
CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Day 4:
Basic File Text Processing

Suggested Reading:

Learning Perl (4th Ed.),

Chapter 5: Input and Output
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Reminders

• Turn in homework at START of class

• Writing code is fun!
– Write at least a little every day

– The more you do, the easier it gets

• When in doubt, ask questions!
– Zathras does not want you being 
confused

• Think about last class session
– What would you like it to cover?

– Any particular ideas?
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Homework Code Formatting

• Look at the formatting of the code 
examples in Learning Perl (4th Ed.)
– Use this as a template for your homework

• Indention is vital to making the code you 
hand in to us readable!

• Example:
if ($whatever) {
# Do something

}
foreach my $var (@array) {
if ($var eq "blah") {
print "var is $var\n";

}
}
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Homework Feedback

• Simple is almost always better

• Do this:

• Not this:
my $loop = 1;
while ($loop) {
if (whatever) {
$loop = 0;

}
}

while (1) {
if (whatever) {
last;

}
}
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(More) Homework Feedback

• Do this:

• Not this:
print "Enter command:";
my $foo = <STDIN>;
while ($foo ne "quit") {
# do some stuff
print "Enter command:";

$foo = <STDIN>;
}

while (1) {
if ($foo eq "quit") {
last;

}
# do more stuff

}
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die

• (From Learning Perl, 4th Ed.):

– The die function prints out the message you 
give it (to the standard error stream, where 
such messages should go) and ensures that 
your program exits with a nonzero exit status.

• Example:

if $error is non-zero, this will produce:

if ($error) {
die "An error has ocurred!";

}

An error has occurred at foo.pl line 5.
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Opening a File

• Use open() to open the file and create a 
file handle:
– By convention, file handle names are 
UPPERCASE

• Use close() to close the file:

open(INPUT, "my_input.txt", "r");
open(FILE, "input.txt");

close(INPUT);
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Checking for Failures

• open() returns 0 if it fails:

unless (open(FH, $file)) {
print "Failed to open $file\n";

} else {
# read the file via file handle FH
close(FH);

}

unless (open(FH, $file)) {
die "Couldn't open $file";

}

open (FH, $file) or die "Couldn't open $file";
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Reading From the File

• Use the <> operator to read from a file 
handle:

• Use chomp() to strip off newline 
characters:

while (my $line = <FH>) {
chomp $line;
print $line;

}

my $line = <FH>;



CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Reading from STDIN

• STDIN is a file handle that is 
automatically opened for you

• STDIN is the default file handle, so 
this will do the same thing:
my $input = <>;
chomp $input;

my $input = <STDIN>;
chomp $input;
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Reading a Whole File

• The <> operator can also be used in an 

array context to read a whole file in a 
single operation:

• Similarly, chomp() can be used to strip 

off newline characters of the whole array:

my @lines = <FH>;
chomp @lines;
print $lines[0];

my @lines = <FH>;
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File Writing Operations

• To open a file for writing:

• To append to an existing file:

• To write to the file:

– Notice: No comma (",") between the descriptor 
and the string to print!

open(OUTPUT, ">output.txt");

open(OUTPUT, ">>output.txt");

print OUTPUT "This is really cool\n";
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File Writing Snippets

• Putting it all together:

• Or:

unless (open(OUTPUT, ">$file")) {
die "Couldn't write to $file";

}
print OUTPUT "Line of output\n";
close(OUTPUT);

unless (open(OUT, ">>$file")) {
print "Can't write to $file\n";

} else {
print OUT "Added this line\n";
close(OUT);

}
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Writing to STDOUT and STDERR

• STDOUT and STDERR are file handles that is 
automatically opened for you

• Like STDIN for <>, STDOUT is the default 
output of print:

• STDERR is typically use to report errors:
– die and warn print their message to STDERR

print STDOUT "This goes to STDOUT\n";
print STDERR "This goes to STDERR\n";

print "More to STDOUT\n";

print STDERR "Error detected!\n";
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The Magic of $_

• $_ is a automatic variable in perl

– Unless otherwise specified:
• <> assigns to $_

• chomp() and many other functions and 
operators operate on $_

• print prints the contents of $_
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The Magic of $_: Example

• Thus:

• Is equivilent to:

while (<>) { # Reads from STDIN into $_
chomp; # chomp $_
print; # print contents of $_

}

while ($_ = <STDIN>) {
chomp $_;
print $_;

}
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Sample File Reading Script

•Open the file
•Generate an error 
if it fails
•Read the file line 
by line
•Look for the string 
"Important"
•Print the line
•Close the file

#! /usr/bin/env perl
use strict;
use warnings;

my $file = "example-01.txt";
unless (open(IN, $file) ) {

die "Can't read input file '$file'";
}
while (my $line = <IN>) {

if (index($line, "Important") >= 0) {
print $line;

}
}
close(IN);
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"Idoiomatic" File Reading Script

#! /usr/bin/env perl
use strict;
use warnings;

my $file = "example-01.txt";
open (IN, $file ) or

die "Can't read input file '$file'";
while (<IN>) {

print if(/Important/);
}
close(IN);

•Open the file
•Generate an error 
if it fails
•Read the file line 
by line (into $_)
•Look for the string 
"Important" (in $_)
•Print the line ($_)
•Close the file
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More Fun With open()

• open() can also be used to run a 
process with a pipe:

my $cmd = "/bin/ls -l";
unless open(INPUT, "$cmd|") {

die "Can't run $cmd";
}
while (my $line = <INPUT>) {

print if index($line, "nleroy") >= 0;
}
close(INPUT);
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More Operations

• The @ARGV array contains the command line:

• File test operators:
– "-f $name": detect if $name exists and is a file

– "-d $name": detect if $name exists and is a directory

– "-s $name": Returns the size (in bytes) of $name

• "Glob" operator: <>

my @files = <*>;
foreach my $path(<$dir/*>) { something(); }
while (my $line = <FH>) { something(); }

scalar(@ARGV)
$ARGV[0]
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Files & Directories

#! /usr/bin/env perl
use strict;
use warnings;

die "usage: example-03 directory" unless scalar(@ARGV) == 1;
my $dir = shift(@ARGV);
die "$dir isn't a directory" unless -d $dir;
foreach my $path (<$dir/*>) {

if (-d $path) {
print "$path is a directory\n";

} elsif (-f $path) {
print "$path is a file\n";

} else {
print "I don't know what $path is\n";

}
}
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Files & Directories (Python)
#! /usr/bin/env python
import sys
import os
import glob

if len(sys.argv) != 2 :
print >>sys.stderr, "usage: example-03 directory"
sys.exit(1)

dirpath = sys.argv[1]
if not os.path.isdir( dirpath ) :

print >>sys.stderr, dirpath, "isn't a valid directory"
sys.exit(1)

for path in glob.glob( dirpath+"/*" ) :
if os.path.isdir( path ) :

print path, "is a directory"
elif os.path.isfile( path ) :

print path, "is a file"
else :

print "I don't know what", path, "is"
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Files & Directories (Ruby)
#! /usr/bin/env ruby
unless ARGV.size == 1

warn "usage: example-02 string"
exit 1

end
dirpath = ARGV[0]
unless File.directory?(dirpath)

warn "#{dirpath} isn't a valid directory"
exit 1

end
Dir.glob("#{dirpath}/*").each do |path|

if File.directory?(path)
puts "#{path} is a directory"

elsif File.file?(path)
puts "#{path} is a file"

else
puts "I don't know what #{path} is"

end
end


