
Modeling the Motion of a Hot, Turbulent Gas

Nick Foster and Dimitris Metaxas
Center for Human Modeling and Simulation

University of Pennsylvania, Philadelphia
ffosternj dnmg@graphics.cis.upenn.edu

Abstract
This paper describes a new animation technique for model-
ing the turbulent rotational motion that occurs when a hot
gas interacts with solid objects and the surrounding medium.
The method is especially useful for scenes involving swirling
steam, rolling or billowing smoke, and gusting wind. It can
also model gas motion due to fans and heat convection. The
method combines specialized forms of the equations of motion
of a hot gas with an efficient method for solving volumetric
differential equations at low resolutions. Particular emphasis
is given to issues of computational efficiency and ease-of-use
of the method by an animator. We present the details of our
model, together with examples illustrating its use.
Keywords: Animation, Convection, Gaseous Phenomena,
Gas Simulations, Physics-Based Modeling, Steam, Smoke,
Turbulent Flow.

1 Introduction
The turbulent motion of smoke and steam has always inspired
interest amongst graphics researchers. The problem of mod-
eling the complex inter-rotational behavior that arises as gases
of different temperatures mix and interact with solid objects
is still an open one. This behavior forms the part of so many
everyday scenes (e.g., steam rising from street gratings) that it
remains an important topic in computer graphics.

There have been several previous approaches to modeling
gas motion for computer graphics. Wejchert and Haumann
[18] and Sims [13] modeled gases using the manual superpo-
sition of deterministic wind fields. This gives an animator con-
trol over the flow in an animation by placing vortices and flow
field components by hand. More random motion, due to turbu-
lence and diffusion, has proved amenable to spectral analysis.
Shinya and Fournier [15], Stam and Fiume [16], and Sakas
[12] define stochastic models of turbulent motion in Fourier
space, and then transform them to give periodic, chaotic look-
ing vector fields that can be used to convect gas particles or
interact with simple objects.

These and similar approaches to modeling turbulent gases
require that the animator has micro-control over the behavior
of the gas. They characterize the visual behavior of gases with-
out accurately modeling the physics-based components of gas
flow. This leaves the animator with the sometimes difficult

0

task of defining wind field parameters and small scale stochas-
tic turbulence parameters wherever the visual characteristics
of the flow vary significantly. For simple scenes and homo-
geneous effects this leads to good results which can be easily
controlled. However, for scenes involving complex motion or
a lot of interaction between a gas and other objects, it is al-
most impossible to manually create and control a natural look-
ing animation. This is because the appearance of this kind of
phenomena is very sensitive to the behavior of the gas as a vol-
ume. Rising steam, for example, is directed by the interaction
and mixing between it and the surrounding air, as well as the
convective flow field around static or moving objects. It would
be prohibitively difficult to model these effects by hand even
using existing methods for defining stochastic turbulence and
laminar wind fields. The best way to achieve realism would
be to model these effects in a physically accurate way, but the
methods available to do so are inefficient, and tailored to com-
putational fluid mechanics rather than computer graphics.

Another popular method has been to treat gases as collec-
tions of particles. Ebert, Carlson, and Parent [3], Reeves and
Blau [11], and Stam and Fiume [17] reduced the complexity
of the gas volume modeling problem in this way by using
discrete particles to represent gaseous motion. Particle sys-
tems are generally efficient, but have two inherent drawbacks.
First, a real gas is a continuous medium; selecting particular
regions, and then estimating the interaction between them, can
lead to unpredictable results for the animator. It is also un-
clear how interaction between volumes of gas is modeled us-
ing forces between particles. Often, the rotational component
of such interaction still needs to be added manually. Second,
the most visually interesting gaseous behavior is due to the
fact that the gas being modeled is mixing with its surrounding
medium. This medium has not been modeled in the particle
system methods and so its effects can only be estimated. This
may lead to visual simulations that have an unrealistic feel to
them. Yaeger, Upson, and Myers [10] generated an excellent
animation of the surface of the planet Jupiter by building a
vorticity field from a particle-based motion system. The re-
sults were very realistic, but the method does not generalize
to three dimensions and cannot account for flow around ob-
stacles. In addition, a Cray X-MP was required to achieve
reasonable computation times. A similar combination of vor-
tex field and particle motion was used by Chibaet. al. [1] for
their 2D simulations of flames and smoke. This technique does
generalize to three dimensions and handles laminar gas flow
around objects very nicely, but it isn’t strictly physics-based.
Again, this puts responsibility on the animator to achieve re-
alism. These methods do show however, that the combination
of visual simulation and physics-based simulation can lead to
satisfying results for computer graphics.

