
Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Day 14: Wrapper Scripts

1

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Homework Review

2

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Introduction

3

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Wrapper Scripts

4

• Script that runs your real executable
• Named as executable in submit file
• Runs on the execute machine

#!/usr/bin/env python
import os
Do stuff before running real executable
os.system('real-job arg1 arg2 arg3 ...')
Do stuff after running real executable

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Example Submit File With Wrapper

• Condor automatically transfers file in executable
• But, real executable must be named explicitly
• Include with any other input files to transfer

5

executable = wrapper.py
transfer_input_files = real-job, input, …

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Why Use a Wrapper Script?

Handle jobs with complex run-time requirements

• Before execution
– Prepare files and/or executable
– Set up environment variables

• Execution
– Prepare complex command-line arguments
– Batch together many little jobs

• After execution
– Find, filter, and/or consolidate output files
– Compress output files

6

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Two Key Principles

7

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Be Kind to Your Submit Machine

8

• Typically, submit machine is shared resource
– Like submit-368 (only worse)

• Many tasks run there
– condor_submit
– condor_schedd
– 1 condor_shadow per running job
– DAGMan pre- and post-scripts
– Maybe others

• Thus, avoid doing anything substantial there
– Especially affecting CPU, memory, or disk

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Bring It With You

• Applies to everything your job needs to run

• Obvious
– Executable
– Input data and command-line arguments

• Less obvious
– Underlying software (e.g., R, MATLAB, Octave)
– Run-time libraries and other software dependencies
– Configuration and environment
– Directory layouts

• Especially important in Open Science Grid
9

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Before Execution

10

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Unpacking Files

11

• May have files bundled together in archive
• May be compressed (but see next slide)
• Common tools: tar, unzip, gunzip, bunzip2
• Good to check exit status, messages, and a file or 2

cmd = ['tar', 'xzf', 'big-data.tar.gz']
status, stdout, stderr = my_system(cmd)
if status != 0:
 myfail('untar failed: %d' % (status))
if re.search(r'[Ee]rror', stderr):
 myfail('untar error: %s' % (stderr))
if not os.path.isdir('big-data-dir'):
 myfail('no data dir!')

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Caveats About Large Input Data

• Remember the principle about submit machines
– Compressing large files takes lots of CPU and disk I/O
– Do not archive/compress big data on submit machine

✦ Command-line
✦ DAGMan pre-scripts
✦ local or scheduler universe

• Great to do elsewhere, ahead of time
– Maybe as vanilla universe job; still frowned upon
– Otherwise, just transfer files or even whole directories

• Or place big data files elsewhere, and download to
execute machine from wrapper script!

12

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Prepare Files and Directories

• All input files end up in top-level execute directory
• Unpacking an archive may yield subdirectories
• Your job may need input files organized differently
• May need other directories/files (e.g., for output)

13

unpack_input_archive('big-data.tar.gz')
os.mkdir('input')
shutil.copy('params.txt', 'input/p.conf')
os.chmod(0400, 'input/p.conf')
shutil.move('big-data', 'input/samples')
os.mkdir('output')

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Refresher: Environment Variables

14

• os.environ : dictionary of environment variables
• Readable and writable; inherited by subprocesses
• May need to prep environment for real executable
• Consult its documentation for names & meanings

home = os.getcwd()
r_file = os.path.join(home, 'R.env')
if os.path.exists(r_file):
 os.environ['R_ENVIRON_USER'] = r_file
else:
 print >> sys.stderr, 'No R environ!'

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Finding Programs

15

• PATH tells system where to find programs to run
• Set if your executable runs another program that is

in a weird location (e.g., that the job brought along)
• Usually, prepend to existing PATH; colon separated

home = os.getcwd()
myzip = os.path.join(home, 'myzip', 'bin')
if os.path.isdir(myzip):
 os.environ['PATH'] = myzip + ':' + \
 os.environ['PATH']
else:
 print >> sys.stderr, 'No myzip dir!'

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Finding (Dynamic) Libraries

16

• When bringing along compiled code, may need to
tell system where to find its libraries (*.so)

• Add to LD_LIBRARY_PATH environment variable
• May need to ask a sysadmin for help!

