
Protocols for Checking Compromised Credentials
Lucy Li

Cornell University

Bijeeta Pal

Cornell University

Junade Ali

Cloudflare Inc.

Nick Sullivan

Cloudflare Inc.

Rahul Chatterjee

University of Wisconsin–Madison &

Cornell Tech

Thomas Ristenpart

Cornell Tech

ABSTRACT
To prevent credential stuffing attacks, industry best practice now

proactively checks if user credentials are present in known data

breaches. Recently, some web services, such as HaveIBeenPwned

(HIBP) and Google Password Checkup (GPC), have started provid-

ing APIs to check for breached passwords. We refer to such services

as compromised credential checking (C3) services. We give the first

formal description of C3 services, detailing different settings and

operational requirements, and we give relevant threat models.

One key security requirement is the secrecy of a user’s pass-

words that are being checked. Current widely deployed C3 services

have the user share a small prefix of a hash computed over the

user’s password. We provide a framework for empirically analyz-

ing the leakage of such protocols, showing that in some contexts

knowing the hash prefixes leads to a 12x increase in the efficacy

of remote guessing attacks. We propose two new protocols that

provide stronger protection for users’ passwords, implement them,

and show experimentally that they remain practical to deploy.

CCS CONCEPTS
• Security and privacy → Authentication; Privacy-preserving
protocols;

KEYWORDS
Passwords; authentication; privacy-preserving services

ACM Reference Format:
Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and Thomas

Ristenpart. 2019. Protocols for Checking Compromised Credentials. In 2019
ACM SIGSAC Conference on Computer and Communications Security (CCS
’19), November 11–15, 2019, London, United Kingdom. ACM, New York, NY,

USA, 17 pages. https://doi.org/10.1145/3319535.3354229

1 INTRODUCTION
Password database breaches have become routine [9]. Such breaches

enable credential stuffing attacks, in which attackers try to com-

promise accounts by submitting one or more passwords that were

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3354229

leaked with that account from another website. To counter cre-

dential stuffing, companies and other organizations have begun

checking if their users’ passwords appear in breaches, and, if so,

they deploy further protections (e.g., resetting the user’s passwords

or otherwise warning the user). Information on what usernames

and passwords have appeared in breaches is gathered either from

public sources or from a third-party service. The latter democra-

tizes access to leaked credentials, making it easy for others to help

their customers gain confidence that they are not using exposed

passwords. We refer to such services as compromised credential
checking services, or C3 services in short.

Two prominent C3 services already operate. HaveIBeenPwned

(HIBP) [46] was deployed by Troy Hunt and CloudFlare in 2018

and is used by many web services, including Firefox [14], EVE On-

line [10], and 1Password [5]. Google released a Chrome extension

called Password Checkup (GPC) [44, 45] in 2019 that allows users

to check if their username-password pairs appear in a compromised

dataset. Both services work by having the user share with the C3

server a prefix of the hash of their password or of the hash of their

username-password pair. This leaks some information about user

passwords, which is problematic should the C3 server be compro-

mised or otherwise malicious. But until now there has been no

thorough investigation into the damage from the leakage of current

C3 services or suggestions for protocols that provide better privacy.

We provide the first formal treatment of C3 services for different

settings, including an exploration of their security guarantees. A

C3 service must provide secrecy of client credentials, and ideally, it

should also preserve secrecy of the leaked datasets held by the C3

server. The computational and bandwidth overhead for the client

and especially the server should also be low. The server might hold

billions of leaked records, precluding use of existing cryptographic

protocols for private set intersection (PSI) [29, 36], which would

use a prohibitive amount of bandwidth at this scale.

Current industry-deployed C3 services reduce bandwidth re-

quirements by dividing the leaked dataset into buckets before ex-

ecuting a PSI protocol. The client shares with the C3 server the

identifier of the bucket where their credentials would be found, if

present in the leak dataset. Then, the client and the server engage

in a protocol between the bucket held by the server and the cre-

dential held by the client to determine if their credential is indeed

in the leak. In current schemes, the prefix of the hash of the user

credential is used as the bucket identifier. The client shares the hash

prefix (bucket identifier) of their credentials with the C3 server.

Revealing hash prefixes of credentials may be dangerous. We

outline an attack scenario against such prefix-revealing C3 services.

