Analytical Evaluation of Shared-Memory Systems with Commercial Workloads
CS 747 Project Report

Analytical Evaluation of Shared-Memory Multiprocessor Systems with Commercial Workloads

Jichuan Chang <chang@cs.wisc.edu>

May 14, 2002

ABSTRACT

Commercial workloads such as databases and web servers are the dominant applications running on shared-memory multiprocessor servers [1]. However, performance evaluation of these large and complex workloads is hard, due to lack of available applications and their large and complex nature. Such a situation makes analytical models very attractive, where application models can capture configuration-independent characteristics of the workloads and architecture models use the output produced by application models to evaluate performance under different configurations. Starting with the MVA model for ILP multiprocessor proposed by Sorin et al [2], we examine some existing analytical models for multiprocessor with a focus on cache models. We discuss their features and limitations, followed by a discussion of what tools are needed to help evaluate commercial workloads performance. We conclude by summarizing recent work in this direction.

1. A CASE FOR ANALYTICAL MODELS

Shared-memory multiprocessor servers are the building blocks to form today’s global computational infrastructure, supporting web servers, databases, and other demanding applications. These complex computer systems are often built from high-performance microprocessors each with Out-of-Order execution engine and multi-level cache hierarchy, communicating via interconnection networks. Research has focused on scientific applications performance evaluation and improvement for multiprocessors, and until recently people have largely neglected commercial workloads. According to [1], over 80% of the shared-memory multiprocessors are now used to run commercial workloads, emphasizing their importance for shared-memory server design.

Recent work on workloads characterization [3] [4] has shown that these applications have the following characteristics being different from numeric workloads: (1) large code sizes and very large data footprints, (2) difference cache behavior, including high communication miss rates, (3) substantial OS usage with high context switch rates, (4) high random I/O rates with significant I/O-related processor stall time, (5) fewer loop instructions and more non-looping branch instructions, and (6) data manipulation of string and integer data types. However, the following factors have complicated their study: (1) Lack of availability: it’s not easy to get commercial database engines and source code for operating systems, thus hard to understand and analyze their behavior; (2) Hard to setup and simulate: it’s complex and expensive to setup a realistic commercial benchmark, down-scaling the benchmark for full-system simulation also requires expertise to fine-tune and validate; (3) Moving target: Software upgrades quickly in functionality, performance and scalability. The scalability growth (such as dataset size) in particular quickly outdates previous evaluations.

Existing Performance Evaluation Tools

Here is a motivating example: Bob is designing a next generation multiprocessor for commercial workloads. Assume that the largest benchmark he can setup now is a 10G database. How can Bob predict the performance (IPC, or tpm) of running a 100G database TPC-D benchmark on the future machine? What’s the ideal cache hierarchy design for this workload given his prediction of future technology constants?

Below we examine existing performance evaluation tools for Bob to evaluate and predict commercial workload performance for future designs.

· Dynamic Monitoring Tools: including hardware counters and binary manipulation tools. These tools provide dynamic information of real workloads running on real machines, but they only work on existing systems and only provide aggregated data to avoid intrusive effect.

· Program Analysis Tools: compiler is the most widely used tool in this category. These tools can do global analysis and works well for loops and arrays. However they are not good for (pointer-based) irregular programs such as commercial workloads, they can’t predict dynamic behavior, and most importantly, they require source code to conduct the analysis.

· Simulators: Recently full-system simulation has become feasible to provide realistic performance result, usually for down-scaled benchmarks. By changing the simulator, we can simulate different hardware designs, although we can’t simulate for future software with up-scaled datasets. Other drawbacks of simulators include (a) detailed simulation is slow; (b) multiple simulations are needed to generate a series of data points; (c) modifying the simulator is not trivial.

· Analytical Models: After being created, these mathematical models are generally fast to be solved. They provide insights into application behavior and architectural features. By modeling application characteristics, they can predict for combinations of future software and hardware. Good models are more intuitive to understand and extend than simulators. The challenge of using analytical models is we first need to create models for multiprocessors with commercial workloads, either based on algorithm analysis or architectural observations.

Now it’s clear that appropriate analytical models are the right tools for Bob, because they have the advantage of being able to evaluate commercial workloads, not only for today’s architecture, but also for tomorrow’s workloads and hardware. In the following sections, we will examine what models have been created for multiprocessor running commercial workloads, and what kinds of models are needed.

