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Custom Code vs. Off-the-Shelf

• Trade-offs
– Costs (your time vs. your $$$)
– Your time (coding vs. learning)
– Control of software (features, schedule, license, …)
– Fit of software to problem at hand
– Reliability

• Rarely a trivial decision
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Efficiency of Python
• Python vs. C, C++, Fortran, …

• Example: Prime-number checker (Homework #10)
– About the same length of program
– C was about 20× faster than Python

• Example: Word-frequency counter (Homework #4)
– C program would be much longer
– Or, find reliable libraries for things like dictionary
– Probably still much faster to run, but maybe not 20×

• So… whose efficiency are you measuring?

• Anyway, Python can call compiled C/C++ functions
6
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Does Efficiency Even Matter?
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The Story of Mel

http://rixstep.com/2/2/20071015,01.shtml
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Does Efficiency Matter in CHTC?

• No
– Your time matters… let machines do extra work
– Code clarity matters… let machines do extra work
– Increase parallelism… let machines (oh, you know)

• Yes
– Fair share: The more you use, the less you get
– Efficient code finishes sooner (e.g., deadlines)

• Maybe
– Time scale may be a factor (1 vs. 20 seconds? days?)
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Numeric and Scientific Modules
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• Many numeric/scientific computing modules exist

• http://wiki.python.org/moin/NumericAndScientific

• DO NOT REINVENT THE WHEEL!
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NumPy: Getting Started

• NumPy: Large collection of modules, Python and C, 
for performing efficient numeric computations
– http://numpy.scipy.org/

• Installation required
– Includes compiled code, so non-trivial install
– Ask sysadmin for help!
– Currently, not installed on CHTC machines (I hear)

• Visit website for tutorials, examples, etc.
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NumPy: Basic Types
• N-dimensional arrays

– Viewed as multidimensional arrays or matrices
– All elements are same type (e.g., 4-byte integer)
– Lots of natural operations (e.g., a + b, conversions, …)

• Precise scalar types
– Not just int, but byte, short, int8, uint64, …
– Not just float, but single, double, float128, …

• Dates and times
– Even more expressive than Python built-ins
– Offsets by year, month, day, hour, …, attosecond
– Business days!
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NumPy: Universal Functions

• Functions that operate on elements of N-dim arrays
• More efficient than looping through yourself
• Allow compact expression of vector math

• Examples:
– add, subtract, multiply, divide, …
– rint (round to int), sign, negative, …
– log, log2, log10, sqrt, square, reciprocal, …
– sin, cos, tar, arcsin, sinh, arcsinh, …
– bitwise_and, invert, left_shift, …
– greater, greater_equal, less, less_equal, equal, …
– maximum, minimum
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NumPy: Examples
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# ~3.45 secs
a = range(10000000)
b = range(10000000)
c = [a[i] + b[i] for i in xrange(len(a))]

# ~0.25 secs
a = numpy.arange(10000000)
b = numpy.arange(10000000)
c = a + b

a = numpy.array([[-2, 2, 3],
                 [-1, 1, 3],
                 [ 2, 0, -1]])
print numpy.linalg.det(a)       # => 6.0
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NumPy: Other Features

• HUGE collection of numerical routines

• Highlights:
– Array creation, manipulation, indexing, input/output
– Fast Fourier Transforms
– Linear algebra (matrix math)
– Random sampling (~35 distributions)
– Statistics (extremes, central tend., var., histograms)
– Polynomial math (incl. some basic calculus)
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SciPy: Getting Started

• SciPy: Large collection of modules, Python and C, 
for performing scientific computations
– http://www.scipy.org/

• Same as NumPy for installation and efficiency
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SciPy: (Some) Features

• HUGE collection of routines (again)!
• Examples:

– Functions for mathematical physics
– Integration, incl. ordinary differential equations
– Numerical optimization algorithms
– Variable interpolation
– Signal processing
– Linear algebra (again); MATLAB-like syntax, functions
– Sparse matrices
– More stats; R-like functionality
– Clustering algorithms
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SciPy: Example
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>>> A = mat('[1 3 5; 2 5 1; 2 3 8]')
>>> A
matrix([[1, 3, 5],
        [2, 5, 1],
        [2, 3, 8]])
>>> b = mat('[10;8;3]')
>>> linalg.solve(A, b)
array([[-9.28],
       [ 5.16],
       [ 0.76]])

Solve system of linear equations:
x + 3y + 5z = 10
2x + 5y + z = 8

2x + 3y + 8z = 3
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Python   vs.   R, MATLAB, Octave, …

• Trade-offs!

