
Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Day 15: Science Code in Python

1

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Turn In Homework

2

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Homework Review

3

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Science Code in Python?

4

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Custom Code vs. Off-the-Shelf

• Trade-offs
– Costs (your time vs. your $$$)
– Your time (coding vs. learning)
– Control of software (features, schedule, license, …)
– Fit of software to problem at hand
– Reliability

• Rarely a trivial decision

5

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Efficiency of Python
• Python vs. C, C++, Fortran, …

• Example: Prime-number checker (Homework #10)
– About the same length of program
– C was about 20× faster than Python

• Example: Word-frequency counter (Homework #4)
– C program would be much longer
– Or, find reliable libraries for things like dictionary
– Probably still much faster to run, but maybe not 20×

• So… whose efficiency are you measuring?

• Anyway, Python can call compiled C/C++ functions
6

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Does Efficiency Even Matter?

74

Correctness

Clarity

Efficiency

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

The Story of Mel

http://rixstep.com/2/2/20071015,01.shtml

8

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Does Efficiency Matter in CHTC?

• No
– Your time matters… let machines do extra work
– Code clarity matters… let machines do extra work
– Increase parallelism… let machines (oh, you know)

• Yes
– Fair share: The more you use, the less you get
– Efficient code finishes sooner (e.g., deadlines)

• Maybe
– Time scale may be a factor (1 vs. 20 seconds? days?)

9

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Science Code in Python

10

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Numeric and Scientific Modules

11

• Many numeric/scientific computing modules exist

• http://wiki.python.org/moin/NumericAndScientific

• DO NOT REINVENT THE WHEEL!

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

NumPy: Getting Started

• NumPy: Large collection of modules, Python and C,
for performing efficient numeric computations
– http://numpy.scipy.org/

• Installation required
– Includes compiled code, so non-trivial install
– Ask sysadmin for help!
– Currently, not installed on CHTC machines (I hear)

• Visit website for tutorials, examples, etc.

12

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

NumPy: Basic Types
• N-dimensional arrays

– Viewed as multidimensional arrays or matrices
– All elements are same type (e.g., 4-byte integer)
– Lots of natural operations (e.g., a + b, conversions, …)

• Precise scalar types
– Not just int, but byte, short, int8, uint64, …
– Not just float, but single, double, float128, …

• Dates and times
– Even more expressive than Python built-ins
– Offsets by year, month, day, hour, …, attosecond
– Business days!

13

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

NumPy: Universal Functions

• Functions that operate on elements of N-dim arrays
• More efficient than looping through yourself
• Allow compact expression of vector math

• Examples:
– add, subtract, multiply, divide, …
– rint (round to int), sign, negative, …
– log, log2, log10, sqrt, square, reciprocal, …
– sin, cos, tar, arcsin, sinh, arcsinh, …
– bitwise_and, invert, left_shift, …
– greater, greater_equal, less, less_equal, equal, …
– maximum, minimum

14

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

NumPy: Examples

15

~3.45 secs
a = range(10000000)
b = range(10000000)
c = [a[i] + b[i] for i in xrange(len(a))]

~0.25 secs
a = numpy.arange(10000000)
b = numpy.arange(10000000)
c = a + b

a = numpy.array([[-2, 2, 3],
 [-1, 1, 3],
 [2, 0, -1]])
print numpy.linalg.det(a) # => 6.0

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

NumPy: Other Features

• HUGE collection of numerical routines

• Highlights:
– Array creation, manipulation, indexing, input/output
– Fast Fourier Transforms
– Linear algebra (matrix math)
– Random sampling (~35 distributions)
– Statistics (extremes, central tend., var., histograms)
– Polynomial math (incl. some basic calculus)

16

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

SciPy: Getting Started

• SciPy: Large collection of modules, Python and C,
for performing scientific computations
– http://www.scipy.org/

• Same as NumPy for installation and efficiency

17

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

SciPy: (Some) Features

• HUGE collection of routines (again)!
• Examples:

– Functions for mathematical physics
– Integration, incl. ordinary differential equations
– Numerical optimization algorithms
– Variable interpolation
– Signal processing
– Linear algebra (again); MATLAB-like syntax, functions
– Sparse matrices
– More stats; R-like functionality
– Clustering algorithms

18

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

SciPy: Example

19

>>> A = mat('[1 3 5; 2 5 1; 2 3 8]')
>>> A
matrix([[1, 3, 5],
 [2, 5, 1],
 [2, 3, 8]])
>>> b = mat('[10;8;3]')
>>> linalg.solve(A, b)
array([[-9.28],
 [5.16],
 [0.76]])

Solve system of linear equations:
x + 3y + 5z = 10
2x + 5y + z = 8

2x + 3y + 8z = 3

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Python vs. R, MATLAB, Octave, …

• Trade-offs!