In this paper we develop a new physics-based model specif-
ically designed to realistically animate the complex rotational
component of gaseous motion, effects due to regions of dif-
ferent temperature within a gas, and the interaction between
gases and other objects. This work directly addresses the prob-

1

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.



lem that no graphics models exist for the precise calculation of
the turbulent, buoyant, or rotational motion that develops as a
gas interacts with itself and solid objects. In the past, defini-
tion of this component of gas motion has been done via ad hoc
methods or left to the skill of the animator. The paper’s main
contribution is a method for the efficient animation of both the
turbulent and swirling behavior of a three-dimensional volume
of hot gas in an arbitrary environment. The model we have
developed accounts for convection, turbulence, vorticity and
thermal buoyancy, and can also accurately model gas flowing
around complex objects. This gives rise to a number of real-
istic effects that could not be modeled previously, such as hot
steam being vented into a boiler room or the rolling smoke
cloud from an explosion. We show that not only is the pro-
posed method accurate, it is also fast, straightforward, and can
be used as a general graphics tool. Fast, because we use a sim-
plified set of equations (compared to those used in the com-
putational fluid dynamics literature) which are adequate for
modeling the desired effects. Straightforward, because bound-
ary conditions are set automatically and can be used to model
different types of objects (rough or smooth for example). The
model is mathematically nontrivial, but we will show that its
solution proceeds in relatively simple computational steps.

2 Developing a gas model for computer
graphics

Before trying to model a hot gas for computer graphics pur-
poses, it is important to have some intuition for those factors
that influence its motion. Consider as an example, an old fash-
ioned steam engine venting a jet of hot gas from its boiler.
A governing factor in the motion of the gas is the velocity it
has when rushing into the surrounding air. As it mixes with
the slower moving air, the steam experiences drag (shearing
forces), and starts to rotate in some places. This rotation causes
more mixing with the air, and results in the characteristic tur-
bulent swirling that we see when gases mix. A second im-
portant factor that governs gas motion is temperature. As the
steam is vented, it tends to rise. Hotter parts of the gas rise
more quickly than regions which have mixed with the cooler
air. As the gas rises, it causes internal drag, and more turbulent
rotation is produced. This effect is known as thermal buoy-
ancy. Turbulent motion is further exaggerated if the gas flows
around solid objects. At first the gas flows smoothly along
the surface, but it eventually becomes chaotic as it mixes with
the still air behind the object. Finally, even when conditions
are calm, diffusion due to molecular motion keeps the gas in
constant motion.

In the next sections we derive a “customized” numerical
model for animating visually accurate gaseous behavior based
on the motion components described above. We call the model
customized, because it incorporates only the physical elements
of gaseous flow that correspond to interesting visual effects,
not those elements necessary for more scientific accuracy. The
model is built around a physics-based framework, and achieves
speed without sacrificing realism as follows.

A volume of gas is represented as a combination of a scalar
temperature field, a scalar pressure field, and a vector veloc-
ity field. The motion of the gas is then broken down into two
components: 1) convection due to Newton’s laws of motion,
and 2), rotation and swirling due to drag and thermal buoy-
ancy. The rotational, buoyant, and convective components of
gaseous motion are modeled by coupling a reduced form of the
Navier-Stokes equations with an equation for turbulent mixing
due to temperature differences in a gas. This coupling pro-
vides realistic rotational and chaotic motion for a hot gaseous
volume.

In general, solving a nonlinear system throughout a 3D vol-
ume is much too time consuming for animation because any
algorithm that does so accurately has a complexity ofO(n3)
[4]. However, the authors have recently shown that for com-
puter graphics, realistic looking results can be obtained in a
reasonable amount of time if such a system is suitably approx-
imated and solved at very low resolutions [5]. For a gas this
is done in two stages. First, we solve equations corresponding
to the two motion components in a voxel environment contain-
ing rectangular approximations to arbitrary static objects. This
significantly reduces scene complexity, makes the application
of boundary conditions trivial, and yet keeps the basic struc-
ture of the objects intact allowing for interaction between them
and the gas. Second, the solution proceeds using a finite dif-
ference approximation scheme which preserves the turbulent
and rotational component of gaseous motion even at very low
resolution, making the scheme efficient and suitable for use
as a general graphics tool. So even though the method is still
O(n3), we have reducedn significantly (40–60 in the examples
given).

The result is a scheme that calculates the movement and
mixing of a gas within interesting environments in a visually
and physically accurate way. The output from the system is a
pre-sampled, regular grid of time varying velocity or temper-
ature values, which, when combined with massless particles,
can be rendered in a number of ways using popular volume
density rendering methods.

For the following discussion of the method, we take a New-
tonian approach and treat finite regions in space as individual
gaseous elements. An element can vary in temperature and
pressure and allows gas to flow through it with arbitrary veloc-
ity, but its position remains fixed. We now present the model
used to calculate the components of gaseous motion mentioned
above.

2.1 Convection and Drag
The velocity of gas in an element is affected by a number of
factors. First, it is pushed along, or convected, by its neigh-
bors. Second, the gas is drawn into adjacent regions of greater
velocity (or lower pressure). This is called vorticity, or drag.
Third, the element is affected by forces such as gravity. In
some extreme gaseous phenomena there may also be motion
caused by shock and pressure waves that arise because gas can
be locally compressed. If, however, the class of effects that we
want to model is restricted to day-to-day sub-sonic effects such
as smoke from fires, steam from steam engines, and so on, then
the terms due to the compressibility of the gas will have only
a minor effect on the overall motion. Therefore, we make a
simplifying assumption that locally, the gas is incompressible.
Furthermore, we assume that motion due to molecular diffu-
sion is negligible relative to other effects. When these assump-
tions are applied to the Navier-Stokes equations, which fully
describe the forces acting within a gas, a reduced form can be
derived. For brevity the full equations are not reproduced here,
but the reduced form, without compressive effects, or gravity
forces is

