
CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Day 4:
Basic File Text Processing

Suggested Reading:

Learning Perl (4th Ed.),

Chapter 5: Input and Output

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Reminders

• Turn in homework at START of class

• Writing code is fun!
– Write at least a little every day

– The more you do, the easier it gets

• When in doubt, ask questions!
– Zathras does not want you being
confused

• Think about last class session
– What would you like it to cover?

– Any particular ideas?

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Homework Code Formatting

• Look at the formatting of the code
examples in Learning Perl (4th Ed.)
– Use this as a template for your homework

• Indention is vital to making the code you
hand in to us readable!

• Example:
if ($whatever) {
Do something

}
foreach my $var (@array) {
if ($var eq "blah") {
print "var is $var\n";

}
}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Homework Feedback

• Simple is almost always better

• Do this:

• Not this:
my $loop = 1;
while ($loop) {
if (whatever) {
$loop = 0;

}
}

while (1) {
if (whatever) {
last;

}
}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

(More) Homework Feedback

• Do this:

• Not this:
print "Enter command:";
my $foo = <STDIN>;
while ($foo ne "quit") {
do some stuff
print "Enter command:";

$foo = <STDIN>;
}

while (1) {
if ($foo eq "quit") {
last;

}
do more stuff

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

die

• (From Learning Perl, 4th Ed.):

– The die function prints out the message you
give it (to the standard error stream, where
such messages should go) and ensures that
your program exits with a nonzero exit status.

• Example:

if $error is non-zero, this will produce:

if ($error) {
die "An error has ocurred!";

}

An error has occurred at foo.pl line 5.

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Opening a File

• Use open() to open the file and create a
file handle:
– By convention, file handle names are
UPPERCASE

• Use close() to close the file:

open(INPUT, "my_input.txt", "r");
open(FILE, "input.txt");

close(INPUT);

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Checking for Failures

• open() returns 0 if it fails:

unless (open(FH, $file)) {
print "Failed to open $file\n";

} else {
read the file via file handle FH
close(FH);

}

unless (open(FH, $file)) {
die "Couldn't open $file";

}

open (FH, $file) or die "Couldn't open $file";

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Reading From the File

• Use the <> operator to read from a file
handle:

• Use chomp() to strip off newline
characters:

while (my $line = <FH>) {
chomp $line;
print $line;

}

my $line = <FH>;

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Reading from STDIN

• STDIN is a file handle that is
automatically opened for you

• STDIN is the default file handle, so
this will do the same thing:
my $input = <>;
chomp $input;

my $input = <STDIN>;
chomp $input;

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Reading a Whole File

• The <> operator can also be used in an

array context to read a whole file in a
single operation:

• Similarly, chomp() can be used to strip

off newline characters of the whole array:

my @lines = <FH>;
chomp @lines;
print $lines[0];

my @lines = <FH>;

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

File Writing Operations

• To open a file for writing:

• To append to an existing file:

• To write to the file:

– Notice: No comma (",") between the descriptor
and the string to print!

open(OUTPUT, ">output.txt");

open(OUTPUT, ">>output.txt");

print OUTPUT "This is really cool\n";

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

File Writing Snippets

• Putting it all together:

• Or:

unless (open(OUTPUT, ">$file")) {
die "Couldn't write to $file";

}
print OUTPUT "Line of output\n";
close(OUTPUT);

unless (open(OUT, ">>$file")) {
print "Can't write to $file\n";

} else {
print OUT "Added this line\n";
close(OUT);

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Writing to STDOUT and STDERR

• STDOUT and STDERR are file handles that is
automatically opened for you

• Like STDIN for <>, STDOUT is the default
output of print:

• STDERR is typically use to report errors:
– die and warn print their message to STDERR

print STDOUT "This goes to STDOUT\n";
print STDERR "This goes to STDERR\n";

print "More to STDOUT\n";

print STDERR "Error detected!\n";

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

The Magic of $_

• $_ is a automatic variable in perl

– Unless otherwise specified:
• <> assigns to $_

• chomp() and many other functions and
operators operate on $_

• print prints the contents of $_

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

The Magic of $_: Example

• Thus:

• Is equivilent to:

while (<>) { # Reads from STDIN into $_
chomp; # chomp $_
print; # print contents of $_

}

while ($_ = <STDIN>) {
chomp $_;
print $_;

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Sample File Reading Script

•Open the file
•Generate an error
if it fails
•Read the file line
by line
•Look for the string
"Important"
•Print the line
•Close the file

#! /usr/bin/env perl
use strict;
use warnings;

my $file = "example-01.txt";
unless (open(IN, $file)) {

die "Can't read input file '$file'";
}
while (my $line = <IN>) {

if (index($line, "Important") >= 0) {
print $line;

}
}
close(IN);

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

"Idoiomatic" File Reading Script

#! /usr/bin/env perl
use strict;
use warnings;

my $file = "example-01.txt";
open (IN, $file) or

die "Can't read input file '$file'";
while (<IN>) {

print if(/Important/);
}
close(IN);

•Open the file
•Generate an error
if it fails
•Read the file line
by line (into $_)
•Look for the string
"Important" (in $_)
•Print the line ($_)
•Close the file

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

More Fun With open()

• open() can also be used to run a
process with a pipe:

my $cmd = "/bin/ls -l";
unless open(INPUT, "$cmd|") {

die "Can't run $cmd";
}
while (my $line = <INPUT>) {

print if index($line, "nleroy") >= 0;
}
close(INPUT);

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

More Operations

• The @ARGV array contains the command line:

• File test operators:
– "-f $name": detect if $name exists and is a file

– "-d $name": detect if $name exists and is a directory

– "-s $name": Returns the size (in bytes) of $name

• "Glob" operator: <>

my @files = <*>;
foreach my $path(<$dir/*>) { something(); }
while (my $line = <FH>) { something(); }

scalar(@ARGV)
$ARGV[0]

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Files & Directories

#! /usr/bin/env perl
use strict;
use warnings;

die "usage: example-03 directory" unless scalar(@ARGV) == 1;
my $dir = shift(@ARGV);
die "$dir isn't a directory" unless -d $dir;
foreach my $path (<$dir/*>) {

if (-d $path) {
print "$path is a directory\n";

} elsif (-f $path) {
print "$path is a file\n";

} else {
print "I don't know what $path is\n";

}
}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Files & Directories (Python)
#! /usr/bin/env python
import sys
import os
import glob

if len(sys.argv) != 2 :
print >>sys.stderr, "usage: example-03 directory"
sys.exit(1)

dirpath = sys.argv[1]
if not os.path.isdir(dirpath) :

print >>sys.stderr, dirpath, "isn't a valid directory"
sys.exit(1)

for path in glob.glob(dirpath+"/*") :
if os.path.isdir(path) :

print path, "is a directory"
elif os.path.isfile(path) :

print path, "is a file"
else :

print "I don't know what", path, "is"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Files & Directories (Ruby)
#! /usr/bin/env ruby
unless ARGV.size == 1

warn "usage: example-02 string"
exit 1

end
dirpath = ARGV[0]
unless File.directory?(dirpath)

warn "#{dirpath} isn't a valid directory"
exit 1

end
Dir.glob("#{dirpath}/*").each do |path|

if File.directory?(path)
puts "#{path} is a directory"

elsif File.file?(path)
puts "#{path} is a file"

else
puts "I don't know what #{path} is"

end
end