LLP = 'LD_LIBRARY_PATH'
home = os.getcwd()
myzip = os.path.join(home, 'myzip', 'lib')
if os.environ.has_key(LLP):
 os.environ[LLP] += ':' + myzip
else:
 os.environ[LLP] = myzip

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Execution

17

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Refresher: System Calls

18

• Run sub-shell, which runs command, no output:
exit_status = os.system('echo $PATH')
• More complexity, more control:

– Sub-shell only on demand
– Get output and sane exit status code
– Command and arguments as sequence elements

def my_system(command, shell=False):
 p = subprocess.Popen(command, shell=shell,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)
 (stdout, stderr) = p.communicate()
 return (p.returncode, stdout, stderr)
status, stdout, stderr = my_system(['foo', 'arg'])

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Parameter Conversions I

• Command arguments can be complicated & messy
• Wrapper can offer simpler command-line interface

19

% R CMD BATCH --args arg1 arg2 foo.R

% Rscript foo.R arg1 arg2

• Wrapper scripts could:
– Hardcode “extra” arguments (e.g., CMD BATCH --args)
– Compute arguments from simpler one(s) (e.g., fractal)
– Look up arguments in table (e.g., dictionary, file)

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Batching I

• Remember: Ideal job duration is 10 min – 4 hours

• Imagine app. runs for 3 secs… but there are 100K!
– Total CPU time is 300K secs = 3d 11h 20m
– If 60 secs overhead; total time is 6.3M secs = 72d 22h

• One solution: Group many small tasks per job
– 100 jobs × 3000 runs; 60 s overhead; 306K secs (+2%)

• Good case for a DAG
– Script creates job-sized units of work, creates inputs
– Wrapper script responsible for running app. N times
– Final node brings together all results

20

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Batching II

21

• Sketch of a batching wrapper
• Similar to the prime-number counter in many ways

start, end = sys.argv[1:3]
for i in xrange(start, end + 1):
 cmd = ['foo'] + calculate_args(i)
 status, stdout, stderr = my_system(cmd)
 if status != 0:
 # Handle error; continue, break, exit?
 record_output(i, stdout)

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

After Execution

22

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Prepare Output Files I

23

• Program may put key output files in strange places

• By default, HTCondor transfers only new/changed
files in top-level directory on execute machine

• Two approaches (use alone or in combination):
– Tell HTCondor where to expect your output files
– Move output files to where HTCondor expects them

• Rename files to identify better or avoid conflicts

• Also, consider archiving and compressing output
(similar caveats apply as with input files)

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Prepare Output Files II

24

• Suppose CSV output is scattered among subdirs

HTCondor submit file
transfer_output_files = main.out, outputs/

os.mkdir('outputs')
n = 0
for dir, x, f in os.walk('job-output'):
 for file in fnmatch.filter(f, '*.csv'):
 src = os.path.join(dir, file)
 new_fn = '%04d_%s' % (n, file)
 dst = os.path.join('outputs', new_fn)
 shutil.move(src, dst)
 n += 1

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Being Selective About Output

• Maybe only a small fraction of output data matters
• Take time on execute machine to shrink output files

25

original = open(output_filename)
realdata = open(new_output_filename, 'w')
for line in original:
 if re.search(r'wibble', line):
 realdata.write(line)
realdata.close()
original.close()
cmd = 'gzip -9 ' + new_output_filename
exit_status = os.system(cmd)
check for failure!

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Complex Runtimes

26

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

The MATLAB Syndrome

27

• Need a license to run “normal” MATLAB

• But not compiled MATLAB

• But, runtime version must match compiler version

• Many CHTC/MATLAB jobs are forwarded to OSG

• No idea what MATLAB will exist, if any

• Also, may need non-standard libraries…

• Plus configuration…

• Yikes!

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Some Approaches

• Essentially, bring everything with the job
– MATLAB runtime (~ 200 MB comp., ~ 500 MB uncomp.)
– All software and library dependencies
– Extra MATLAB libraries & configuration
– Compiled MATLAB script(s), inputs, arguments

• Moving toward virtual machines (cf. Amazon EC2)
– Take entire Linux machine with you!
– Literally replicates your entire environment
– There is a performance penalty, but do you care?

• CDE: Automatically bring code, data, environment:
http://www.pgbovine.net/cde.html

28

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Homework

29

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Homework

• Play cards… a lot! (10M–100M times)

• Write a wrapper script for a C program
– Batch runs
– Filter output

• Optional: Do post-processing analysis and graph

30

Cartwright2012 Fall

Computer Sciences 368 Scripting for CHTC

Course Evaluations

31

• Must be enrolled

• Use #2 pencil only

• Be sure to fill out top part:
Instructor: Tim Cartwright Course #: 368 Section #: 004

• Please write constructive comments on back!

• Need volunteer to take forms and pencils to Cathy
Richard, Comp Sci 5360

