Computer Sciences 368 Scripting for CHTC

Day 14: Wrapper Scripts

Computer Sciences 368 Scripting for CHTC

Turn In Homework

Computer Sciences 368 Scripting for CHTC

Homework Review

Computer Sciences 368 Scripting for CHTC

Introduction

Computer Sciences 368 Scripting for CHTC

Wrapper Scripts

e Script that runs your real executable
e Named as executable in submit file
e Runs on the execute machine

#!/usr/bin/env python
import os

os.system('real-job argl arg2 arg3 ...")

Computer Sciences 368 Scripting for CHTC

Example Submit File With Wrapper

executable = wrapper.py
transfer _input files = real-job, input, ..

e Condor automatically transfers file in executable
e But, real executable must be named explicitly
e Include with any other input files to transfer

Computer Sciences 368 Scripting for CHTC

Why Use a Wrapper Script?

Handle jobs with complex run-time requirements

o Before execution
— Prepare files and/or executable
— Set up environment variables

e Execution
— Prepare complex command-line arguments
— Batch together many little jobs

o After execution
— Find, filter, and/or consolidate output files
— Compress output files

Computer Sciences 368 Scripting for CHTC

Two Key Principles

Computer Sciences 368 Scripting for CHTC
Be Kind to Your Submit Machine

e Typically, submit machine is shared resource
— Like submit-368 (only worse)

e Many tasks run there
— condor_submit
— condor_schedd
— 1 condor_shadow per running job
— DAGMan pre- and post-scripts
— Maybe others

e Thus, avoid doing anything substantial there
— Especially affecting CPU, memory, or disk

Computer Sciences 368 Scripting for CHTC

Bring It With You
e Applies to everything your job needs to run
e Obvious
— Executable

— Input data and command-line arguments

e Less obvious
— Underlying software (e.g., R, MATLAB, Octave)
— Run-time libraries and other software dependencies
— Configuration and environment
— Directory layouts

e Especially important in Open Science Grid

Computer Sciences 368 Scripting for CHTC

Before Execution

Computer Sciences 368 Scripting for CHTC

Unpacking Files

e May have files bundled together in archive
e May be compressed (but see next slide)

e Common tools: tar, unzip, gunzip, bunzip2
e Good to check exit status, messages, and a file or 2

cnd = ['tar', 'xzf', 'big-data.tar.gz']
status, stdout, stderr = my system(cmd)
1f status !'= 0:
myfail('untar failed: %d' % (status))
1f re.search(r'[Ee]rror', stderr):
myfail('untar error: %s' % (stderr))
1f not os.path.isdir('big-data-dir'):
myfail('no data dir!"')

Computer Sciences 368 Scripting for CHTC

Caveats About Large Input Data

e Remember the principle about submit machines
— Compressing large files takes lots of CPU and disk I/0

— Do not archive/compress big data on submit machine

+ Command-line
+ DAGMan pre-scripts
+ local or scheduler universe

e Great to do elsewhere, ahead of time
— Maybe as vanilla universe job; still frowned upon
— Otherwise, just transfer files or even whole directories

e Or place big data files elsewhere, and download to
execute machine from wrapper script!

Computer Sciences 368 Scripting for CHTC

Prepare Files and Directories

e Allinput files end up in top-level execute directory
e Unpacking an archive may yield subdirectories

e Your job may need input files organized differently
e May need other directories/files (e.g., for output)

unpack _input_archive('big-data.tar.gz')
os.mkdir('input')

shutil.copy('params.txt', 'input/p.conf')
os.chmod (0400, 'input/p.conf')
shutil.move('big-data', 'input/samples')

os.mkdir('output')

Computer Sciences 368 Scripting for CHTC

Refresher: Environment Variables

e 0S.environ:dictionary of environment variables
e Readable and writable; inherited by subprocesses
e May need to prep environment for real executable
e Consult its documentation for names & meanings

home = os.getcwd()
r file = os.path.join(home, 'R.env')
if os.path.exists(r file):
os.environ['R_ENVIRON USER'] = r_ file
else:
print >> sys.stderr, 'No R environ!'

Computer Sciences 368 Scripting for CHTC

Finding Programs

e PATH tells system where to find programs to run

e Set if your executable runs another program that is
in a weird location (e.g., that the job brought along)

e Usually, prepend to existing PATH; colon separated

home = os.getcwd()
myzip = os.path.join(home, 'myzip', 'bin')
1f os.path.isdir(myzip):
os.environ['PATH'] = myzip + '":' + \
os.environ['PATH']

else:
print >> sys.stderr, 'No myzip dir!’

Computer Sciences 368 Scripting for CHTC

Finding (Dynamic) Libraries

e When bringing along compiled code, may need to
tell system where to find its libraries (*. so)

e Addto LD _LIBRARY_PATH environment variable
e May need to ask a sysadmin for help!