∂u
∂t

= ν∇ � (∇u)� (u �∇)u�∇p; (1)

where∇ is the gradient operator,u is the velocity of the gas,�
is the inner product operator, andp is the pressure of the gas.
This equation models how the velocity of a gas changes over
time depending on convection ((u � ∇)u), its pressure gradi-
ent (∇p), and drag (ν∇ � (∇u)). It is generally combined with
the continuity equation which models mass conservation and
which is discussed later in this paper. Theν coefficient is the



kinematic viscosity. Intuitively, smallν models a less viscous
gas in which rotational motion is more easily induced. Equa-
tion (1) models the convective and rotational velocity in our
customized gas.

2.2 Thermal Buoyancy
Forces due to thermal buoyancy also induce motion in a gas.
If a hot gaseous element is surrounded by cooler elements, the
gas will rise (or move against gravity in cases of interest to us).
We model this effect by defining a buoyant force on a gaseous
element, as

Fbv=�βgv(T0�Tk); (2)

wheregv is gravity in the vertical direction,β is the coefficient
of thermal expansion,T0 is an initial reference temperature (a
balmy 28oC for the examples in this paper), andTk is the aver-
age temperature on the boundary between a gaseous cell and
the one above it. Although simple, this equation seems to work
very well.

In order to use (2) to calculate buoyant forces, the evolution
of temperature within the gas must also be modeled. Adja-
cent elements exchange energy by straight convection (hot gas
flowing from one element to another) and also by small scale
turbulent mixing through molecular collisions with adjacent
elements. Thus, the change in temperature of a gas over time
can be characterized as a combination of the convection and
diffusion of heat from adjacent regions. The differential equa-
tion that governs this process is [14]

∂T
∂t

= λ∇ � (∇T)�∇ �Tu; (3)

whereu is the velocity of the gas,T is its temperature, andλ
can be chosen to represent both turbulent and molecular dif-
fusion processes. The structural similarity between (1) and
(3) should be apparent. The second term on the right describes
how temperature at a point changes due to convection, whereas
the first term on the right takes into account changes in tem-
perature due to diffusion and turbulent mixing. By solving (3)
for a volume of hot gas, it is possible to calculate the force on
a gaseous element due to thermal buoyancy using (2). This
force affects velocity and so can be added as a new term to (1)
giving

∂u
∂t

= ν∇ � (∇u)� (u �∇)u�∇p+Fbv: (4)

Equations (3) and (4) together provide us with a model for the
rotational and turbulent motion that makes the mixing of hot
and cold regions of a gas so interesting to watch.

3 Building a Useful Animation Tool
from the Model

To obtain realistic motion from a volume of gas, the govern-
ing equations must be solved over time in three dimensions.
The authors recently showed that for liquids, such volume cal-
culations can be made with computational times and accuracy
acceptable for a computer animation application if the envi-
ronment and equations are suitably approximated [5]. A sim-
ilar method is used here to solve the gas motion equations. A
voxel-based scene approximation is combined with a numer-
ical scheme known as finite differences. For (3) and (4), this
leads to a straightforward algorithm that solves for the motion

(a) (b)

Figure 1: Using regular voxels to approximate (a) a scene con-
taining solid objects and (b) the medium around those objects.

of a hot gas and takes into account arbitrary (approximated)
objects as well as animator-controlled special effects. In ad-
dition, the method can be solved over a coarse grid without
losing any of the behavioral characteristics of the gas, making
it relatively efficient for even complex scenes.

3.1 Modeling the Simulation Environment

In order to solve the gas motion equations so that they rep-
resent the behavior of a gas in an animation environment, we
need to represent the scene in a meaningful way with respect
to the equations. We first approximate the scene as a series of
cubic cells to reduce its complexity, and to form a grid upon
which we can define temperature, pressure, and velocity.

A collection of solid 3D objects can be approximated as a
series of regular voxels that are axially aligned to a coordinate
systemx,y,z (see Fig. 1a). If a portion of the medium (gas)
surrounding the objects is likewise voxelized using the same
coordinate system, then the boundaries of the objects can be
made to coincide with the faces of gas voxels (Fig. 1b). The
resulting grid can be used to solve physics-based differential
equations in an efficient and straightforward way [5].

Consider a single cell in this grid (Fig. 2). It can be iden-
tified by its position relative to the origin in thex, y, z, direc-
tions, asi, j, k, respectively. At the center of the cell, we define
variablesTi; j ;k and pi; j ;k to represent the average temperature
and average pressure within the cell. Likewise, in the center of
each face of the cell we define a variable to represent the gas
velocity perpendicular to that face. This leads to the velocities
u,v,w shown in Fig. 2. Intuitively, cells ati, j,k and i + 1,j,k
will share the face velocityui+1=2; j ;k. Once the environment
over which we wish to calculate gas motion is discretized in
this way, it is possible to calculate, using (3) and (4), how the
temperature, pressure, and velocity throughout the grid vary
over time. By using linear interpolation, the temperature (or
velocity and pressure) at any point in the volume can be found.
As an example, theu velocity of the gas at the center of the cell
can be found from(ui�1=2; j ;k+ui+1=2; j ;k)=2.

