
Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Day 13: Scripting Workflows II
DAGMan

1

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Turn In Homework

2

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Homework Review

3

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Advanced DAGMan

4

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Retrying Nodes

5

• Specifies number of times to retry given node
• Affects entire node, not just its job
• Especially useful if job is sensitive to environment

RETRY name count UNLESS-EXIT value

JOB Analyze1 analysis.sub
RETRY Analyze1 3 UNLESS-EXIT 99

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Node Directories

6

• Use directory for all files for this node
• Submit file, executable, inputs, outputs, everything
• Effectively:
cd directory
condor_submit submit-file

• In submit, reference common files as, e.g., ../foo

JOB name submit-file DIR directory

JOB Wibble wibble.sub DIR wibble

% ls wibble
go-wibble.py input-1.txt wibble.sub

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Node Priorities

7

• Sets DAGMan priority for the given node
• Determines when DAGMan submits job to queue
• Hence, different than job priority (set in submit file)
• Useful when throttling jobs (-maxjobs, -maxidle)
• Integer (+/–), defaults to 0, higher submits sooner

PRIORITY name value

JOB Analyze1 analysis.sub
PRIORITY Analyze1 10
JOB Analyze2 analysis.sub
PRIORITY Analyze2 5

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Skipping Nodes

8

• If node’s Pre-Script exits with the given exit status,
skip rest of node

• Node is marked as successful

PRE_SKIP name exit-status

JOB Foo foo.sub
SCRIPT PRE Foo set-up-foo.py
PRE_SKIP Foo 1

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Node Variables

9

• Define macro(s) (= variable(s)) for submit file
• macroname is \w+, cannot start with queue
• Multiple macros for node on same line, or separate
• In value, $(JOB) expands to node name

VARS name macroname="value" ...

JOB Foo foo.sub
VARS Foo arg1="hello" arg2="42"
VARS Foo arg3="$(JOB)"

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Using Node Variables

10

• In submit file, reference macro as $(macroname)

JOB Foo foo.sub
VARS Foo arg1="hello" arg2="42"
VARS Foo arg3="$(JOB)"

executable = /bin/echo
universe = local
output = test.out
error = test.err
log = test.log
arguments = "A1=$(arg1) A2=$(arg2) ..."
queue

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Node Variables Can Simplify Submit Files

• Move data from many submit files to 1 DAGMan file
• Use VARS, $(cluster), and/or $(process)

11

JOB Analysis1 analysis.sub
VARS Analysis1 jobname="$(JOB)" arg="ABW"
JOB Analysis2 analysis.sub
VARS Analysis2 jobname="$(JOB)" arg="ADO"

output = analysis.$(jobname).out
error = analysis.$(jobname).err
log = analysis.log
arguments = "$(arg)"
queue

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Scripting Simple DAGs

12

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Designing DAGs for Scripting

13

• Mostly, focus on wide, parallel parts
• Consider pros and cons of each choice

• VARS and 1 submit file, or 1 submit file per node?
– Often easier to script one complex DAG submit file
– Submit file can specify subdirectories (initialdir)

• Use sub-directories?
– Same considerations as without DAG
– More useful with distinct inputs or lots of output files
– Put common files in ../ or ../common/

• Consider using DAGMan for independent jobs

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Scripting DAG Submit Files

14

def psub(text): ... # add text to submit file
psub(dag_submit_header)
n = 0
for t in product(parameter_1, parameter_2):
 n += 1
 psub('JOB N%d node.sub DIR node-%d' % (n, n))
 psub('RETRY N%d 3 UNLESS-EXIT 1' % (n))
 if t[0] < 1.0: psub('PRIORITY N%d 10' % (n))
 args = '%d %s' % (n, t[1])
 psub('SCRIPT PRE N%d pre.py %s' % (n, args))
 psub('PARENT Start CHILD N%d' % (n))
 write_node_dir(sources, n, t)
psub(dag_submit_footer)

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Setting Up Node Directories

15

• Much like before, but need to include submit file

sources: dict from filename to contents
def prepare_node_dir(sources, node, params):
 node_dir = 'node-%d' % (node)
 os.mkdir(node_dir)
 # write node submit file, incl. job arguments
 node_sub = os.path.join(node_dir, 'node.sub')
 write_node_submit(node_sub, params)
 for filename in sources:
 text = sources[filename]
 target = os.path.join(dirname, filename)
 write_template(text, target, params)

