Compiler Directed Prefetching and UltraSparc PREFETCH instruction
CS 701 Report

Compiler Directed Prefetching and Experience in Using UltraSparc PREFETCH Instruction

Jichuan Chang
<chang@cs.wisc.edu>

Abstract

In this project, we study Mowry’s compiler directed prefetching algorithm [Mow 98] and its extension to prefetching from main memory into L2 cache. We also report our experience in using UltraSparc’s PREFETCH instruction. Based on our testing result, we demonstrate that when using PREFETCH on real machines, it is more difficult to improve performance than we expected in theory. Some thoughts are given on implementing prefetching support and what architectural support can be added to simplify the compiler writer’s job.

Compiler directed prefetching is a technique for tolerating memory latency by explicitly executing prefetch instructions to move data close to the processor before it is needed. As the performance gap between processor and memory increases rapidly, this technique can effectively hide memory access latency within a single thread to improve performance.

This project aims at understanding a specific compiler algorithm to support prefetching, and its application on a real prefetching-enabled machine – Sun UltraSparc IIi. The rest of this report is organized as follows. We first outline Mowry’s prefetching algorithm, and discuss it extension to support prefetching from memory into L2 cache. We then present our experience in using UltraSparc PREFETCH instruction. We conclude with some thoughts on how to implement Mowry’s algorithm for UltraSparc and architectural support to make this work simpler.
Mowry’s Compiler Directed Prefetching Algorithm

Mowry in his dissertation [Mow94] proposed a prefetching algorithm for dense matrix code. This algorithm addresses prdefetching-related problems by (1) analyzing the source code to only issue prefetches for references that are predicated to suffer misses; (2) using loop splitting to separate prefetch component from others, to avoid adding conditional statements in loop body; (3) using software pipelining to schedule prefetches early enough.

This algorithm

Reuse Analysis

Prefetching Scheduling

Extensions

Experience in Using UltraSparc PREFETCH Instruction

An Example

When does PREFETCH work

Another View: Hardware Prefetching Result

Some Thoughts

Implementation Considerations

Architectural Support

Reference

[Mow94] Todd C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching
 Ph.D. thesis, Stanford University, Computer Systems Laboratory, March 1994.

[WG94] David L. Weaver and Tom Germond, The SPARC Architecture Manual, Version 9, Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 1994.

[US96] Sun Microsystems. UltraSPARCTM-II Enhancements: Support for Software Controlled Prefetch. White Paper WPR-0002-01, July 1996. http://www.sun.com/embedded/databook/pdf/whitepapers/WPR-0002-01.pdf
[BA97] D. Burger and T. M. Austin, "The SimpleScalar tool set, version 2.0," Tech. Rep. 1342, University of Wisconsin Madison, CS Department, June 1997.

 [DKK99] C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, J. Ng, and D. Sehr. An overview of the Intel IA-64 compiler. Intel Tecnology Journal, Q4, 1999.

 [BMK01] Angela Demke Brown, Todd C. Mowry and Orran Krieger. Compiler-Based I/O Prefetching for Out-of-Core Applications. In ACM Transactions on Computer Systems,19(2):111-170, May 2001.

PAGE
2
December 17, 2001

