
CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 1

Day 3: Collections

suggested reading:

Learning Perl (4th Ed.),

Chapter 3: Lists and Arrays
Chapter 6: Hashes

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 2

$

Scalar values

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 3

$ Single, or scalar, values

• my $bender = "robot";

• my $answer = 42;

• my $fred = undef;

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 4

@

Arrays

AKA

Lists, Sequences, Tuples

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 5

@ Arrays

my @array_name =

(scalar_1, scalar_2,…, scalar_n);

• For example…

my @futurama = ("Bender", "Fry",
"Fry", "Leela");

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 6

@ Arrays

my @futurama = ("Bender", "Fry",
"Fry", "Leela");

• To address a single item, you use $

– $futurama[0] is "Bender"
– $futurama[1] is "Fry"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 7

@ Arrays

• Easy:
– Read a numbered place

print $futurama[1];

– Write a numbered place

$futurama[2] = "Zoidberg";

• Hard
– Find a particular value

• Where is "Fry"?

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 8

@ Arrays

• Useful for ordered information

my @US_Presidents = ("Washington",
"Adams", "Jefferson");

my @days_of_week = ("Sun", "Mon",
"Tue", "Wed", "Thu", "Fri",
"Sat");

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 9

@ Arrays

my @array;

$array[10] = "Ten!";

• $array[0] through $array[9]
automatically exist, but are
undefined

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 10

• You can easily add and subtract
items; array can resize as needed

– push, pop, shift, unshift add and

remove from beginning and end of array

– delete can delete from the middle

– Array slicing returns or modifies subsets

@ Arrays

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 11

Array flattening

• Perl flattens arrays
my @x = (1, 2);

my @y = (9, @x, 9, @x);

• This is equivalent to
my @y = (9, 1, 2, 9, 1, 2);

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 12

Array assignment

my @array = (1, 2, 3);

my($one, $two) = @array;

• Now $one is 1 and $two is 2

• The 3 was just ignored

my($a, @b) = @array;

• Now $a is 1, $b[0] is 2, and
$b[1] is 3. @b slurped up the rest

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 13

Printing arrays

• my(@array) = ('a', 'b', 'c');

• Print second element:

– print "Second: $array[1]";

– Output is "Second: b"

• Print entire queue:
– print "Array: @array";

– Output is "Array: a b c"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 14

• You can use loop to print an array
nicely, but there is a useful shortcut:

my(@array) = ('a', 'b', 'c');

my $string = join(', ', @array);

print "Array: $string.";

• Output: Array: a, b, c.

Joining arrays

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 15

@ Arrays as ordered
information

• Baseball scores
my @scores;

for (my $i = 0; $i < 9; $i++) {

my $in = $i + 1;

print "Inning $in score?\n";

chomp(my $score = <STDIN>);

$scores[$i] = $score;

print "Scores: @scores\n";

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 16

@ Arrays as queues

• Movies in your Netflix queue
my @netflix_q = ("12 Monkeys", "Time
Bandits", "Brazil");

my $next_dvd = shift @netflix_q;

– $next_dvd is now "12 Monkeys"

– @netflix_q is now ("Time Bandits",
"Brazil");

push @netflix_q, "Munchausen";

– @netflix_q is now ("Time Bandits",
"Brazil", "Munchausen");

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 17

@ Arrays as stacks

my @commands = ('select', 'bold',
'delete');

my $undo = pop @commands;

$undo is now 'delete'

@commands is now

('select', 'bold')

push @commands, 'italics';

@commands is now ('select',
'italics')

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 18

%

Hashes

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 19

% Hashes

• AKA dictionaries, associative arrays,
maps

my %authors = (

"Dark Tower" => "Stephen King",

"Harry Potter" => "J.K. Rowling",

"Discworld" => "T. Pratchett",

"Johnny" => "T. Pratchett",

);

Key Value

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 20

% Hashes

my %authors = (

"Dark Tower" => "Stephen King",

"Harry Potter" => "J.K. Rowling",

"Discworld" => "T. Pratchett",

"Johnny" => "T. Pratchett",

);

• Relates scalars to scalars.
• Keys must be unique

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 21

% Hashes

my %authors = (

"Harry Potter" => "J.K. Rowling",

"Discworld" => "T. Pratchett",

);

• "Who wrote Discworld?"

– Easy: print $authors{"Discworld"};

• "Conan was written by Howard."
– Easy: $authors{"Conan"} = "Robert
Howard";

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 22

% Hashes

my %authors = (

"Harry Potter" => "J.K. Rowling",

"Discworld" => "T. Pratchett",

);

• "What did Pratchett write?"

