
Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Day 13: Scripting Workflows II
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Advanced DAGMan
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Retrying Nodes
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• Specifies number of times to retry given node
• Affects entire node, not just its job
• Especially useful if job is sensitive to environment

RETRY name count UNLESS-EXIT value

JOB Analyze1 analysis.sub
RETRY Analyze1 3 UNLESS-EXIT 99
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Node Directories
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• Use directory for all files for this node
• Submit file, executable, inputs, outputs, everything
• Effectively:
cd directory
condor_submit submit-file

• In submit, reference common files as, e.g., ../foo

JOB name submit-file DIR directory

JOB Wibble wibble.sub DIR wibble

% ls wibble
go-wibble.py   input-1.txt   wibble.sub
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Node Priorities
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• Sets DAGMan priority for the given node
• Determines when DAGMan submits job to queue
• Hence, different than job priority (set in submit file)
• Useful when throttling jobs (-maxjobs, -maxidle)
• Integer (+/–), defaults to 0, higher submits sooner

PRIORITY name value

JOB Analyze1 analysis.sub
PRIORITY Analyze1 10
JOB Analyze2 analysis.sub
PRIORITY Analyze2 5
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Skipping Nodes
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• If node’s Pre-Script exits with the given exit status, 
skip rest of node

• Node is marked as successful

PRE_SKIP name exit-status

JOB Foo foo.sub
SCRIPT PRE Foo set-up-foo.py
PRE_SKIP Foo 1
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Node Variables
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• Define macro(s) (= variable(s)) for submit file
• macroname is \w+, cannot start with queue
• Multiple macros for node on same line, or separate
• In value, $(JOB) expands to node name

VARS name macroname="value" ...

JOB Foo foo.sub
VARS Foo arg1="hello" arg2="42"
VARS Foo arg3="$(JOB)"
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Using Node Variables
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• In submit file, reference macro as $(macroname)

JOB Foo foo.sub
VARS Foo arg1="hello" arg2="42"
VARS Foo arg3="$(JOB)"

executable = /bin/echo
universe = local
output = test.out
error = test.err
log = test.log
arguments = "A1=$(arg1) A2=$(arg2) ..."
queue
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Node Variables Can Simplify Submit Files

• Move data from many submit files to 1 DAGMan file
• Use VARS, $(cluster), and/or $(process)
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JOB Analysis1 analysis.sub
VARS Analysis1 jobname="$(JOB)" arg="ABW"
JOB Analysis2 analysis.sub
VARS Analysis2 jobname="$(JOB)" arg="ADO"

output = analysis.$(jobname).out
error  = analysis.$(jobname).err
log    = analysis.log
arguments = "$(arg)"
queue
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Scripting Simple DAGs
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Designing DAGs for Scripting
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• Mostly, focus on wide, parallel parts
• Consider pros and cons of each choice

• VARS and 1 submit file, or 1 submit file per node?
– Often easier to script one complex DAG submit file
– Submit file can specify subdirectories (initialdir)

• Use sub-directories?
– Same considerations as without DAG
– More useful with distinct inputs or lots of output files
– Put common files in ../ or ../common/

• Consider using DAGMan for independent jobs
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Scripting DAG Submit Files
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def psub(text): ...  # add text to submit file
psub(dag_submit_header)
n = 0
for t in product(parameter_1, parameter_2):
  n += 1
  psub('JOB N%d node.sub DIR node-%d' % (n, n))
  psub('RETRY N%d 3 UNLESS-EXIT 1' % (n))
  if t[0] < 1.0: psub('PRIORITY N%d 10' % (n))
  args = '%d %s' % (n, t[1])
  psub('SCRIPT PRE N%d pre.py %s' % (n, args))
  psub('PARENT Start CHILD N%d' % (n))
  write_node_dir(sources, n, t)
psub(dag_submit_footer)
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Setting Up Node Directories
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• Much like before, but need to include submit file

# sources: dict from filename to contents
def prepare_node_dir(sources, node, params):
  node_dir = 'node-%d' % (node)
  os.mkdir(node_dir)
  # write node submit file, incl. job arguments
  node_sub = os.path.join(node_dir, 'node.sub')
  write_node_submit(node_sub, params)
  for filename in sources:
    text = sources[filename]
    target = os.path.join(dirname, filename)
    write_template(text, target, params)
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Splices
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Understanding Splices
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• Reusable DAG fragment, inserted into larger DAG
• Like a function, if you think about it
• Common use: write outer DAG once, replace insides

