Computer Sciences 368 Scripting for CHTC

Day 14: Wrapper Scripts
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Wrapper Scripts

e Script that runs your real executable
e Named as executable in submit file
e Runs on the execute machine

#!/usr/bin/env python
import os

os.system('real-job argl arg2 arg3 ...")
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Example Submit File With Wrapper

executable = wrapper.py
transfer _input files = real-job, input, ..

e Condor automatically transfers file in executable
e But, real executable must be named explicitly
e Include with any other input files to transfer
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Why Use a Wrapper Script?

Handle jobs with complex run-time requirements

o Before execution
— Prepare files and/or executable
— Set up environment variables

e Execution
— Prepare complex command-line arguments
— Batch together many little jobs

o After execution
— Find, filter, and/or consolidate output files
— Compress output files
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Two Key Principles
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Be Kind to Your Submit Machine

e Typically, submit machine is shared resource
— Like submit-368 (only worse)

e Many tasks run there
— condor_submit
— condor_schedd
— 1 condor_shadow per running job
— DAGMan pre- and post-scripts
— Maybe others

e Thus, avoid doing anything substantial there
— Especially affecting CPU, memory, or disk



Computer Sciences 368 Scripting for CHTC

Bring It With You
e Applies to everything your job needs to run
e Obvious
— Executable

— Input data and command-line arguments

e Less obvious
— Underlying software (e.g., R, MATLAB, Octave)
— Run-time libraries and other software dependencies
— Configuration and environment
— Directory layouts

e Especially important in Open Science Grid
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Before Execution
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Unpacking Files

e May have files bundled together in archive
e May be compressed (but see next slide)

e Common tools: tar, unzip, gunzip, bunzip2
e Good to check exit status, messages, and a file or 2

cnd = ['tar', 'xzf', 'big-data.tar.gz']
status, stdout, stderr = my system(cmd)
1f status !'= 0:
myfail('untar failed: %d' % (status))
1f re.search(r'[Ee]rror', stderr):
myfail('untar error: %s' % (stderr))
1f not os.path.isdir('big-data-dir'):
myfail('no data dir!"')
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Caveats About Large Input Data

e Remember the principle about submit machines
— Compressing large files takes lots of CPU and disk I/0

— Do not archive/compress big data on submit machine

+ Command-line
+ DAGMan pre-scripts
+ local or scheduler universe

e Great to do elsewhere, ahead of time
— Maybe as vanilla universe job; still frowned upon
— Otherwise, just transfer files or even whole directories

e Or place big data files elsewhere, and download to
execute machine from wrapper script!
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Prepare Files and Directories

e Allinput files end up in top-level execute directory
e Unpacking an archive may yield subdirectories

e Your job may need input files organized differently
e May need other directories/files (e.g., for output)

unpack _input_archive('big-data.tar.gz')
os.mkdir('input')

shutil.copy('params.txt', 'input/p.conf')
os.chmod (0400, 'input/p.conf')
shutil.move('big-data', 'input/samples')

os.mkdir('output')
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Refresher: Environment Variables

e 0S.environ:dictionary of environment variables
e Readable and writable; inherited by subprocesses
e May need to prep environment for real executable
e Consult its documentation for names & meanings

home = os.getcwd()
r file = os.path.join(home, 'R.env')
if os.path.exists(r file):
os.environ['R_ENVIRON USER'] = r_ file
else:
print >> sys.stderr, 'No R environ!'
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Finding Programs

e PATH tells system where to find programs to run

e Set if your executable runs another program that is
in a weird location (e.g., that the job brought along)

e Usually, prepend to existing PATH; colon separated

home = os.getcwd()
myzip = os.path.join(home, 'myzip', 'bin')
1f os.path.isdir(myzip):
os.environ['PATH'] = myzip + '":' + \
os.environ['PATH']

else:
print >> sys.stderr, 'No myzip dir!’
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Finding (Dynamic) Libraries

e When bringing along compiled code, may need to
tell system where to find its libraries (*. so)

e Addto LD _LIBRARY_PATH environment variable
e May need to ask a sysadmin for help!