3.2 Applying the Equations to the Grid

To solve (3) and (4) we recast them to a form that is applica-
ble to the regular voxel grid, using a numerical method called
finite differences. A differential term such as

∂T
∂y



i,j,k-1/2

∆τ

∆τ

∆τ

z x

y

(i,j,k)

u w

v

i-1/2,j,k

i,j+1/2,k

Figure 2: Numbering convention for a single cell in the voxel
grid. ∆τ is the side length for each face of the cell.

is approximated using a Taylor series to give a new expression
for the derivative,

∂T
∂y

=
1
2h

(T(y+h)�T(y�h))+O(h2); (5)

whereh is the finite distance over which the derivative is being
taken, andO(h2) denotes that terms of order 2 or higher exist.
Likewise, a second order derivative,

∂2T
∂y2 ;

is written as

∂2T
∂y2 =

1
h2 (T(y+h)�2T(y)+T(y�h))+O(h2); (6)

whereh is as before. Ifh is taken to be∆τ, the grid width, then
for a single voxel, we approximate (6) such that

∂2T
∂y2 =

1
∆τ2 (Ti; j+1;k �2Ti; j;k +Ti; j�1;k)

using terms that correspond directly to variables on the vox-
elized grid, and ignoring terms of order 2 or higher (inh). Us-
ing this basic technique, (3) is first expanded as a series of first
and second order differential terms,

∂T
∂t

= λ(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 )�

∂Tu
∂x

�
∂Tv
∂y

�
∂Tw
∂z

; (7)

and then completely rewritten in terms of the free variables on
the finite grid,

Tn+1
i; j;k = Tn

i; j;k+∆tf(1=∆τ)[(Tu)ni�1=2; j;k � (Tu)ni+1=2; j;k

+ (Tv)ni; j�1=2;k � (Tv)ni; j+1=2;k+(Tw)ni; j;k�1=2

� (Tw)ni; j;k+1=2]+
λ

∆τ2 [(T
n
i+1; j;k �2Tn

i; j;k +Tn
i�1; j;k)

+ (Tn
i; j+1;k �2Tn

i; j;k +Tn
i; j�1;k)

+ (Tn
i; j;k+1�2Tn

i; j;k +Tn
i; j;k�1)]g; (8)

where a term such as(Tu)ni+1=2; j ;k represents the temperature
flow between cells(i; j;k) and(i+1; j;k), and is calculated as

(Tu)ni+1=2; j;k =
un

i+1=2; j;k

2
(Tn

i; j;k+Tn
i+1; j;k):

Using (8), the temperature at the center of celli, j,k at time
t+∆t can be found in terms of the temperatures at timet in ad-
jacent cells.Tn+1 denotes the value ofT at timet+∆t, while
Tn, denotes the value at timet. It is simply a matter of plug-
ging in the old values ofT in order to find the new value. In
a similar way, (4) is also expanded as first and second order
differentials, written in terms of cell face velocities and cell
pressures, and then solved to findun+1

i; j ;k in terms ofun
i; j ;k (see

Appendix A). Thus, to find how the velocity and temperature
change over a time interval∆t, (8) and (17) are applied simul-
taneously to each cell in the grid. Because∆τ is a constant, this
calculation involves only floating point multiplication and ad-
dition, making it reasonably efficient. The change in pressure
for a cell is calculated separately and is a fortunate side effect
of mass conservation which is described in the next section.

3.3 Ensuring Accuracy
The approximation of the animation environment as regular
voxels is the main source of efficiency for our algorithm. The
drawback, however, is that low resolution variable sampling
can introduce error into the calculation. Because the free vari-
ablesu andT are sampled at fixed positions in space∆τ apart,
an error of orderO(∆τ2) is introduced intoT andu when the
finite difference approximation is applied to the voxels (the
O(h2) terms from (5) and (6)). For temperature this is not
significant, but foru it represents mass that has been created
(or destroyed) as a side effect of the algorithm. This means
that each cell in the scene acts as a small gas source or sink,
slightly altering the total mass of gas in a scene. To correct for
this change in mass, we need to ensure that at any point in the
scene (unless we specifically want a source or sink), the mass
of gas flowing in, is the same as the mass flowing out. This
can be characterized by a constraint equation that is actually
part of the Navier-Stokes equations,

∇ �u = 0: (9)

For a single grid cell, the left hand side of (9) is approximated
using the Taylor series method, and rewritten in terms of the
grid variables, giving

(∇ �u)i; j;k =
1

∆τ
[ui+1=2; j;k �ui�1=2; j;k +vi; j+1=2;k

� vi; j�1=2;k +wi; j;k+1=2�wi; j;k�1=2]; (10)

where(∇ � u)i; j ;k is the mass divergence at the center of the
cell. For mass to be conserved, this scalar field must be zero in
every cell. This requires a solution to the classic three dimen-
sional Poisson equation. The computational method described
by Harlow and Welch [8] was one of the earliest in print, and
although that approach is two-dimensional in scope, it can be
modified so that it is suitable for our gas model.