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Splices

16

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Understanding Splices

17

• Reusable DAG fragment, inserted into larger DAG
• Like a function, if you think about it
• Common use: write outer DAG once, replace insides

••• ••• •••

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Splice Syntax

18

• Like the JOB statement, except it names a DAG file
• All nodes in splice become part of (outer) DAG
• Can create PARENT / CHILD relationships for splice,

which affect all of its initial/final nodes

SPLICE name inner-dag-file DIR directory

JOB Start start.sub
JOB End end.sub
SPLICE Diamond1 diamond.dag
SPLICE Diamond2 diamond.dag
PARENT Start CHILD Diamond1 Diamond2

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Splice Example

19

Splice
JOB A a.sub
VARS A x="$(JOB)"
JOB B b.sub
VARS B x="$(JOB)"
PARENT A CHILD B

Outer
JOB X x.sub
SPLICE Y000 spl.dag
···
SPLICE Y999 spl.dag
JOB Z z.sub
PARENT X CHILD Y000
PARENT Y000 CHILD Z

•••

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Sub-DAGs

20

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Understanding Sub-DAGs

21

• Reusable DAG fragment, submitted by larger DAG
• Also like a function, if you think about it
• Splices are better in most cases, except for one…

••• •••

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

SUBDAG Syntax

22

• Like the JOB statement, except it names a DAG file
• Nodes in sub-DAG do not become part of DAG
• DAGman submits inner-dag when job is run

SUBDAG EXTERNAL name inner-dag DIR dir

JOB Start start.sub
JOB End end.sub
SUBDAG EXTERNAL Diamond1 diamond.dag
SUBDAG EXTERNAL Diamond2 diamond.dag
PARENT Start CHILD Diamond1 Diamond2
PARENT Diamond1 Diamond2 CHILD End

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Running Nested DAGs

• DAGMan does condor_submit_dag on DAG file
– Hence, another copy of DAGMan is running
– If there are many copies, submit machine may suffer

• Sub-DAG not processed until needed
– Allows for some cool tricks…
– Errors not discovered until run-time!

• Rescue DAGs are complicated, but still work

23

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Dynamic DAGs

24

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

The Need for Dynamic DAGs

25

• Suppose the exact number of parallel jobs depends
on some initial (significant) input processing

… or exact number of stages …
… or exact DAG shape …

• We could:
– Run one job to process input, then…
– Manually run script to generate rest of DAG
– But we want to automate!

• Dynamic DAG — build (part of) DAG during run

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Dynamic DAGs

• How to implement:
– In DAG, add one or more SUBDAG EXTERNAL nodes
– (Re)Write their DAGMan submit files in earlier node

(or, even in the node’s pre-script!)

• Again, errors not found until sub-DAG is submitted

• Outer DAG can be very simple and/or generic:

26

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Dynamic DAG Example

• DAGMan submit file for simple, generic outer DAG:

27

JOB Start start.sub
SUBDAG EXTERNAL Innards dynamic.dag
JOB End end.sub
SCRIPT PRE Innards generate-dag.py
PARENT Start CHILD Innards
PARENT Innards CHILD End

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Workflow Management Systems

28

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

makeflow

29

• Different way to describe workflow DAG
– Uses syntax like make
– Handles data transfers (so does Condor/DAGMan)
– Highly fault tolerant (so is DAGMan)

• Works with several distributed computing systems
– Condor
– Sun Grid Engine (SGE)
– Work Queue (also from CCL)

• From Doug Thain’s Cooperative Computing Lab
http://nd.edu/~ccl/software/makeflow/

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Pegasus WMS

• Supports higher-level workflow abstractions
• Compiles down to DAG

• Works with Condor, OSG, Amazon EC2, TeraGrid, …

• Used on a wide variety of complex science projects
• Lots of cool example applications online

• From Information Sciences Institute, USC
http://pegasus.isi.edu/

30

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

SOAR

• System Of Automated Runs

• Automatically scans directories for jobs to run
• Each “job” can be a complete DAG in itself
• Puts jobs into DAG and manages workflow
• Also handles R and MATLAB jobs well

• Provides extra tracking and reporting tools

• From Bill Taylor, CHTC Team
http://submit.chtc.wisc.edu/SOAR/

31

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Homework

32

Cartwright2012 Spring

Computer Sciences 368 Scripting for CHTC

Homework

• Script a workflow!

• Using the Mandelbrot generator again, but adding
the stitching step at the end

• Note: Use a different universe (scheduler) for the
montage node (only)!

• If you have an alternate workflow that you would
like to work on instead, talk to me

33