– Hard: walk the hash looking

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 23

% Hashes

my %authors = (

"Harry Potter" => "J.K. Rowling",

"Discworld" => "T. Pratchett",

);

• "=>" is (mostly) identical to ","

• Hash into an array is just the pairs
• Array into a hash assumes key,
value, key, value, etc

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 24

% Hashes

• No inherent order to the keys
– Assume they come back in the worst
possible order!

• Useful for associating values to other
values.

– A series with the author.

– A word with its definition.
– A username with a password.

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 25

Login system

• A login system:

my %passwords = (

'root' => 'k8H6h%4A',

'bob' => 'secretcode!');

• Is the user name valid?

– exists($passwords{$username})

• Is the password valid?
– $passwords{$username} eq $pass

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 26

Login system

• Add a user
– $passwords{$newuser} = $newpass;

• Remove a user

– delete $passwords{$olduser};

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 27

• Can use as a set. Useful for "is this
part of the set" questions. Spam
filtering:
my %spammers = ('malware@example.com' => 1,

'scammer@example.org' => 1);

if(exists($spammers{$email})) {

print "Refuse email from $email: SPAM\n";

}

Variant test:

if($spammers{$email}) {

% Hashes as sets

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 28

% Hashes as sets

• Sets are useful for tracking things
seen.

my %seen;

foreach my $email (@emails) {

$seen{$email} = 1;

}

print join(", ", keys(%seen));

• (Shorter forms exist)

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 29

$ @ %

• $foo, @foo, and %foo are three
different variables.

– Different namespaces.

• $foo[1] is the second element of
@foo

• $foo{1} is an element of %foo

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 30

How big is my array?

• If you try to use an array where only
a scalar makes sense, Perl will return
the size of the array

– my $size = @array;

– or more explicitly…

– my $size = scalar(@array);

– Very Perl specific!

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 31

How big is my hash?

• "scalar %hash" doesn't work

• You can use "keys" to get an array of
of the indices for the hash.

– my $size = scalar(keys(%hash));

– my $size = keys(%hash);

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 32

length

• RIGHT: length("some string")

– (It's 11)

• WRONG: length(@foo)

• WRONG: length(%foo)

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 33

Looping over collections

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 34

Loops: foreach

Obviously this works

for (my $i = 0; $i < @x; $i++) {

print "$x[$i]\n";

}

Sometimes more handy:

foreach my $element (@x) {

print "$element\n";

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 35

Loops: foreach

• foreach lets you modify the original
array

foreach my $element (@x) {

This actually changes @x!

$element = 'Hello';

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 36

• Foreach works on a hash
foreach my $key (keys(%x)) {

print "$key maps to $x{$key}\n";

}

• But sometimes it's easier to say
while(my($key, $val) = each(%hash))

{

print "$key maps to $val\n";

}

Loops: each

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 37

Other Languages

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 38

Perl

• Arrays
@futurama = ("Bender", "Fry");

$futurama[1]

• Hashes
%series = (

"Dark Tower" => "King",

"Harry Potter" => "Rowling");

$series{"Harry Potter"}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 39

Ruby

• Arrays
futurama = ["Bender", "Fry"]

futurama[1]

• Hashes
series = {

"Dark Tower" => "King",

"Harry Potter" => "Rowling"}

series["Harry Potter"]

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 40

Python

• Arrays (lists)
futurama = ["Bender", "Fry"]

futurama[1]

• Hashes (dictionaries)
series = {

"Dark Tower" : "King",

"Harry Potter" : "Rowling"}

series["Harry Potter"]

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 41

Compared: Array Size

• Perl: scalar(@array)

• Python: len(array)

• Ruby: array.length

• Javascript: array.length

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 42

Compared:
Remove and return last item

• Perl: pop(@array)

• Python: array.pop

• Ruby: array.pop

• Javascript: array.pop()

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 43

Merging arrays and hashes

• Lua, JavaScript, PHP, and others
have one type for both

– Lua: tables
• a = {}
• a["bob"] = "barker"
• a[1] = "steak sauce"

– Javascript: array
• var a = new Array();

• a["bob"] = "barker";
• a[1] = "steak sauce";

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 44

• Python offers a native "set"

spammers = set([\

'malware@example.com',

'scammer@example.org'])

if email in spammers:

print "Refusing SPAM\n"

Look for variations

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 45

Look for variations

• PHP preserves insert order!
$arr[2] = "two";

$arr[3] = "three";

$arr[1] = "one";

foreach ($arr as $element) {

print "$element ";

}

• prints: "two three one "

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 46

Homework

• Implementing Metacritic or Rotten
Tomatoes

– Collect reviewers scores

– Report the scores and an average