In particular, we consider a conservative setting where the C3

server attempts to guess the password, while knowing the username

https://doi.org/10.1145/3319535.3354229
https://doi.org/10.1145/3319535.3354229

and the hash prefix associated with the queried credential. We

rigorously evaluate the security of HIBP and GPC under this threat

model via a mixture of formal and empirical analysis.

We start by considering users with a password appearing in

some leak and show how to adapt a recent state-of-the-art creden-

tial tweaking attack [40] to take advantage of the knowledge of

hash prefixes. In a credential tweaking attack, one uses the leaked

password to determine likely guesses (usually, small tweaks on the

leaked password). Via simulation, we show that our variant of cre-

dential tweaking successfully compromises 83% of such accounts

with 1,000 or fewer attempts, given the transcript of a query made

to the HIBP server. Without knowledge of the transcript, only 56%

of these accounts can be compromised within 1,000 guesses.

We also consider user accounts not present in a leak. Here we

found that the leakage from the hash prefix disproportionately

affects security compared to the previous case. For these user ac-

counts, obtaining the query to HIBP enables the attacker to guess

71% of passwords within 1,000 attempts, which is a 12x increase

over the success with no hash prefix information. Similarly, for

GPC, our simulation shows 33% of user passwords can be guessed

in 10 or fewer attempts (and 60% in 1,000 attempts), should the

attacker learn the hash prefix shared with the GPC server.

The attack scenarios described are conservative because they

assume the attacker can infer which queries to the C3 server are

associated to which usernames. This may not be always possible.

Nevertheless, caution dictates that we would prefer schemes that

leak less. We therefore present two new C3 protocols, one that

checks for leaked passwords (like HIBP) and one that checks for

leaked username-password pairs (like GPC). Like GPC and HIBP,

we partition the password space before performing PSI, but we do

so in a way that reduces leakage significantly.

Our first scheme works when only passwords are queried to

the C3 server. It utilizes a novel approach that we call frequency-

smoothing bucketization (FSB). The key idea is to use an estimate of

the distribution of human-chosen passwords to assign passwords to

buckets in a way that flattens the distribution of accessed buckets.

We show how to obtain good estimates (using leaked data), and,

via simulation, that FSB reduces leakage significantly (compared to

HIBP). In many cases the best attack given the information leaked

by the C3 protocol works no better than having no information at all.

While the benefits comewith some added computational complexity

and bandwidth, we show via experimentation that the operational

overhead for the FSB C3 server or client is comparable with the

overhead from GPC, while also leaking much less information than

hash-prefix-based C3 protocols.

We also describe a more secure bucketizing scheme that pro-

vides better privacy/bandwidth trade-off for C3 servers that store

username-password pairs. This scheme was also (independently)

proposed in [45], and Google states that they plan to transition to

using it in their Chrome extension. It is a simple modification of

their current protocol. We refer to it as IDB, ID-based bucketization,

as it uses the hash prefix of only the user identifier for bucketi-

zation (instead of the hash prefix of the username-password pair,

as currently used by GPC). Not having password information in

the bucket identifier hides the user’s password perfectly from an

attacker who obtains the client queries (assuming that passwords

are independent of usernames). We implement IDB and show that

the average bucket size in this setting for a hash prefix of 16 bits

is similar to that of GPC (average 16,122 entries per bucket, which

leads to a bandwidth of 1,066 KB).

Contributions. In summary, the main contributions of this paper

are the following:

• We provide a formalization of C3 protocols and detail the

security goals for such services.

• We discuss various threat models for C3 services, and ana-

lyze the security of two widely deployed C3 protocols. We

show that an attacker that learns the queries from a client

can severely damage the security of the client’s passwords,

should they also know the client’s username.

• We give a new C3 protocol (FSB) for checking only leaked

passwords that utilizes knowledge of the human-chosen

password distribution to reduce leakage.

• We give a new C3 protocol for checking leaked username-

password pairs (IDB) that bucketizes using only usernames.

• We analyze the performance and security of both new C3

protocols to show feasibility in practice.

We will release as public, open source code our server and client

implementations of FSB and IDB.

2 OVERVIEW
We investigate approaches to checking credentials present in previ-

ous breaches. Several third party services provide credential check-

ing, enabling users and companies to mitigate credential stuffing

and credential tweaking attacks [24, 40, 47] , an increasingly daunt-

ing problem for account security.

To date, such C3 services have not received in-depth security

analyses. We start by describing the architecture of such services,

and then we detail relevant threat models.

