
CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Day 13:
Error Handling and Debugging

Suggested Reading:

Programming Perl (3rd Ed.),

Chapter 20: The Perl Debugger

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Reminders

• Turn in homework at START of class

• Writing code is fun!

– Write at least a little every day

– The more you do, the easier it gets

• When in doubt, ask questions!

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

The Condor Philosophy

• Errors Will Occur!
– Murphy was an optimist

– Anything that can go wrong, will go
wrong.

– Do your best to prevent errors
– Must handle as best as possible when
they do occur

– You take, Zathras die. You leave,
Zathras die. Either way, it is bad for
Zathras.

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Types of Errors

• Software bugs
– Your software

– Other software that yours interacts with
– Never in my software, though!

• Hardware failures
• Bad data
• User error
• Network failures

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Buggy Script

#! /usr/bin/env perl
use strict;
use warnings;

sub Print($$)
{

my($key, $ref) = @_;
print "$key: " . join(", ", @{$ref}) . "\n";

}

my %Data = (foo => [1, 2, 3, 4],
bar => [0, 3, 5, 9],
blah => [1],);

foreach my $key (keys %Data) {
Print($key, $Data{key});

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Running it...

• So, we try to run it, and Perl tells us
that it hates it
bash-3.2$ perl example-01.pl
Can't use an undefined value as an ARRAY reference at

example-01.pl line 8.
bash-3.2$

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Adding a Print Statement

#! /usr/bin/env perl
use strict;
use warnings;

sub Print($$)
{

my($key, $ref) = @_;
print "<$key> <$ref>\n";
print "$key: " . join(", ", @{$ref}) . "\n";

}

my %Data = (foo => [1, 2, 3, 4],
bar => [0, 3, 5, 9],
blah => [1],);

foreach my $key (keys %Data) {
Print($key, $Data{key});

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

The Perl Debugger...

bash-3.2$ perl -d example-01.pl

Loading DB routines from perl5db.pl version 1.28
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

main::(example-01.pl:12): my %Data = (
main::(example-01.pl:13): foo => [1, 2, 3, 4],
main::(example-01.pl:14): bar => [0, 3, 5, 9],
main::(example-01.pl:15): blah => [1],
main::(example-01.pl:16):);

DB<1>

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Debuggers...

• Debuggers capabilites:
– Set break points

– Step through code line by line
– Examine variables

– Watch points

– Stack traces

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Perl Debugger Help

List/search source lines: Control script execution:
l [ln|sub] List source code T Stack trace
- or . List previous/current line s [expr] Single step [in expr]
v [line] View around line n [expr] Next, steps over subs
f filename View source in file <CR/Enter> Repeat last n or s
/pattern/ ?patt? Search forw/backw r Return from subroutine
M Show module versions c [ln|sub] Continue until position

Debugger controls: L List break/watch/actions
o [...] Set debugger options t [expr] Toggle trace [trace expr]
<[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] [cnd] Set breakpoint
! [N|pat] Redo a previous command B ln|* Delete a/all breakpoints
H [-num] Display last num commands a [ln] cmd Do cmd before line
= [a val] Define/list an alias A ln|* Delete a/all actions
h [db_cmd] Get help on command w expr Add a watch expression
h h Complete help page W expr|* Delete a/all watch exprs
|[|]db_cmd Send output to pager ![!] syscmd Run cmd in a subprocess
q or ^D Quit R Attempt a restart

Data Examination: expr Execute perl code, also see: s,n,t expr
x|m expr Evals expr in list context, dumps the result or lists methods.
p expr Print expression (uses script's current package).
S [[!]pat] List subroutine names [not] matching pattern
V [Pk [Vars]] List Variables in Package. Vars can be ~pattern or !pattern.
X [Vars] Same as "V current_package [Vars]". i class inheritance tree.
y [n [Vars]] List lexicals in higher scope <n>. Vars same as V.
e Display thread id E Display all thread ids.

For more help, type h cmd_letter, or run man perldebug for all docs.

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Fixed

#! /usr/bin/env perl
use strict;
use warnings;

sub Print($$)
{

my($key, $ref) = @_;
print "$key: " . join(", ", @{$ref}) . "\n";

}

my %Data = (foo => [1, 2, 3, 4],
bar => [0, 3, 5, 9],
blah => [1],);

foreach my $key (keys %Data) {
Print($key, $Data{$key});

}

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Exceptions

• Exception handling is a programming
language construct ... designed to
handle the occurrence of exceptions,
special conditions that change the
normal flow of program execution.

Source: http://en.wikipedia.org/wiki/Exception_handling, 2 August 2009

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Exceptions in Python and Ruby

• Python uses try / except
mechanism

– Similar to many other languages which
support exceptions

• Ruby uses a "rescue" block

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Python Exception Example

#! /usr/bin/env python
import sys

if len(sys.argv) != 2 :
print >>sys.stderr, "usage: example <file>"
exit(1)

fname = sys.argv[1]
try:
fh = open(fname)
for line in fh.readlines() :
print line,
fh.close()

except Exception, e:
print "Failed to open", fname, ":", e
exit(1)

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Ruby Exception Example
#! /usr/bin/env ruby

unless ARGV.size == 1
warn "usage: example <file>"
exit 1

end
file = ARGV[0]

begin
IO.foreach(file) do |line|
puts line

end

rescue
$stderr.print "IO failed: " + $!
raise

end

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Exceptions In Perl

• Perl has a crude exception
mechanism

– Somewhat a "bolt on"

– Use an "eval" block to execute the
code, and then examine $@ to determine

if an exception occurred

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Perl's eval()

• eval EXPR or eval BLOCK
• In the first form, the return value of EXPR is parsed and

executed as if it were a little Perl program. The value of the
expression (which is itself determined within scalar context)
is first parsed, and if there weren't any errors, executed in
the lexical context of the current Perl program, so that any
variable settings or subroutine and format definitions remain
afterwards. Note that the value is parsed every time the
"eval" executes. If EXPR is omitted, evaluates $_. This form
is typically used to delay parsing and subsequent execution
of the text of EXPR until run time.

• In the second form, the code within the BLOCK is parsed
only once--at the same time the code surrounding the "eval"
itself was parsed--and executed within the context of the
current Perl program. This form is typically used to trap
exceptions more efficiently than the first (see below), while
also providing the benefit of checking the code within BLOCK
at compile time.

Source: perldoc -f eval

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Perl Exception Example
#! /usr/bin/env perl
use strict; use warnings;

die "usage: example <file>" unless scalar(@ARGV) == 1;
my $file = shift(@ARGV);
eval {

open(FILE, $file) or
die "Unable to open file '$file'";

};
if ($@) {

print "Ahh: $@";
}
else {

while(<FILE>) {
print;

}
close(FILE);

}
print "bye\n";

CS 368 – Intro to Scripting Languages

Summer 2009 Cartwright, De Smet, LeRoy

Loading Optional Modules

#! /usr/bin/env perl
use strict;
use warnings;
sub Load($$)
{

my($name, $feature) = @_;
eval "require $name";
if($@) {

print STDERR "Can't find $name: $feature disabled;\n";
}
else {

import $name;
}

}

Load("BadModule", "Something stupid");
Load("Time::ParseDate", "Date parsing");