We define a potential field,ψ, which is sampled at the center
of each grid cell and is initially zero everywhere. Then, for
every frame of animation, we iterate over the grid, updatingψ
according to

ψh+1
i; j;k =

2
8=∆τ2 f�(∇ �u)i; j;k +

1
∆τ2 [ψ

h
i+1; j;k+ψh

i�1; j;k (11)

+ ψh
i; j+1;k+ψh

i; j�1;k +ψh
i; j;k+1+ψh

i; j;k�1]g�ψh
i; j;k;

where(∇ �u)i; j ;k is given by (10). This field is considered to
have converged, i.e., the iteration stops, when, for every cell in
the grid,

�
�
�
�
�

jψh+1
i; j;kj� jψh

i; j;kj

jψh+1
i; j;kj+ jψh

i; j;kj

�
�
�
�
�
< ε: (12)



For the examples given later in this paper,ε is taken to be on
the order of 10�4, and convergence is achieved in about 8-20
iterations per frame.

After convergence, theψ field represents the relative dis-
crepancy in mass between adjacent cells. By adjustingu ac-
cording to the gradient inψ, u can be made to satisfy (9) di-
rectly [8]. The velocity components on the grid cell faces are
adjusted to correct for the divergence field by

un+1
i+1=2; j;k = un+1

i+1=2; j;k �
ψi+1; j;k �ψi; j;k

∆τ
;

vn+1
i; j+1=2;k = vn+1

i; j+1=2;k �
ψi; j+1;k �ψi; j;k

∆τ
;

wn+1
i; j;k+1=2 = wn+1

i; j;k+1=2�
ψi; j;k+1�ψi; j;k

∆τ
: (13)

The temperature,Tn+1
i; j ;k , need not be changed. This final step

makes the necessary small adjustments in the velocity field to
preserve mass and ensure that the calculation remains physi-
cally accurate. In addition, it can be shown that the gradient
in the pressure field,pi; j ;k, is equal to the gradient inψi; j ;k [8].
Because (4) depends only on the gradient inp, we can use the
ψ field directly when calculating gas motion, instead of calcu-
lating the pressure.

3.3.1 Stability

An important issue with respect to accuracy is the numerical
stability of the algorithm. Instability can occur when small os-
cillations in the variables resonate and dominate the solution.
With the model we have described this can happen when the
velocity of any part of the gas allows it to move further than
∆τ in a single timestep. To ensure stability for an animation
with a maximum gas velocity ofjuj, the timestep,∆t, must be
set according to,

∆t juj< ∆τ: (14)

For all the examples given in this paper∆t was set to1
30Sec,

to achieve the standard animation framerate. This is an or-
der of magnitude lower than the maximum stable timestep for
even the most violent of the examples shown. A further condi-
tion for numerical stability is a necessary feature of the finite-
difference method and it forces a lower bound on the kinematic
viscosity,ν. Linear analysis has shown that for the Navier-
Stokes equations,ν must satisfy [4]

ν > (∆t=2)max[u2;v2;w2] (15)

for the system to remain stable.

3.4 Boundary Conditions for Special Effects
The regular voxel grid makes application of the gaseous mo-
tion equations efficient and straightforward. It also makes it
easy to specify temperature, pressure, and velocity along the
edges of solid objects so that interaction between objects and
gas can be modeled accurately. Such “boundary conditions”
can also be used to specify special effects involving gas flow-
ing into or out of the environment. Referring to Fig. 3, the
application of the finite difference forms of (3) and (4) to the
gas cell may require grid values from an adjacent object cell.
These values are set automatically depending on the type of
material or object that the cell represents.

For example, a hot radiator cannot allow gas to pass through
it, so the velocity,u, (v in the 2D figure) is set to zero for cell

Set values

T

T0

v0

0u

u

v

Calculated values

Object Boundary

Gas Cell

Object Boundary Cell

Figure 3: Setting temperature and velocity conditions at the
boundary between a gas and an object.

Object Type u v T Result
Rough and -u0 0 T0 Lots of turbulence close
rocky to the object
Concrete 0 0 T0 Some turbulence, object

slows flow
Smooth u0 0 T0 No turbulence, flow
Plastic unaffected
Open Window 0 vx Tx Gas can flow in or out

depending onTx andvx
Hot Fan 0 vx Tx Hot gas is forced into

the scene
Steaming 0 0 Tx Gas cells next to
soup boundary are heated

Table 1: Examples of different object boundary conditions. A
subscriptx represents a value chosen by the animator. A sub-
script 0 means that the value is taken directly from the adjacent
gas cell (see Fig. 3).

faces that represent the radiator boundary. Tangentially how-
ever, we want gas to flow freely along the surface. Therefore u,
is set equal to the external tangential velocity u0. Temperature
flows freely from the radiator to the air, so the temperature,
T, within the boundary cell is set to the desired temperature
of the radiator. If a heating fan were being modeled instead
of a radiator, thenu on the object cell faces would be set to
model air flowing into the environment. For a standard ob-
stacle, such as a wall or table,u is set to zero andT is set to
the ambient temperature. The pressure is more difficult to set
with a desired effect in mind. Therefore the object pressure
is simply set equal to the external gas pressure so that it has
no local effect on the flow. There are no restrictions on how
boundary conditions can be set. Some examples ofu andT
for interesting effects are given in Table 1.