• Could do everything in Python
– Consistency
– No need to move data back and forth

• R / MATLAB / Octave
– If you already know/use it… why stop?
– Use Python for wrappers, workflow
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Python Jobs for CHTC
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Making Python Jobs That Fit CHTC

• Independent batch jobs, 10 minutes – 4 hours

• Python (carefully written) works on many platforms
– Be sure your submit file gets you access to them
– Watch out for platform and Python version differences

• Using NumPy/SciPy makes code less portable
– May need to bring it with you
– Still may be more portable than compiled C…

• Work on good parallelization

• Long-running jobs? implement self-checkpointing
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Self-Checkpointing: Why?

• Suppose your job will run for a long time (> 30 m?)
• May be preempted
• Condor will re-run job
• But that means it starts over

• One solution:
– Periodically write state (checkpoint) to disk
– Must be sufficient to restart job at that point
– Job itself must know to look for checkpoint data
– May need wrapper script to accomplish
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Self-Checkpointing: When?

• Balance cost of overhead vs. risk of bad-put
– Writing anything to disk is slow (relatively speaking)
– If there is little data, can write more often

• Look for natural checkpoint times
– Generally, when there is the least data to write
– Typically, between outermost iterations
– Could base on iteration count, time, …

• Save only what you need

• Be sure to flush or close checkpoint each time!
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Self-Checkpointing: Condor Tweak

• Must tell Condor to transfer your output back to the 
submit machine, even when just evicted and 
waiting for next run

• Condor holds files for you, then moves to next 
machine automatically

25

when_to_transfer_output = ON_EXIT_OR_EVICT
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Self-Checkpointing: Writing a Checkpoint
• Simplest example

– Assume a 1D parameter sweep
– Assume real code appends to its output each iteration
– Designed to save checkpoint every 1000th iteration
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def save_checkpoint(iter):
    cp_file = open(checkpoint_path, 'w')
    cp_file.write('%d\n' % (iter))
    cp_file.close()

for iter in xrange(start, end + 1):
    do_stuff(iter)
    if ((iter - start + 1) % 1000) == 0:
        save_checkpoint(iter)
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Self-Checkpointing: Using a Checkpoint

• Continuation of previous example…
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if len(sys.argv) != 3: # Handle error
start, end = map(int, sys.argv[1:])
if os.path.exists(checkpoint_path):
    cp_file = open(checkpoint_path, 'r')
    cp_data = cp_file.readlines().strip()
    cp_file.close()
    cp_start = int(cp_data)
    if cp_start >= start:
        start = cp_start
    else:
        # Potential problem?
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Final Questions & Thoughts?
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Reminder About CHTC Accounts

• CHTC accounts will go away on January 20, 2012
– Feel free to copy your files off ahead of time

• To get a real account:
– Email chtc@cs.wisc.edu
– Include:

✦ That you took CS 368-4 with me this Fall
✦ Your current username on CHTC
✦ Your Principal Investigator’s name
✦ A brief (2–3 sentence) description of your project
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Shameless Plug
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• Please tell people about CS 368-2, this Spring!

• Same kind of schedule:
– Second half of semester: March 12 – May 6
– TuTh 1:20–2:10 p.m.
– Currently, Chamberlin 2104 (trying to get it moved)

• Also, CS 368-4, Introduction to Python
– Same dates, TuTh 9:55–10:45 a.m.
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Homework
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Homework
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• Use your new skills powers!

• When you look up one thing, learn one more

• With time and practice, you will have superpowers!

• Let me know how that goes…

Any sufficiently advanced technology is 
indistinguishable from magic.

— Arthur C. Clarke