••• ••• •••
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Splice Syntax

18

• Like the JOB statement, except it names a DAG file
• All nodes in splice become part of (outer) DAG
• Can create PARENT / CHILD relationships for splice, 

which affect all of its initial/final nodes

SPLICE name inner-dag-file DIR directory

JOB Start start.sub
JOB End end.sub
SPLICE Diamond1 diamond.dag
SPLICE Diamond2 diamond.dag
PARENT Start CHILD Diamond1 Diamond2
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Splice Example
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# Splice
JOB A a.sub
VARS A x="$(JOB)"
JOB B b.sub
VARS B x="$(JOB)"
PARENT A CHILD B

# Outer
JOB X x.sub
SPLICE Y000 spl.dag
···
SPLICE Y999 spl.dag
JOB Z z.sub
PARENT X CHILD Y000
PARENT Y000 CHILD Z

•••
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Sub-DAGs
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Understanding Sub-DAGs
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• Reusable DAG fragment, submitted by larger DAG
• Also like a function, if you think about it
• Splices are better in most cases, except for one…

••• •••
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SUBDAG Syntax
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• Like the JOB statement, except it names a DAG file
• Nodes in sub-DAG do not become part of DAG
• DAGman submits inner-dag when job is run

SUBDAG EXTERNAL name inner-dag DIR dir

JOB Start start.sub
JOB End end.sub
SUBDAG EXTERNAL Diamond1 diamond.dag
SUBDAG EXTERNAL Diamond2 diamond.dag
PARENT Start CHILD Diamond1 Diamond2
PARENT Diamond1 Diamond2 CHILD End
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Running Nested DAGs

• DAGMan does condor_submit_dag on DAG file
– Hence, another copy of DAGMan is running
– If there are many copies, submit machine may suffer

• Sub-DAG not processed until needed
– Allows for some cool tricks…
– Errors not discovered until run-time!

• Rescue DAGs are complicated, but still work

23
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Dynamic DAGs
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The Need for Dynamic DAGs
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• Suppose the exact number of parallel jobs depends 
on some initial (significant) input processing

… or exact number of stages …
… or exact DAG shape …

• We could:
– Run one job to process input, then…
– Manually run script to generate rest of DAG
– But we want to automate!

• Dynamic DAG — build (part of ) DAG during run
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Dynamic DAGs

• How to implement:
– In DAG, add one or more  SUBDAG EXTERNAL  nodes
– (Re)Write their DAGMan submit files in earlier node

(or, even in the node’s pre-script!)

• Again, errors not found until sub-DAG is submitted

• Outer DAG can be very simple and/or generic:

26
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Dynamic DAG Example

• DAGMan submit file for simple, generic outer DAG:

27

JOB Start start.sub
SUBDAG EXTERNAL Innards dynamic.dag
JOB End end.sub
SCRIPT PRE Innards generate-dag.py
PARENT Start CHILD Innards
PARENT Innards CHILD End
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Workflow Management Systems
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makeflow
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• Different way to describe workflow DAG
– Uses syntax like make
– Handles data transfers (so does Condor/DAGMan)
– Highly fault tolerant (so is DAGMan)

• Works with several distributed computing systems
– Condor
– Sun Grid Engine (SGE)
– Work Queue (also from CCL)

• From Doug Thain’s Cooperative Computing Lab
http://nd.edu/~ccl/software/makeflow/
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Pegasus WMS

• Supports higher-level workflow abstractions
• Compiles down to DAG

• Works with Condor, OSG, Amazon EC2, TeraGrid, …

• Used on a wide variety of complex science projects
• Lots of cool example applications online

• From Information Sciences Institute, USC
http://pegasus.isi.edu/
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SOAR

• System Of Automated Runs

• Automatically scans directories for jobs to run
• Each “job” can be a complete DAG in itself
• Puts jobs into DAG and manages workflow
• Also handles R and MATLAB jobs well

• Provides extra tracking and reporting tools

• From Bill Taylor, CHTC Team
http://submit.chtc.wisc.edu/SOAR/

31
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Homework
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Homework

• Script a workflow!

• Using the Mandelbrot generator again, but adding 
the stitching step at the end

• Note: Use a different universe (scheduler) for the 
montage node (only)!

• If you have an alternate workflow that you would 
like to work on instead, talk to me

33