• Could do everything in Python
– Consistency
– No need to move data back and forth

• R / MATLAB / Octave
– If you already know/use it… why stop?
– Use Python for wrappers, workflow

20

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Python Jobs for CHTC

21

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Making Python Jobs That Fit CHTC

• Independent batch jobs, 10 minutes – 4 hours

• Python (carefully written) works on many platforms
– Be sure your submit file gets you access to them
– Watch out for platform and Python version differences

• Using NumPy/SciPy makes code less portable
– May need to bring it with you
– Still may be more portable than compiled C…

• Work on good parallelization

• Long-running jobs? implement self-checkpointing

22

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Self-Checkpointing: Why?

• Suppose your job will run for a long time (> 30 m?)
• May be preempted
• Condor will re-run job
• But that means it starts over

• One solution:
– Periodically write state (checkpoint) to disk
– Must be sufficient to restart job at that point
– Job itself must know to look for checkpoint data
– May need wrapper script to accomplish

23

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Self-Checkpointing: When?

• Balance cost of overhead vs. risk of bad-put
– Writing anything to disk is slow (relatively speaking)
– If there is little data, can write more often

• Look for natural checkpoint times
– Generally, when there is the least data to write
– Typically, between outermost iterations
– Could base on iteration count, time, …

• Save only what you need

• Be sure to flush or close checkpoint each time!

24

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Self-Checkpointing: Condor Tweak

• Must tell Condor to transfer your output back to the
submit machine, even when just evicted and
waiting for next run

• Condor holds files for you, then moves to next
machine automatically

25

when_to_transfer_output = ON_EXIT_OR_EVICT

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Self-Checkpointing: Writing a Checkpoint
• Simplest example

– Assume a 1D parameter sweep
– Assume real code appends to its output each iteration
– Designed to save checkpoint every 1000th iteration

26

def save_checkpoint(iter):
 cp_file = open(checkpoint_path, 'w')
 cp_file.write('%d\n' % (iter))
 cp_file.close()

for iter in xrange(start, end + 1):
 do_stuff(iter)
 if ((iter - start + 1) % 1000) == 0:
 save_checkpoint(iter)

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Self-Checkpointing: Using a Checkpoint

• Continuation of previous example…

27

if len(sys.argv) != 3: # Handle error
start, end = map(int, sys.argv[1:])
if os.path.exists(checkpoint_path):
 cp_file = open(checkpoint_path, 'r')
 cp_data = cp_file.readlines().strip()
 cp_file.close()
 cp_start = int(cp_data)
 if cp_start >= start:
 start = cp_start
 else:
 # Potential problem?

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Final Questions & Thoughts?

28

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Reminder About CHTC Accounts

• CHTC accounts will go away on January 20, 2012
– Feel free to copy your files off ahead of time

• To get a real account:
– Email chtc@cs.wisc.edu
– Include:

✦ That you took CS 368-4 with me this Fall
✦ Your current username on CHTC
✦ Your Principal Investigator’s name
✦ A brief (2–3 sentence) description of your project

29

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Shameless Plug

30

• Please tell people about CS 368-2, this Spring!

• Same kind of schedule:
– Second half of semester: March 12 – May 6
– TuTh 1:20–2:10 p.m.
– Currently, Chamberlin 2104 (trying to get it moved)

• Also, CS 368-4, Introduction to Python
– Same dates, TuTh 9:55–10:45 a.m.

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Homework

31

Cartwright2011 Fall

Computer Sciences 368 Scripting for CHTC

Homework

32

• Use your new skills powers!

• When you look up one thing, learn one more

• With time and practice, you will have superpowers!

• Let me know how that goes…

Any sufficiently advanced technology is
indistinguishable from magic.

— Arthur C. Clarke