LLP = "LD_LIBRARY_PATH'
home = os.getcwd()
myzip = os.path.join(home, 'myzip', 'lib')
if os.environ.has key(LLP):
os.environ[LLP] += '":' + myzip
else:
os.environ[LLP] = myzip

Computer Sciences 368

Scripting for CHTC

Execution

2011 Fall Cartwright

18

Computer Sciences 368 Scripting for CHTC

Refresher: System Calls
e Run sub-shell, which runs command, no output:
exit status = os.system('echo $PATH')

e More complexity, more control:

— Sub-shell only on demand
— Get output and sane exit status code
— Command and arguments as sequence elements

def my system(command, shell=False):

p = subprocess.Popen(command, shell=shell,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

(stdout, stderr) = p.communicate()

return (p.returncode, stdout, stderr)

status, stdout, stderr = my system(['foo', 'arg'l])

Computer Sciences 368 Scripting for CHTC

Parameter Conversions |

e Command arguments can be complicated & messy
o Wrapper can offer simpler command-line interface

% R CMD BATCH --args argl arg2 foo.R
% Rscript foo.R argl arg2

e Wrapper scripts could:
— Hardcode“extra”arguments (e.g., CMD BATCH --args)
— Compute arguments from simpler one(s) (e.g., fractal)
— Look up arguments in table (e.g., dictionary, file)

Computer Sciences 368 Scripting for CHTC

Parameter Conversions i
o Sketch of a file/dictionary conversion

params = {}
pfile = open('parameters.txt')
for line in pfile:
parts = line.strip().split()
params[parts[0]] = parts[1l:]
pfile.close()

case = sys.argv[1l]

1f not params.has key(case):
print >> sys.stderr, 'Bad case', case
sys.ex1it(1l)

arguments = params|[case]

Computer Sciences 368 Scripting for CHTC

Batching |

e Remember: Ideal job duration is 10 min — 4 hours

e Imagine app. runs for 3 secs... but there are 100K!
— Total CPU time is 300K secs =3d 11h 20m
— If 60 secs overhead: total time is 6.3M secs =72d 22h

e One solution: Group many small tasks per job
— 100 jobs x 3000 runs; 60 s overhead; 306K secs (+2%)

e Good case for a DAG
— Script creates job-sized units of work, creates inputs
— Wrapper script responsible for running app. N times
— Final node brings together all results

Computer Sciences 368 Scripting for CHTC

Batching Il

e Sketch of a batching wrapper
e Similar to the prime-number counter in many ways

start, end = sys.argv[l:3]
for 1 1n xrange(start, end + 1):

cmd = ['foo'] + calculate args(1i)
status, stdout, stderr = my system(cmd)

1f status != 0O:

record output(i, stdout)

Computer Sciences 368 Scripting for CHTC

After Execution

Computer Sciences 368 Scripting for CHTC

Prepare Output Files |

e Program may put key output files in strange places

e By default, Condor transfers only new and changed
files in top-level directory on execute machine

e Two approaches (use alone or in combination):
— Tell Condor where to expect your output files
— Move output files to where Condor expects them

e Rename files to identify better or avoid conflicts

e Also, consider archiving and compressing output
(similar caveats apply as with input files)

Computer Sciences 368 Scripting for CHTC

Prepare Output Files Il

e Suppose CSV output is scattered among subdirs

transfer_output files = main.out, outputs/

os.mkdir('outputs"')
n =20
for dir, x, f in os.walk('foo-out'):
for file in fnmatch.filter(f, '*.csv'):
src = os.path.join(dir, file)
new fn = '%04d %s' % (n, file)
dst = os.path.join('outputs', new fn)
shutil.move(src, dst)
n += 1

Computer Sciences 368 Scripting for CHTC

Being Selective About Output

e Maybe only a small fraction of output data matters
o Take time on execute machine to shrink output files

original = open(output filename)
realdata = open(new _output filename, 'w')
for line 1in original:
if re.search(r'wibble', line):
realdata.write(line)
realdata.close()
original.close()

cmd = 'gzip -9 ' + new output filename
exit status = os.system(cmd)

Computer Sciences 368 Scripting for CHTC

Complex Runtimes

Computer Sciences 368 Scripting for CHTC
The MATLAB Syndrome

e Need a license to run“normal” MATLAB

e But not compiled MATLAB

e But, runtime version must match compiler version
e Many CHTC/MATLAB jobs are forwarded to OSG

e No idea what MATLAB will exist, if any

e Also, may need non-standard libraries...

e Plus configuration...
o Yikes!

Computer Sciences 368

Scripting for CHTC

Some Approaches

e Essentially, bring everything with the job

— MATLAB runtime (~ 200 MB com

p., ~ 500 MB uncomp.)

— All software and library dependencies
— Extra MATLAB libraries & configuration
— Compiled MATLAB script(s), inputs, arguments

e Moving toward virtual machine

s (cf. Amazon EC2)

— Take entire Linux machine with youl!
— Literally replicates your entire environment

— There is a performance penalty,

out do you care?

e CDE: Bring everything you neec

_but not whole VM

http://www.stanford.edu/~pgbovine/cde.html

Computer Sciences 368 Scripting for CHTC

Homework

Computer Sciences 368 Scripting for CHTC

Homework

e Play cards... alot! (10M-100M times)

o Write a wrapper script for a C program
— Batch runs
— Filter output

e Optional: Do post-processing analysis and graph

Computer Sciences 368 Scripting for CHTC

Course Evaluations

e Must be enrolled to fill out
e Use #2 pencil only

e Be sure to fill out top part:
Instructor: Tim Cartwright Course #: 368 Section #: 004

e Please write constructive comments on back!

e Need volunteer to take forms and pencils to Cathy
Richard, Comp Sci 5360