2. EXISTING MODELS AND THEIR LIMITATIONS

The MVA model proposed by Sorin et al. [2] to evaluate ILP multiprocessors serves as our baseline model. To extend this model for our purpose, we focus on several cache models because (1) cache models provide key information about the workload, such as miss rates and working-set sizes, which can be fed into architectural models; (2) it’s a challenging task to create cache models in general and for commercial workloads on multiprocessors in particular. Computer architects’ observations on workload behavior are also presented, giving another possible way to get input parameters for application models.

MVA Model for ILP Multiprocessors

This MVA model is fully described in [5]. Figure 1 illustrates that the system is decomposed into two sub-systems, ILP processors (including L1/L2 caches) and the rest of the system. Basically, the processor black-box provides application input parameters such as ((the average time between requests generated by the processor to memory, excluding processor stall time), CV((the coefficient variation of (), fM (fractions of processor stall periods that have M outstanding misses) fsync-write (the fraction of write requests that are synchronous), etc. MSHR buffers are used to track the status of outstanding cache misses, which also connects the two sub-models to be iterated between.

[image: image1.wmf]ILP

Processor

L1$

L2$

The rest of the system

(Bus, NI, Switches

DRAM, Directories)

t

(when MSHR not full)

MSHR

Figure 1: MVA model for ILP multiprocessor

The model successfully simplifies the interface between the processor and the memory system, namely the application parameters. These parameters are not many, and some of them are insensitive to architectural configuration changes. By separating the ILP processor from the rest of the system, the model targets to answer system design questions, such as what’s the ideal MSHR size, directory organization, and NI latencies, etc. These parameters also provide insights about application behavior, already filtered by the processor/cache configuration. For example, (reflects miss rates, CV(indicates memory access burstiness, and fM suggests the degree of memory access parallelism.

However, the authors notice that some application parameters ((, fM, fsync-write) are sensitive to the configuration of processor and cache subsystems, therefore a new set of input parameters should be measured for each processor/cache combination. We also notice that for a given workload most of the changes come from cache design. Also, because cache design itself can interact with the rest of the system (especially with the cache-coherent protocol and the size of the system), the separation between processor and memory is actually not very rigid. Thirdly, this model only deals with fixed problem size. The advantages and shortcomings of this model naturally lead us to consider the following questions:
· Can we further break the processor/cache black box into processor and cache two sub-models?

· Can we come up with application parameters for these two models, which are more independent of hardware configurations?

To answer the first question, we realize that the focus of ILP processor model is the fetch, issue, execution and retire pipeline, which lends itself to well-studied queueing networks. The most challenging part then becomes how to model cache behavior analytically.

Cache Models

Historically, many cache models have been proposed, with various degrees of applicability and accuracy. Among them, we survey three models for their relevance to our purpose. The details of these models can be found in the references, which further point to other cache models being developed.

LRU Stack Distance Model and its Variations [6][7][8]

The stack distance model [6] requires a memory access trace. In this trace, the stack distance of a reference to location A is the number of unique references to other locations from the last reference to A. If A is referenced for the first time, its stack distance is infinity. For one-byte block size, fully associated, inclusive caches, the stack distance is a good estimate for miss rate (both cold misses and capacity misses). By plotting the stack distance curve, we can also estimate working-set sizes by observing the plateaus along the curve. [7] has extended this concept for direct-mapped and set-associative caches, assuming every block is equally likely to be replaced. It reports that stack distance estimates miss rate with less than 10% error for the benchmarks it uses. [8] uses a probability model to take into account of cache block size (spatial locality), working-set transitions, conflict misses and multi-programming interferences. [9] proposes another model for fully associative caches, considering a power function involving W (the working-set size), L (spatial locality), t (temporal locality), d (interaction between spatial and temporal locality). All these models are for uniprocessor caches.

Data Reference Model for Multiprocessor [10]

Data reference model is a configuration-independent model for cache-coherent multiprocessors. The technique involves analyzing the dynamic data reference pattern of parallel algorithms, so it only works for simple and iterative programs with well-known algorithms. The sharing pattern of each shared blocks are modeled (by “mental simulation”) as a function of N (the problem size), P (the number of processors) and B (the cache block size), so it can predict miss rates for systems with different configurations. For programs whose control flow and data access depend on data values (i.e. in a parallel quick-sort program), it assumes certain data value distributions. Although this model only works for regular program with little synchronization, it demonstrates that cache miss rate on multiprocessor can be estimated using simple equations.