3.5 The Turbulent Gas Algorithm
The complete algorithm for animating turbulent gas has two
stages. The first involves decisions that need to be made by an
animator in order to create a particular effect. The steps the
animator must take are:

1. Subdivide the environment into regular voxels with side
length ∆τ. The environment need not be rectangular,
any arrangement is acceptable as long as voxel faces are
aligned.

2. Select boundary conditions for velocity and temperature
similar to those in Table 1.

3. Consider viscosity, thermal expansion, and molecular dif-
fusion, and setν, β, andλ accordingly (1/10∆τ or higher



for little visible turbulence, 1/100∆τ or lower for greater
swirling).

4. Determine∆t from the minimum of 1
30

th
of a second and

the largest stable timestep given by (14) and (15).

After the parameters for the animation have been chosen, the
automatic part of the process proceeds as follows:

5. Apply boundary conditions to the sides of objects cho-
sen to simulate fans, heaters, sources, or sinks. Set the
boundary velocity of other objects to zero, and set inte-
rior temperatures to the ambient temperature.

6. Use the finite difference approximations of (3) and (4) to
update the temperature and velocity,Ti; j ;k andui; j ;k, for
each cell (making use ofψ instead of pressure).

7. Use (10) to find the divergence field,(∇ �u), for the gas
to conserve mass.

8. While the iteration convergence condition, (12), is not
satisfied,

� Sweep the grid, calculating the relaxation adjust-
ment,ψ, for each cell using (12).

9. Update the cell face velocities,ui; j ;k, using (13).

10. Goto step 5.

This algorithm has been implemented on an SGI Indigo2
workstation using a simple interface to allow an animator to
define obstacles, heat or steam sources and sinks, as well as
moving fans, and to include them in an animation.

3.6 Rendering
There have been many approaches to rendering gaseous phe-
nomena presented in recent years. A good discussion of them
can be found in [17] and is not repeated here. To best illustrate
the contributions of this paper, a rendering method involving
suspended particles has been used. Massless particles are in-
troduced into a scene and used to represent the local density
of light-reflecting (or absorbing) matter. Once introduced, the
particles are convected using the velocity field calculated from
(4). The change in position of a particlek, atxk, over a single
timestep is found from

xn+1
k = xn

k +∆t un
x;

whereux is found from the particle’s position in the grid us-
ing linear interpolation. The particles themselves can be in-
troduced as part of a boundary condition (proportional toT
or u for example) or distributed however the animator wishes.
The particles have no effect on the calculated motion, they are
just used for rendering purposes to visualize how the density
of smoke or steam changes as the gas medium moves.

For each frame of animation, the instantaneous distribution
of particles is used as a density map for use with a volume ren-
derer. There is no straightforward physics-based way to de-
termine what density volume each particle represents or how
many particles to use. This is dictated by the particular ef-
fect the animator wants (lots of very dense particles for smoke
from burning tires, very few for smoke from a candle flame).
The general formula for the examples shown here is to set each
particle to represent 1=50th of the volume of a single cell, and
adjust its density according to the desired effect. The volume
renderer used is similar to that described by Ebert and Parent

Figure Cell Calc. Time ψ Render Time
Resolution (s/frame) cycles (M/frame)

4 60x35x60 15.0 8 23
5 40x60x40 24.0 10 38
6 40x50x40 28.0 13 45
7 60x60x45 49.0 20 14

Table 2: The calculation and rendering times for each of the
examples. Cell resolution is approximate because the scenes
are not rectangular. Cells that play only a small part in the
motion of the gas are not used.

Figure ν ∆τ λ juj max m/s
4 0.005 0.05 0.4 0.15
5 0.002 0.1 1.0 0.35
6 0.002 0.1 1.0 0.50
7 0.01 1.0 3.5 3.4

Table 3: Parameters used to calculate each of the examples. In
each case the thermal expansion coefficient,β, was 10�3.

[2]. For each pixel in an image, a viewing ray is cast through
the density volume to find the effective opacity of the parti-
cle cloud as seen from the viewer. If desired, the ray can be
subdivided, and for each subdivision, a ray is cast through the
volume towards each light source. This significantly increases
the cost of rendering, but it does allow for smoke and steam to
self shadow and to fall under the shadow of other objects. This
technique has been implemented as a volume shader for use
with the BMRT implementation of the RenderMan Standard
[7]. This shader was used for all the examples in this paper. It
should be noted that the particle representation of suspended
matter also makes the method ideal for rendering using Stam
and Fiume’s warped blobs [17].

4 Results
This paper has shown that the motion of a hot gas can be accu-
rately calculated using an efficient low-resolution technique.
In the following examples we illustrate the kind of rotational
motion and gas/object interaction that is well suited to the
method. All of the examples were calculated on an SGI In-
digo2 with 64 Mb of memory. Table 2 gives the calculation
times for each example, the approximate resolution of the en-
vironment, and the rendering time for a single image. Table
3 gives more specific information about each example includ-
ing the width of each cell, theλ andν coefficients, and the
maximum gas velocity in the example.

