COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Day 4:
Basic File Text Processing

Suggested Reading:
Learning Perl (4™ Ed.),
Chapter 5: Input and Output

Summer 2009 Cartwright, De Smet, LeRoy

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Reminders

e Turn in homework at START of class
« Writing code is fun!

— Write at least a little every day

— The more you do, the easier it gets

« When in doubt, ask questions!

— Zathras does not want you being
confused

 Think about last class session
— What would you like it to cover?
— Any particular ideas?

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages
Homework Code Formatting

 Look at the formatting of the code
examples in Learning Perl (4t Ed.)

— Use this as a template for your homework

« Indention is vital to making the code you
hand in to us readable!

« Example:

if ($whatever) {
Do something

}

foreach my $var (@array) {
if ($var eq "blah") {

print "“var is $var\n";

}

}

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Homework Feedback

« Simple is almost always better

e Do this:

while (1) {
i1f (whatever) {
last;

}
}

 Not this:

my $loop = 1;
while ($loop) {
if (whatever) {
$loop = 0O;
}
}

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages
(More) Homework Feedback

e Do this:

while (1) {
if ($foo eq "quit") {
last;
}

do more stuff

}
* Not this:

print "Enter command:";

my $foo = <STDIN>;

while ($foo ne "quit") {
do some stuff
print "Enter command:";
$foo = <STDIN>;

}

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages
die

 (From Learning Perl, 4t Ed.):

— The die function prints out the message you
give it (to the standard error stream, where
such messages should go) and ensures that
your program exits with a nonzero exit status.

« Example:

if ($error) {
die "An error has ocurred!";

}

if $error is non-zero, this will produce:
An error has occurred at foo.pl line 5.

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Opening a File

« Use open() to open the file and create a
file handle:

— By convention, file handle names are
UPPERCASE

open(INPUT, "my input.txt", "r");
open(FILE, "input.txt");

e Use close() to close the file:
close(INPUT):

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Checking for Failures

e« open() returns O if it fails:

unless (open(FH, $file)) {
print "Failed to open $file\n";

} else {
read the file via file handle FH
close(FH) ;

}

unless (open(FH, $file)) {
die "Couldn't open $file";
}

open (FH, $file) or die "Couldn't open $file";

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Reading From the File

 Use the <> operator to read from a file
handle:

my $line = <FH>;

e Use chomp() to strip off newline
characters:

while (my $line = <FH>) {
chomp $line;
print $line;

}

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages
Reading from STDIN

« STDIN is a file handle that is
automatically opened for you

my $input = <STDIN>;
chomp $input;

« STDIN is the default file handle, so
this will do the same thing:
my $input = <>;
chomp $input;

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Reading a Whole File

« The <> operator can also be used in an
array context to read a whole file in a
single operation:

my @lines = <FH>;

« Similarly, chomp() can be used to strip
off newline characters of the whole array:

my @lines = <FH>;
chomp @lines;
print $lines[0];

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

File Writing Operations

 To open a file for writing:
open(OUTPUT, ">output.txt");

« To append to an existing file:
open(OUTPUT, ">>output.txt");

« To write to the file:
print OUTPUT "This is really cool\n";

— Notice: No comma (",") between the descriptor
and the string to print!

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

File Writing Snippets
e Putting it all together:

unless (open(OUTPUT, ">$file")) {
die "Couldn't write to $file";
}

print OUTPUT "Line of output\n";
close(OUTPUT) ;

e Or:

unless (open(OUT, ">>$file")) {
print "Can't write to $file\n";
} else {
print OUT "Added this line\n";
close(0OUT) ;

}

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Writing to STDOUT and STDERR

« STDOUT and STDERR are file handles that is
automatically opened for you

print STDOUT "This goes to STDOUT\n";
print STDERR "This goes to STDERR\n";

e Like STDIN for <>, STDOUT is the default
output of print:

print "More to STDOUT\n";