Mathematical Cache Miss Equations [11][12]

[11] presents a method for compilers to generate and solve Cache Miss Equations that gives a detailed representation of cache behavior in a loop-oriented scientific code. This approach extends traditional compiler reuse analysis to generate linear Diophantine equations to summarize each loop’s cache behavior. This analysis framework is general and precise for compiler transformations. [12] presents how to extend the cache miss equations to analyze two simple irregular programs: linked-list transversal and binary-tree searches. This paper relies on assumptions of malloc() implementation. It’s still not clear whether this technique can be generally extended to handle complex pointer data structures like B+ tree.
Architect’s Observations

Similar to the modeling community, computer architects are also trying to understand cache behavior at different problem and system sizes by observing cache sharing and miss patterns during execution. For example, configuration-independent characterization [13] uses case studies of eight shared-memory applications to illustrate how inherent application characteristics can be extracted from parallel execution traces, one per problem and system size. Seven characteristics of shared-memory applications are examined, as the candidates for application model outputs:

1. General Characteristics: including dynamic instruction count, number of distinct touched instructions, etc.

2. Working-set Sizes: the paper used (1) stack distance model to capture working-set size, and (2) the total number of unique blocks touched as the limit.

3. The Amount of Concurrency Available: concurrency is measured as the time (in instructions) that processors spend executing instructions vs. waiting at synchronization points. Three factors are identified to affect concurrency: serial fraction, load imbalance and resource contention.

4. Communication Pattern: RAW, WAR, WAW and RAR are used as the four possible communication patterns. The volume of each pattern, the sharing degree, and the invalidation degree are reported.

5. Communication Variation Over Time: It enables identification of communication-intensive program segments. Knowledge of the average and peak communication rates helps specify appropriate bandwidths in the system interconnect.

6. Communication Locality: This knowledge is useful in selecting system organization and the interconnection topology. It also helps assign threads to physical processors/nodes.

7. The Sharing Behavior: This is about which memory locations are shared and how – including real and false sharing. Characterizing data sharing helps in mapping application data into shared or private spaces to reduce access latencies.
3. WHAT TOOLS DO WE NEED

We need both application models to characterize workloads behavior, and architectural models for different sub-systems that are compatible with each other. We also want to use the result produced by application models as inputs for these architectural models.

Application Models for Commercial Workloads

As mentioned before, application models should provide output such as working-set size, sharing patterns and communication behaviors. The problem size (such as database size, number of concurrent users/threads) should be included as a parameter. It would be nice to have the model independent of system size (such as the number of processors), but at least it should be configuration-independent (meaning only depends on system size) or less configuration-dependent (for example, only depends on the configuration of one architectural sub-model).

The model can be constructed using algorithms analysis techniques, as demonstrated by the Data Reference Model and the modeling of DSS working-set sizes (see “Recent Works”), in which case source code or higher-level algorithms must be available. Or the model can rely on the observation of a representative execution (for example from simulation or tracing). By viewing the workload as a black box, this requires a more general model applicable for a wide range of applications.

Architecture Models

Construct architectural models for different subsystems will save the time to gather many sets of input parameters, each for one configuration combination. However, it’s still an open question how to decompose the whole system. Sorin et al already separate the processor with the rest of the system in an intuitive way. We hope to see models that can separate the processor into models to represent the different sub-systems inside processor.

It’s also worth noting that the architectural simulation community is not quite ready to work with analytical models, for example, my experiences to instrument the Opal processor simulator and Ruby memory simulator [14] to get model parameters are frustrating. As models are becoming important tools for performance evaluation, hopefully the simulators will become more model-friendly. On the other hand, simulator writers are using analytical models to simplify their work [15], to save the effort of cycle-accurate instruction execution simulation.
Recent Works

Two pieces of recent work will be summarized in this section, to illustrate to what extend progress has been made in analytical modeling of commercial workloads and how this can be done.

Application Model: DSS Working-set Sizes [16]

Karlsson et al construct an analytical model about how working-sets scale with database size and other application parameters in decision support systems (DSS). This model uses application parameters measured in down-scaled database executions to predict cache miss rates for larger databases. The application parameters are defined for each node i in a commonly used query plan: Ni = the number of truples in a scan operation, Hi = the probability that a tuple matches, QD = the depth of the query tree, and DB_REi = fraction of a relation accessed for a scan. By modeling the reuse of different data structures (instructions, private, meta-data, index, tuple-locks, tuples) after working-set transition happen, and the working-set transition probability, working-set sizes can be estimated for different database sizes.

Architectural Model: Commercial Workload on SMP [17]

Zhang et al shows that a “simplistic” model can do surprising well in predicting IPC for commercial workloads on symmetric multiprocessor systems (SMP). Their model uses stack distance curve to derive miss rates for L1 and L2 cache, main memory. It assumes that L1 cache accesses can be completely overlapped with ILP instruction execution. A M/G/1 queue is used to model bus/memory contention. Without analyzing query algorithms, communication misses, and overlapping between computation and memory accesses, the authors report errors less than 10%.

