
CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Day 7:
Regular Expressions, Part 1

Suggested Reading:

Learning Perl (4th Ed.),

Chapter 7: In the World of RegExps

Chapter 8: Matching with RegExps

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Reminders

• Turn in homework at START of class

• Writing code is fun!

– Write at least a little every day

– The more you do, the easier it gets

• When in doubt, ask questions!

– Zathras does not want you being
confused

• This is a recording

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

What is a Regular Expression?

• Provide a concise and flexible means for
identifying strings of text of interest
– Particular characters

– Words

– Patterns of characters

• Written in a formal language that can be
interpreted by a regular expression processor, a
program that either serves as a parser generator
or examines text and identifies parts that match
the provided specification

• Abbreviations: regex or regexp

• Plural abbreviations: regexes, regexps, or
regexen

Source: http://en.wikipedia.org/wiki/Regular_expression, 16 July 2009

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Example Uses

• The sequence of characters "car" in any
context, such as "car", "cartoon", or
"bicarbonate"

• The word "car" when it appears as an
isolated word

• The word "car" when preceded by the
word "blue" or "red"

• A dollar sign immediately followed by one
or more digits, and then optionally a
period and exactly two more digits

Source: http://en.wikipedia.org/wiki/Regular_expression, 16 July 2009

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Basic Perl Syntax

• Simple usage:

• $_ is assumed:

• Common idiom:

if($line =~ /expression/) {
}

if(/expression/) {
}

while(<>) {
if(/expression/) {
do something

}
}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Basic Perl Examples

• Match:
– The sequence of characters "car" in any
context, such as "car", "cartoon", or
"bicarbonate"
if(/car/) {

print;
}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Testing Your Regex

• Use 'perl -ne' to try it out:
– From the shell:

– For example, the "cat" expression:

$ perl -ne 'if (/cat/) { print ":$_"; }'
abc
catalog
:catalog
cat
:cat
dog

$ perl -ne 'if (/expr/) { print; }'

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Meta Characters

• Characters whcih save special meanings in
regular expressions

– \ Quote the next metacharacter

– ^ Match the beginning of the line

– . Match any character (except newline)

– $ Match the end of the line (or before
newline at the end)

– | Alternation

– () Grouping

– [] Character class

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Modifiers

• * Match 0 or more times

• + Match 1 or more times

• ? Match 1 or 0 times

• {n} Match exactly n times

• {n,} Match at least n times

• {n,m} Match at least n but not more
than m times

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Metacharacters: Anchors '^' and '$'

• Regexs can match strings that occur
anywhere in the text line:
– /abc/:

• Match: "abc", " abc", "blabc", "abcdef"

• ^ anchors the regex to the start of the
line
– /^abc/:

• Match: "abc", "abcdef"
• Not: " abc", "blabc"

• $ anchors the regex to the end of the line
– /abc$/:

• Match: "abc", " abc", "blabc"
• Not: "abcdef", "abc "

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Meta Character: .

• "." matches any single character
– /a.c/:

• Match "abc", "a c", "a.c", "a%c"
• Not: "abbc", "ac", "a..c"

• With anchors:
– /^a.c/:

• Match "abc", "a c", "a.c", "a%c"
• Not: " abc", "-a.c", "a..c"

– /a.c$/:
• Match "abc", "a c", "a.c", "a%c"
• Not: "abc ", "a.c:", "a..c"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Meta Character: \

• Used to "escape" the next metacharacter,
so it's used like a normal character
– "\." match only "." chars
– /a\.c/:

• Match "a.c", " a.c", "a.c "
• Not: "abbc", "ac", "a..c", ", "abc", "a c", "a%c"

• Can be used to escape itself:
– /a\\c/:

• Match "a\c", "a\c xyz"
• Not: "abc", "a/c", " abc", "-a.c", "a..c"

• Can be used to escape "/":
– /a\/c/:

• Match "a/c", "aaaa/c", " a/c"
• Not: "abc", "a c", "abc ", "a\c:", "a..c"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Modifier: *

• *: Match preceding item any number of times

• /.*/:
– Will match any character, any number of times

– The "any old junk" pattern

• /a.*c/:
– Match: "ac", "abc", "a c", "abcabc"

– Not: "a", "c", "ca"

• /ab*c/:
– Match: "ac", "abc", "abbbbc", "acc"

– Not: "a" "c", "a.c", "adc"

• /a\.*c/:
– Match: "ac", "a.c", "acc", "a...c", "aaac", "aaa...c"

– Not: "a" "c", "abc", "abc", "abbbbc"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Modifier: +

• +: Match preceding item one or more of times

• /.+/:
– Will match any character, one or more times

• /a.+c/:
– Match: "abc", "abbc", "a c", "abababc", "axxc"

– Not: "ac", "c", "ca"

• /ab+c/:
– Match: "abc", "abbbbc"

– Not: "ac", "acc", "a", "c", "a.c", "abxc", "adc"

• /a\.+c/:
– Match: "a.c", "a...c"

– Not: "ac", "abbc", "c", "ca", "a.xc", "ax.c", "a...xc"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Modifier: ?