« STDERR is typically use to report errors:
— die and warn print their message to STDERR

print STDERR "Error detected!\n";

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages
The Magic of $__

« $ is a automatic variable in perl

— Unless otherwise specified:
e« <> assignsto $

« chomp() and many other functions and
operators operate on $

« print prints the contents of $

Summer 2009 Cartwright, De Smet, LeRoy

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

The Magic of $_: Example

 Thus:
while (<>) { # Reads from STDIN into $
chomp; # chomp $
print; # print contents of $
}

e Is equivilent to:

while ($ = <STDIN>) {
chomp $;
print $;

}

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Sample File Reading Script

#! /usr/bin/env perl
use strict;
use warnings;

eOpen the file
my $file = --example-m.tx:w//fqu??lrate an error
unless (open(IN, $file)) IT 1T Talls

die "Can't read input file '$file'"; °Read thefile line
} by line
while (my $line = <IN>) eLook for the string
if (index($line, "Important") >§/67/E///#Innpcwtant"
print $line;< ePrint the line

} } eClose the file
close(IN);+//f"""/’/’//”///”’/////”’/

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

"Idoiomatic” File Reading Script

#! /Jusr/bin/env perl _
use/st rict;/ P eOpen the file

use warnings; eGenerate an error

if it fails
my $file = "example-01.txt"; eRead the file line
open (IN, $fileWby line (into $_)
die "Can't read input fi $file'"; el ook for the string
while (<IN>) { ‘///////////////

_ | | "Important” (in $_)
\ print if(/Important/);< ePrint the line ($_)

close(IN): « eClose the file

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages
More Fun With open()

e open() can also be used to run a
process with a pipe:

my $cmd = "/bin/ls -1";

unless open(INPUT, "$cmd|") {
die "Can't run $cmd";

}

while (my $line = <INPUT>) {
print 1f index($line, "nleroy") >= 0;
}

close(INPUT):

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

More Operations

« The @ARGV array contains the command line:

scalar (@ARGV)
$ARGV[O]
* File test operators:
— "-f $name": detect if $name exists and is a file

— "-d $name": detect if $name exists and is a directory
— "-s $name": Returns the size (in bytes) of $name

« "Glob" operator: <>

my @files = <*>;
foreach my $path(<$dir/*>) { something(); }
while (my $line = <FH>) { something(); }

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Files & Directories

#! /usr/bin/env perl
use strict;
use warnings;

die "usage: example-03 directory" unless scalar(@ARGV) ==
my $dir = shift(@ARGV);
die "$dir isn't a directory" unless -d $dir;
foreach my $path (<$dir/*>) {
if (-d $path) {
print "$path is a directory\n";
} elsif (-f $path) {
print "$path is a file\n";
} else {
print "I don't know what $path is\n";

[]
’

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Files & Directories (Python)

#! /usr/bin/env python
import sys

import os

import glob

if len(sys.argv) != 2 :
print >>sys.stderr, "usage: example-03 directory"
sys.exit(1)
dirpath = sys.argv[1]
if not os.path.isdir(dirpath)
print >>sys.stderr, dirpath, "isn't a valid directory"
sys.exit(1)
for path in glob.glob(dirpath+"/*")
if os.path.isdir(path)
print path, "is a directory"
elif os.path.isfile(path)
print path, "is a file"
else :
print "I don't know what", path, "is"

COMPUTER SCIENCES CS 368 - Intro to Scripting Languages

Files & Directories (Ruby)

#! /usr/bin/env ruby
unless ARGV.size ==
warn "usage: example-02 string"
exit 1
end
dirpath = ARGV[O]
unless File.directory?(dirpath)
warn "#{dirpath} isn't a valid directory"
exit 1
end
Dir.glob("#{dirpath}/*").each do |path]|
if File.directory?(path)
puts "#{path} is a directory"
elsif File.file?(path)
puts "#{path} is a file"
else
puts "I don't know what #{path} is"
end
end

