section, we quantify the dynamic fre- system correctness, as defined by the architecture’'s mem-
quency of code sequences similar to the relaxed consis-ory consistency model, if they are implementing value pre-
tency code illustrated in Figure 3, while simulating a set of diction in microprocessors that are to be used in systems
five multithreaded workloads on a 4-processor PowerPCwith thread level parallelism (TLP). Value prediction can
system. We show that the error potential is real, as two ofinduce violations of read-to-read dependence ordering, and
the five workloads contain code sequences in which simplethese violations can cause incorrect executions of multi-
verification of a value prediction could be incorrect. threaded workloads. This issue exists in many commonly

We simulate the user and system level instructions of applied consistency m'odels—including sequential consis-
all workloads using the SImOS-PPC full system simulator tency, processor consistency, anc_j some flavors of Weal_dy
[27], augmented with a detailed memory hierarchy model- ordered models—and thus pertains to many commercial
ing an IBM RS/6000 S80 server. The workloads chosen arerchitectures.
representative of a wide array of applications, each running For each class of consistency models with which value
on the AIX 4.3 operating system. TPC-W [32] is an e-com- prediction can induce violations, we have presented solu-
merce benchmark using IBM's DB2 database and the Zeustions that are sufficient to eliminate consistency model vio-
Web Server. Raytrace is a parallel image rendering applicadations due to value prediction. For the relaxed models,
tion from the SPLASH benchmark suite [29]. We also use including processor consistency and weak ordering, one
three SPEC benchmarks [31]. SPECjbb2000 is a multi- viable solution is to borrow the mechanisms that are used
threaded transaction processing application written in Javain aggressive implementations of sequential consistency to
SPECint_rate95 uses multiple threads to concurrently exe-detect violations of read-to-read program order. This solu-
cute the SPEC95 integer benchmarks. SPECweb99 is aion, however, has potential drawbacks in terms of perfor-
web serving benchmark using the Zeus web server. mance and complexity. Alternate solutions may alleviate
these drawbacks, but an evaluation of their relative perfor-

We detect potential consistency model violations using X !
mances is beyond the scope of this paper.

two 100-entry FIFO queues per processor, one for loads
and one for stores. The store FIFO associated with each
processor tracks dynamic store and memory barrierACKnowledgments
instances. The load FIFO tracks dynamic load instances,  We thank the following individuals for their contribu-
the dependences among them, and whether or not depenions to the findings presented in this paper: Gordie Bell,
dent loads were separated by memory barriers. For eachRas Bodik, Adam Butts, Kourosh Gharachorloo, Kevin
execution of a load that is dependent upon another load|_epak, Kevin Moore, Craig Saldanha, Ed Silha, and David
during this 100 instruction window, without being sepa- \Wood. This work was supported in part by the National
rated by a memory barrier or other ordering instruction, we Science Foundation with grants CCR-0073440, CCR-
scan the store FIFO of all other processors. During this 0083126, EIA-9971256, and CDA-9623632, the University
scan, we search for two store instructions which overlap theof Wisconsin Graduate School, and donations from Com-
memory locations read by the dependent loads, where theyaq Computer Corporation, IBM, Intel Corporation, and
store instructions are separated by a memory barrier. ASun Microsystems. Milo Martin is supported by an IBM
match is a potential consistency violation. Graduate Fellowship. Daniel Sorin is supported by an Intel
Graduate Fellowship.
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