LLP = "LD_LIBRARY_PATH'
home = os.getcwd()
myzip = os.path.join(home, 'myzip', 'lib')
if os.environ.has key(LLP):
os.environ[LLP] += '":' + myzip
else:
os.environ[LLP] = myzip
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Refresher: System Calls
e Run sub-shell, which runs command, no output:
exit status = os.system('echo $PATH')

e More complexity, more control:

— Sub-shell only on demand
— Get output and sane exit status code
— Command and arguments as sequence elements

def my system(command, shell=False):

p = subprocess.Popen(command, shell=shell,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

(stdout, stderr) = p.communicate()

return (p.returncode, stdout, stderr)

status, stdout, stderr = my system(['foo', 'arg'l])
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Parameter Conversions |

e Command arguments can be complicated & messy
o Wrapper can offer simpler command-line interface

% R CMD BATCH --args argl arg2 foo.R
% Rscript foo.R argl arg2

e Wrapper scripts could:
— Hardcode“extra”arguments (e.g., CMD BATCH --args)
— Compute arguments from simpler one(s) (e.g., fractal)
— Look up arguments in table (e.g., dictionary, file)
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Parameter Conversions i
o Sketch of a file/dictionary conversion

params = {}
pfile = open('parameters.txt')
for line in pfile:
parts = line.strip().split()
params[parts[0]] = parts[1l:]
pfile.close()

case = sys.argv[1l]

1f not params.has key(case):
print >> sys.stderr, 'Bad case', case
sys.ex1it(1l)

arguments = params|[case]
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Batching |

e Remember: Ideal job duration is 10 min — 4 hours

e Imagine app. runs for 3 secs... but there are 100K!
— Total CPU time is 300K secs =3d 11h 20m
— If 60 secs overhead: total time is 6.3M secs =72d 22h

e One solution: Group many small tasks per job
— 100 jobs x 3000 runs; 60 s overhead; 306K secs (+2%)

e Good case for a DAG
— Script creates job-sized units of work, creates inputs
— Wrapper script responsible for running app. N times
— Final node brings together all results
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Batching Il

e Sketch of a batching wrapper
e Similar to the prime-number counter in many ways

start, end = sys.argv[l:3]
for 1 1n xrange(start, end + 1):

cmd = ['foo'] + calculate args(1i)
status, stdout, stderr = my system(cmd)

1f status != 0O:

record output(i, stdout)
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After Execution
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Prepare Output Files |

e Program may put key output files in strange places

e By default, Condor transfers only new and changed
files in top-level directory on execute machine

e Two approaches (use alone or in combination):
— Tell Condor where to expect your output files
— Move output files to where Condor expects them

e Rename files to identify better or avoid conflicts

e Also, consider archiving and compressing output
(similar caveats apply as with input files)
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Prepare Output Files Il

e Suppose CSV output is scattered among subdirs

transfer_output files = main.out, outputs/

os.mkdir('outputs"')
n =20
for dir, x, f in os.walk('foo-out'):
for file in fnmatch.filter(f, '*.csv'):
src = os.path.join(dir, file)
new fn = '%04d %s' % (n, file)
dst = os.path.join('outputs', new fn)
shutil.move(src, dst)
n += 1
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Being Selective About Output

e Maybe only a small fraction of output data matters
o Take time on execute machine to shrink output files

original = open(output filename)
realdata = open(new _output filename, 'w')
for line 1in original:
if re.search(r'wibble', line):
realdata.write(line)
realdata.close()
original.close()

cmd = 'gzip -9 ' + new output filename
exit status = os.system(cmd)
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Complex Runtimes
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The MATLAB Syndrome

e Need a license to run“normal” MATLAB

e But not compiled MATLAB

e But, runtime version must match compiler version
e Many CHTC/MATLAB jobs are forwarded to OSG

e No idea what MATLAB will exist, if any

e Also, may need non-standard libraries...

e Plus configuration...
o Yikes!
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Some Approaches

e Essentially, bring everything with the job

— MATLAB runtime (~ 200 MB com

p., ~ 500 MB uncomp.)

— All software and library dependencies
— Extra MATLAB libraries & configuration
— Compiled MATLAB script(s), inputs, arguments

e Moving toward virtual machine

s (cf. Amazon EC2)

— Take entire Linux machine with youl!
— Literally replicates your entire environment

— There is a performance penalty,

out do you care?

e CDE: Bring everything you neec

_but not whole VM

http://www.stanford.edu/~pgbovine/cde.html
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Homework
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Homework

e Play cards... alot! (10M-100M times)

o Write a wrapper script for a C program
— Batch runs
— Filter output

e Optional: Do post-processing analysis and graph
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Course Evaluations

e Must be enrolled to fill out
e Use #2 pencil only

e Be sure to fill out top part:
Instructor: Tim Cartwright Course #: 368 Section #: 004

e Please write constructive comments on back!

e Need volunteer to take forms and pencils to Cathy
Richard, Comp Sci 5360