Steam Valve
The images shown in Fig. 5 demonstrate the interaction of
hot steam with solid objects. The voxel version of this en-
vironment is shown in Fig. 1. The steam is forced into the
environment by setting bothT andu boundary conditions on a
set of voxels representing a pressure release valve. The input
velocity is 0:3m=s, and the steam temperature is 80oC. This
is consistent with steam being vented from a boiler. The result
is the billowing effect of the cloud of steam. In the animation,
turbulence builds up just in front of the nozzle as the steam is
vented at high velocity.

The same environmental conditions were also used to ani-
mate the interaction of steam from three separate valves. Three
frames from this animation are shown in Fig. 6. The rotation



(a) (b)

Figure 4: a) A voxel approximation of the SIGGRAPH 97
logo. b) Smoke flowing smoothly around the approximation
following the contours of the original shape.

caused by the cooling and mixing of the gas can be seen clearly
in the full sequence. In both of the valve cases massless parti-
cles were introduced at an average rate of 2000=s.

Smoke Stack
Figure 7 shows three frames from an animation of smoke ris-
ing from a chimney on a hot day. The boundary cells on the
left of the grid are set to model a light wind of about 2m=s
that occasionally gusts up to 3m=s. We set the wind velocity
to evolve according to the random-walk expression

un+1
w = 0:98un

w+0:24∆t φ(t);

whereφ is a random number generator in the range [-1,1]. The
value ofuw is clamped to lie in the range [2,3]. The constant
coefficients have no physical significance, they are just param-
eters that have worked well for previous simulations. This
wind is allowed to exit freely from the other end of the grid
using the open window boundary condition from Table 2. The
light wind sets up unstable conditions at the top of the tower
causing the looping and swirling of the smoke as it moves. The
smoke leaves the chimney at 0:8m=swith a boundary temper-
ature of 46oC. From Table 2 it can be seen that nearly twice
as manyψ iterations are required per frame. This is because
the gusting windfield has a large component in every cell, so it
takes longer for (12) to converge.

SIGGRAPH Logo
The final animation demonstrates that despite the low resolu-
tion voxel approximation, flow around complex objects can be
accurately represented by our model. Figure 4a shows a voxel
representation of the SIGGRAPH 97 logo, and Fig. 4b shows
a frame from a sequence depicting smoke rising smoothly
through it. The velocity along the boundary of the logo is set
to zero to prevent smoke drifting into the artificial corners cre-
ated by the approximation. When the smoke is released just
beneath the symbol (with a temperature of 50oC) it flows over
the object and conforms fairly closely to the original boundary.

5 Discussion of Limitations
The technique described in this paper derives efficiency by
solving accurate equations at a low resolution. This is a com-
promise to try and preserve realism, and as such, it comes
with some limitations. Primarily, the method can only resolve

rotational motion at a resolution lower than or equal to the
grid resolution. From the examples shown, good effects can
be achieved, but this means that grid resolution has to be in-
creased to get finer motion within an existing scene. If we
double the resolution and halve∆τ to get the same sized en-
vironment, we also have to halve the timestep,∆t, so that the
system remains stable (from (14) and (15)). This is an inher-
ent problem with finite differences. It could be compensated
for by using a multi-resolution grid which would impose less
of an overhead than using a higher resolution everywhere, but
that is left as a topic for future work.

A second limitation of a finite difference grid is that cell ori-
entation can affect the results. A gas jet oriented so that it trav-
els diagonally through the cubic cells will tend to exhibit more
diffusion than if it were moving parallel to an axis. In general,
differences due to such diffusion is not significant (see Fig. 6),
but it is something that can often be avoided by selecting grid
orientation based on desired gas motion rather than objects in
the static environment.

It is also desirable to integrate the gas model with other com-
puter graphics techniques so that dynamic objects can interact
with a gas. There is some discussion about how an iterative
relaxation step like that described in Sec. 3.3 can be used to
incorporate moving objects into animations of liquids in Fos-
ter and Metaxas [6] and Metaxas [9]. The methods used there
are also applicable to the algorithm described in this paper,
although that has not been explored in any detail.

6 Concluding Remarks

Numerous techniques exist for animating hot gases for com-
puter graphics. Nearly all of them concentrate on achieving
a visual approximation to the characteristic motion of a gas
while getting as high a frame rate as possible. This sacri-
fices rotational and turbulent motion and often requires the
animator to micro-control the flow. In this paper we have
presented a new, alternative approach that models different
scales of gas motion directly. This method accurately animates
gaseous phenomena involving hot and cold gases, turbulent
flow around solid obstacles, and thermal buoyancy, while leav-
ing enough freedom for the animator to produce many differ-
ent effects. The model is physics-based and achieves efficient
computational speeds by using a combination of scene ap-
proximation and low resolution volume calculation. We have
shown that even at these low resolutions, the characteristics of
complex motion in the model are retained, and that exciting
results can be obtained.

7 Acknowledgements

Thanks to Larry Gritz for his advice on volume rendering with
BMRT. This research is supported by ARPA DAMD17-94-J-
4486, an NSF Career Award, National Library of Medicine
N01LM-43551, and a 1997 ONR Young Investigator Award.