• ?: Match preceding item zero or one times

• /.?/:
– Will match any character, zero or one times

• /a.?c/:
– Match: "abc", "a c", "axc", "ac"

– Not: "abbc", "c", "ca", "a bc"

• /ab?c/:
– Match: "abc", "ac", "acc"

– Not: "a", "c", "abbc", "adc"

• /a\.?c/:
– Match: "a.c", "ac"

– Not: "abbc", "c", "ca", "a.xc", "ax.c", "a...xc"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Modifier: {}

• {n}: Match preceding item exactly n times

• {n,}: Match preceding item at least n times

• {n,m}: Match preceding item at least n but not
more than m times

• /a.{2}c/:
– Match: "abbc", "ab c", "a bc", "a..c"

– Not: "abc", "a", "ac", "a c", "axxxc"

• /ab{2,}c/:
– Match: "abbc", "abbbbc"

– Not: "abc", "ac", "a bc", "adc"

• /a.{1,2}c/:
– Match: "a.c", "abc", "abbc", "a:c", "a:bc", "ab c"

– Not: "ac", "c", "ca", "a...c", "abbbc", "a::bc"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Options

• Can be used to modify how the
expression is evaluated

– /<expr>/<opts>

• i: Case insensitive matching

– /abc/i
• Match: "abc", "aBc", "ABC"
• Not: "bac", "CaB"

• Also: x and s

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Basic Character Classes

• \w Match a "word" character
(alphanumeric plus "_")

• \W Match a non-"word" character
• \s Match a whitespace character

• \S Match a non-whitespace
character

• \d Match a digit character

• \D Match a non-digit character

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Character classes: \s

• \s matches "whitespace" characters

– space (" "), tab ("<tab>" or "\t"),

newline ("<newline>" or "\n")

– /^\s+/ will match any line that starts

with whitespace:

• Match: " ", " abcdef", "<tab>abc"

• Not: "", ".", "abc ", "*<newline>"
• Note: Equivilent to /^\s/

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Character classes: \s and \S

• \S matches any non-whitespace
characters

– /^\S+/ will match any line that starts

with a non-whitespace:

• Match: "a", ".", "1", "* "
• Not: " ", "<tab>abc"

• Note: Equivilent to /^\S/

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Character classes: \w and \W

• \w matches "word" characters

– Alphanumerics + "_"

– /^\w+/:
• Match: "a", "abcdef", "ABC ", "abc++", "123", "_abc"

• Not: "", ".", " abc", "*", "-AbC", "+x"

• Note: Equivilent to /^\w/

• \W matches non-word characters

– /^\Wabc$/:
• Match: " abc", "*abc", ":abc", "+abc"

• Not: "a", "abcdef", " ABC ", "123", ":abc++", "_abc"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Character classes: \d and \D

• \d matches "digit" characters
– 0 1 2 3 4 5 6 7 8 9
– /^\d+/:

• Match: "123", "1a", "123ABC "
• Not: "", ".", " 12abc", "a123", "-5", "+x"

• Note: Equivilent to /^\d/

• \D matches non-digit characters
– /^\D+0$/:

• Match: "c0", "*000", ":abc0", "+abc0"
• Not: "0a", "abcde0f", " ABC ", "1230",
":abc++", "_abc"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Custom Character Classes []

• [<list>] is used to specify a list of
characters (or classes) to match

– [c1-c2] specifies a range of characters

– /^[a-z\d]+/:
• Match: "1", "abc2345", "123", "3456abc",
"a1", "abc"

• Not: " 1", "A1", ".234", "abc_345"

– /^[a-z]+$/i:
• Match: "abc", "ABC", "aBcD"
• Not: "123a", "a1", "1", "abc "

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Custom Character Classes [^]

• [^<list>] is used to specify a list of
characters (or classes) to not match

– /^[^a-z]+/:
• Match: "1", " abc", "&", "123", "3456abc",
"Z123"

• Not: "a", "a1", "abc", ""

– /^[^\d][\d\.]+/:
• Match: "a123", "a1", ".1", "A.1", "%.1",
"a1.1"

• Not: "123a", "12", "1", "abc", "abc1"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Matching with m//

• With /expr/, any slashes in the
expression need to be escaped

– /\/home\/foo\/data\/file01\.txt/

– /http:\/\/www\.cs\.wisc\.edu\/nleroy/

• More clear: use the m// operator

– Can use chars other than '/':
• m|/home/foo/data/fileio\.txt|

• m!/http://www\.cs\.wisc\.edu/~nleroy!

– Must escape if you're using that char, though!

• m|ab\|c|

• m!ab\!c!

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Class Exercise 1

• /^\d\d:\d\d[ap]/

– "8:1"

– "12:34"
– "1:23a"

– "34:56"
– "23:45"

– "02:34p"
– "29:59a"

– "56:78"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Class Exercise 2

• /^\d{1,2}:\d{2}[ap]?/

– "8:1"

– "12:34"
– "1:23a"

– "34:56"
– "23:45"

– "02:34p"
– "29:59a"

– "56:78"

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Class Exercise 3

• /^[012]?\d:[0-5]\d[ap]?/

– "8:1"

– "12:34"
– "1:23a"

– "34:56"
– "23:45"

– "02:34p"
– "29:59a"

– "56:78"