4. CONCLUSION AND FUTURE WORK

Evaluation of commercial workloads running on multiprocessors is a challenging problem for performance study community. Analytical modeling is an attractive approach to attack this problem. After examining existing models, we realize that both application and architecture models are needed to work corporately. Recent work on configuration-independent analysis has provided an initial set of behaviors to be characterized. To fully understand the workloads, both algorithm analysis and workload observation approaches should be explored.

For future work, we plan to use OLTP (online transaction processing) as the target application, first to gather application characterization information, then to create cache models that can handle high communication miss rates. We also plan to modify the MVA model in [2] by separating caches from processor core, and integrate our cache models with the modified MVA model. This way, a more controllable and configuration-independent model will be constructed for a particular application, moving towards a more systematic approach for analytical modeling of commercial workloads.

REFERENCES

[1] P. Stenström, E. Hagersten, D. Lilja, M. Martonosi, M. Venugopal. “Trends in Shared Memory Multiprocessing.” IEEE Computer, 1997.

[2] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood. "Analytic Evaluation of Shared-Memory Systems with ILP Processors." 25th Annual International Symposium on Computer Architecture (ISCA), 1998.

[3] L. Barroso, K. Gharachorloo, E. Bugnion. “Memory System Characterization of Commercial Workloads.” International Symposium on Computer Architecture (ISCA), June 1998.

[4] A. Maynard, C. Donnelly, B. Olszewski. “Contrasting characteristics and cache performance of technical and multi-user commercial workloads.” ASPLOS 6th, pages 145–156, 1994.

[5] D. J. Sorin, J. L. Lemon, D. L. Eager, and M. K. Vernon. "A Customized MVA Model for Shared-Memory Architectures with Heterogeneous Applications." University of Wisconsin - Madison, Dept. of Computer Sciences Technical Report #1400, 1999

[6] B. R. Rau. “Properties and applications of the Least-Recently-Used Stack Model,” Technical Report, Department of Electrical Engineering and Computer Science at Stanford University, 1977.

[7] M. D. Hill and A. J. Smith. “Evaluating Associativity in CPU Caches,” IEEE Transactions on Computers, vol. 38, no. 12, pp. 1612-1630, 1989.
[8] A. Agarwal, M. Horwitz, J. Hennessy. “An Analytical Cache Model." ACM Transaction on Computer Systems, Vol.7, pp. 184-215, May 1989.

[9] J. P. Singh, H. S. Stone, D. F. Thiebaut. “A Model of Workloads and Its Use in Miss-Rate Prediction for Fully Associative Caches.” IEEE Transaction on Computers, Vol. 41, No. 7, 1992.

[10] J. Tsai, and A. Agarwal: Analyzing Multiprocessor Cache Behavior Through Data Reference Modeling. SIGMETRICS 1993: 236-247.

[11] S. Ghosh, M. Martonosi and S. Malik. “Cache Miss Equations: An Analytical Representation of Cache Misses.” 11th ACM International Conference on Supercomputing. July, 1997.

[12] H. Zhang, M. Martonosi. “A Mathematical Cache Miss Analysis for Pointer Data Structures.” SIAM Conference on Parallel Processing for Scientific Computing, March, 2001

[13] G. Abandah, E. Davidson. “Configuration Independent Analysis for Characterizing Shared-Memory Applications.” Proceedings of the 12th International Parallel Processing Symposium (IPPS'98), pp. 485-491, 1998.

[14] T. Tsuei and W. Yamamoto. “A Processor Queuing Simulation Model for Multiprocessor System Performance Analysis.” 5th Workshop on Computer Architecture Evaluation using Commercial Workloads (CAECW), 2002.

[15] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M.K. Martin, D. J. Sorin, M. D. Hill and D. A. Wood. “Evaluating Non-deterministic Multi-threaded Commercial Workloads.” 5th Workshop on Computer Architecture Evaluation using Commercial Workloads (CAECW), 2002.

[16] M. Karlsson, F. Dahlgren, P. Stenström. “An Analytical Model of the Working-set Sizes in Decision-Support Systems.” SIGMETRICS 2000: 275-285

[17] X. Zhang, Z. Zhu, and X. Du. “Analysis of Commercial Workload on SMP Multiprocessors.” Proceedings of Performance ‘99, pp. 331-346, 1999.

PAGE
3
May 15, 2002

_1082922707.ppt

ILP

Processor

L1$

L2$

The rest of the system

(Bus, NI, Switches

DRAM, Directories)

 (when MSHR not full)

MSHR

