
CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 1

Day 6: References

suggested reading:

perlreftut

http://perldoc.perl.org/perlreftut.html

or "perldoc perlreftut"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 2

Turn In Homework

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 3

Yesterday's Homework

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 4

What we have

• $ A scalar
– Holds one thing.

• @ An array

– Holds a bunch of scalars.

• % A hash

– Holds a bunch of scalars.

• What if I need something more
complex?

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 5

References

(Similar to pointers, for you C and
Pascal fans)

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 6

• A reference is a scalar that refers to
some other variable

my $a = 10;

my $b = \$a;

${$b} = 5;

print $a; # prints "5"

References

$a: 10

$b:

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 7

• You can point a scalar at a named
variable:

my $array_ref = \@array;

my $hash_ref = \%hash;

my $scalar_ref = \$scalar;

Creating references

@array: (1,2,3)

$array_ref:

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 8

• You can point a scalar at an
anonymous array or hash:

my $array_ref = [1, "two", 3.0];

my $hash_ref = { "one" => 1,

"two" => 2 };

Creating references

(1,2,3)

$array_ref:

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 9

Using references

• Put ${} around a scalar ref to look
inside.

my $scalar_ref = \$scalar;

– $scalar and ${$scalar_ref} are

identical

$scalar = 1;

${$scalar_def} = 2;

print "$scalar == 2\n";

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 10

Using references

• @{} and %{} work the same way.
Remember to use $ to look at
individual entries!

my $array_ref = \@array;

• @array and @{$array_ref} are
identical

• $array[2] and ${$array_ref}[2]
are identical

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 11

Using references

my $hash_ref = \%hash;

• %hash and %{$hash_ref} are
identical

• $hash{'test'} and
${$hash_ref}{'test'} are identical

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 12

Abbreviations: ->

• These are identical
– $array[2]

– ${$array_ref}[2]
– $array_ref->[2]

• These are identical
– $hash{'test'}

– ${$hash_ref}{'test'}
– $hash_ref->{'test'}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 13

Abbreviations: [1][2] {1}{2}

• You can omit the -> between indices

• These are identical
– ${${$x[1]}{'fred'}}[9]
– $x[1]->{'fred'}->[9]

– $x[1]{'fred'}[9]

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 14

Nesting

• You can nest these forever.
– Or until you run out of memory.

– Whichever comes first.

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 15

Uses

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 16

Grades (Hash of arrays)

• There are 5 homework assignments,
each is worth 0, 1, or 2 points.

• Here are my grades:

my(@grades) = (0,1,1,2,2);

• There are multiple students.

my(%class) = (

'Alan' => \@grades,

'Nick' => [2,1,2,2,2],

'Tim' => [2,2,2,2,2],

);

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 17

Let's run the averages

foreach my $student (key %class) {

my $grade_ref = $class{$student};

my @grades = @{$grade_ref};

my $total = 0;

foreach my $score (@grades) {

$total += $score;

}

my $average = $total / scalar(@grades);

print "$student: $average\n";

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 18

Bowling (Array of arrays)

• Bowling is broken into 10 frames,
each with 1, 2, or occasionally 3
balls. You score for each ball.

• Easily held in an array of arrays!
• my(@scores) = ([5,0], [7,1], [10],
[0,0], [3,0], [4,0], [0,4], [3,4], [10],
[0,0]);

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 19

Bowling (Hash of arrays of
arrays)

$bowling{'Alan'}[1][0] = 5;

$bowling{'Alan'}[1][1] = 0;

$bowling{'Alan'}[2][0] = 7;

$bowling{'Alan'}[2][1] = 3;

my(%bowling) = (

'Alan' => [[5,0], [7,3]],

'Joe' => [[10,0], [10,0]],

'Chris' => [[8,1], [8,1]],

);

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 20

Structured data

• Perl has no direct equivalent to a
class or struct in Java/C++

• Use hashes (of hashes) to store
structured data

$movies{'Brazil'}{'Director'} =
'Terry Gilliam';

$movies{'Brazil'}{'Actors'}[0] =
'Jonathan Pryce';

• Perl's object system built on this

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 21

More complex data structures

• Linked lists
– Or you can use an array

• Trees
– Or you can use a hash

• Directed graphs
– You could use a hash

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 22

Linked List Example

Really, just use an array

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 23

Passing into functions

• How to pass two arrays to a single
function?

@a1 = (1,2);

@a2 = (3,4);

myfunc(@a1, @a2);

• Turns into (1,2,3,4)!

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 24

Passing into functions

myfunc(\@a1, \@a2);

sub myfunc {

my($a1_ref, $a2_ref) = @_;

my @a1 = @{$a1_ref};

my @a2 = @{$a2_ref};

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 25

Passing out of functions

• What if you want to modify the thing
passed in. (chomp!)

$string = "test\n";
my_chomp(\$string);
sub my_chomp {

if(substr(${$_[0]}, -1, 1) eq "\n")
{

${$_[0]} = substr(${$_[0]}, 0, -
1);
}

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 26

Other languages

• Structured data via class/object
– Ruby, Python, Javascript, etc.

– Typically: variable.member_variable

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 27

Python

• Nested data structures Just Work

Array holding an array

a = [1, 2, ['3.1', '3.2]', 4]

a[2][0] is '3.1'

Hash holding an array

d = {'a' : 'b', 'c' : [1,2] }

d['c'][1] is 2

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 28

Ruby

• Nested data structures Just Work

Array holding an array

a = [1, 2, ['3.1', '3.2]', 4]

a[2][0] is '3.1'

Hash holding an array

d = {'a'=> 'b', 'c'=> [1,2] }

d['c'][1] is 2

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 29

Ruby and Python references

• Like Java, variables for objects are
references

• Hashes and arrays are objects
a = [1, 2]

b = a

b[0] = 'fred' # Modified a[0]!

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 30

So how do you copy arrays and
hashes in Ruby and Python?

• Python:
array_b = list(array_a)

hash_b = hash_a.copy()

• Ruby
array_b = array_a.clone()

hash_b = hash_b.clone()

• These are shallow copies!
– Sub arrays and hashes are still shared!

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 31

Some Philosophy

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 32

The scripting mindset

• Your time versus the computer's

• Computers are fast

– Moore's law says next month's
computer is 10% faster*

* Moore's law says nothing of the sort

• When in doubt, waste the
computer's time, not yours

• Scripting languages based around
this idea

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 33

Clarity, Correctness, and
Efficiency

• Sometimes you make tradeoffs

• The tradeoffs vary based on the task
• A good general rule

1. Clarity

2. Correct

3. Efficient

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy 34

…premature optimization
is the root of all evil.

- Donald Knuth (paraphrased)