A Finite Difference Form of the Mo-
tion Equations

The full expansion of (4) into first and second order derivatives
is straightforward. Considering just theu velocity component
for brevity, results in the following expression.

∂u
∂t

= ν(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 )�

∂u2

∂x
�

∂uv
∂y

�
∂uw
∂z

�
∂p
∂x

(16)



The finite difference scheme outlined in section 3.2 is then ap-
plied, (replacingp with ψ) giving the expression used to up-
date theui+1=2; j ;k face velocity for celli, j,k,

un+1
i+1=2; j;k = un

i+1=2; j;k +∆tf(1=∆τ)[(un
i; j;k)

2� (un
i+1; j;k)

2

+(uv)ni+1=2; j�1=2;k � (uv)ni+1=2; j+1=2;k +(uw)ni+1=2; j;k�1=2

�(uw)ni+1=2; j;k+1=2]+(λ=∆τ2)(un
i+3=2; j;k �2un

i+1=2; j;k

+un
i�1=2; j;k +un

i+1=2; j+1;k �2un
i+1=2; j;k +un

i+1=2; j�1;k

+un
i+1=2; j;k+1�2un

i+1=2; j;k +un
i+1=2; j;k�1)

�
1

∆τ
(ψn

i; j;k �ψn
i+1; j;k)g; (17)

where values that aren’t defined on the grid are found by aver-
aging as before.

References
[1] Chiba, N., Ohkawa, S., Muraoka, K., and Miura, M., “Two-

dimensional Simulation of Flames, Smoke and the Spread of
Fire”, J. of Vis. and Comp. Animation, 5(1), 1994, pp. 37–54.

[2] Ebert, D.S., and Parent, R.E., “Rendering and Animation of
Gaseous Phenomena by Combining Fast Volume and Scanline
A-buffer Techniques”, SIGGRAPH ’90, Computer Graphics,
24(4), 1990, pp. 357–366.

[3] Ebert, D.S., Carlson, W.E., and Parent, R.E., “Solid Spaces
and Inverse Particle Systems for Controlling the Animation of
Gases and Fluids”, The Visual Comp., 10, 1994, pp. 179–190.

[4] Fletcher, C.A.J., “Computational Techniques for Fluid Dynam-
ics,” Springer Verlag, Sydney, 1990.

[5] Foster, N., and Metaxas D., “Realistic Animation of Liquids,”
Graphical Models and Image Proc., 58(5), 1996, pp. 471–483.

[6] Foster, N., and Metaxas D., “Controlling Fluid Animation,”
Proceedings of CGI ’97, To appear, 1997.

[7] Gritz, L., and Hahn, J.K., “BMRT: A Global Illumination
Implementation of the RenderMan Standard”, J. of Graphics
Tools, to appear, 1997.

[8] Harlow, F.H., and Welch, J.E., “Numerical Calculation of
Time-Dependent Viscous Incompressible Flow,” Phys. Fluids,
8, 1965, pp. 2182–2189.

[9] Metaxas, D., “Physics-Based Deformable Models: Applica-
tions to Computer Vision, Graphics and Medical Imaging”,
Kluwer-Academic Publishers, 1996.

[10] Yaeger, L., Upson, C., and Myers, R., “Combining Physical and
Visual Simulation - Creation of the Planet Jupiter for the Film
“2010” ”, SIGGRAPH ’86, Computer Graphics 20(4), 1986,
pp. 85–93.

[11] Reeves, W.T., and Blau, R., “Approximate and Probabilistic Al-
gorithms for Shading and Rendering Structured Particle Sys-
tems”, SIGGRAPH ’85, Computer Graphics 19(3), 1985, pp.
313–322.

[12] Sakas, G., “Modeling and Animating Turbulent Gaseous Phe-
nomena Using Spectral Synthesis”, The Visual Computer, 9,
1993, pp. 200–212.

[13] Sims, K., “Particle Animation and Rendering Using Data Paral-
lel Computation”, SIGGRAPH ’90, Computer Graphics 24(4),
1990, pp. 405–413.

[14] Shaw, C.T., “Using Computational Fluid Dynamics”, Prentice
Hall, London, 1992.

[15] Shinya, M., and Fournier, A., “Stochastic Motion - Motion Un-
der the Influence of Wind”, Proceeding of Eurographics ’92,
September 1992, pp. 119–128.

[16] Stam, J., and Fiume, E., “Turbulent Wind Fields for Gaseous
Phenomena”, SIGGRAPH ’93, 1993, pp. 369–376.

[17] Stam, J., and Fiume, E., “Depicting Fire and Other Gaseous
Phenomena Using Diffusion Processes”, SIGGRAPH ’95,
1995, pp. 129–136.

[18] Wejchert, J., and Haumann, D., “Animation Aerodynamics”,
SIGGRAPH ’91, Computer Graphics 25(3), 1991, pp. 19-22.



Figure 5: An animation of steam discharge into a boiler room.

Figure 6: Steam from three nozzles converges to cause vorticity and turbulence.

Figure 7: Turbulent smoke rolls out of a chimney into a light, gusting wind.