C3 settings. We provide a diagrammatic summary of the abstract

architecture of C3 services in Figure 1. A C3 server has access to
a breach database

˜𝒮 . We can think of
˜𝒮 as a set of size N , which

consists of either a set of passwords {w1, . . . ,wN } or username-

password pairs {(u1,w1), . . . , (uN ,wN)}. This corresponds to two

types of C3 services — password-only C3 services and username-
password C3 services. For example, HIBP [6] is a password-only

C3 service,
1
and Google’s service GPC [44] is an example of a

username-password C3 service.

A client has as input a credential s = (u,w) and wants to deter-

mine if s is at risk due to exposure. The client and server therefore

engage in a set membership protocol to determine if s ∈ ˜𝒮 . Here,
clients can be users themselves (querying the C3 service using, say,

a browser extension), or other web services can query the C3 ser-

vice on behalf of their users. Clients may make multiple queries to

the C3 service, though the number of queries might be rate limited.

The ubiquity of breaches means that, nowadays, the breach data-

base
˜𝒮 will be quite large. A recently leaked compilation of previous

breached data contains 1.4 billion username password pairs [21].

The HIBP database has 501 million unique passwords [6]. Google’s

1
HIBP also allows checking if a user identifier (email) is leaked with a data breach. We

focus on password-only and username-password C3 services.

Login
Request

Leaks
C3 Server

User

Website

𝑢,𝑤

𝑢,𝑤

𝑢,𝑤

Figure 1: A C3 service allows a client to ascertain whether
a username and password appear in public breaches known
to the service.

blog specifies that there are 4 billion username-password pairs in

their database of leaked credentials [44].

C3 protocols should be able to scale to handle set membership

requests for these huge datasets for millions of requests a day. HIBP

reported serving around 600,000 requests per day on average [7].

The design of a C3 protocol should therefore not be expensive for

the server. Some clients may have limited computational power,

so the C3 protocol should also not be expensive on the client-side.

The number of network round trips required must be low, and we

restrict attention to protocols that can be completed with a single

HTTPS request. Finally, we will want to minimize bandwidth usage.

Threat model. We consider the security of C3 protocols relative

to two distinct threat models: (1) a malicious client that wants to

learn a different user’s password; and (2) an honest-but-curious C3

server that aims to learn the password corresponding to a C3 query.

We discuss each in turn.

A malicious client may want to use the C3 server to discover

another user’s password. The malicious client may know the tar-

get’s username and has the ability to query the C3 server. The C3

server’s database
˜𝒮 should therefore be considered confidential,

and our security goal here is that each query to the C3 server can

at most reveal whether a particularw or (u,w) is found within the

breach database, for password-only and username-password ser-

vices, respectively. Without some way of authenticating ownership

of usernames, this seems the best possible way to limit knowledge

gained from queries. We note that most breach data is in fact pub-

licly available, so we should assume that dedicated adversaries in

this threat model can find (a substantial fraction of) any C3 service’s

dataset. For such adversaries, there is little value in attempting to ex-

ploit the C3 service via queries. Nevertheless, deployments should

rate-limit clients via IP-address-based query throttling as well as

via slow-to-compute hash functions such as Argon2 [2].

The trickier threat model to handle is (2), and this will consume

most of our attention in this work. Here the C3 server may be

compromised or otherwise malicious, and it attempts to exploit

a client’s queries to help it learn that client’s password for some

other target website. We assume the adversary can submit pass-

word guesses to the target website, and that it knows the client’s

username. We refer to this setting as a known-username attack

(KUA). We conservatively
2
assume the adversary has access to the

full breach dataset, and thus can take advantage of both leaked

passwords available in the breach dataset and information leaked

about the client’s password from C3 queries. Looking ahead, for

our protocols, the information potentially leaked from C3 queries

is the bucket identifier.

It is context-dependent whether a compromised C3 server will

be able to mount KUAs. For example, in deployments where a web

server issues queries on behalf of their users, queries associated to

many usernames may be intermingled. In some cases, however, an

adversary may be able to link usernames to queries by observing

meta-data corresponding to a query (e.g., IP address of the querying

user or the timing of a request). One can imagine cross-site scripting

attacks that somehow trigger requests to the C3 service, or the

adversary might send tracking emails to leaked email addresses

in order to infer an IP address associated to a username [27]. We

therefore conservatively assume the malicious server’s ability to

know the correct username for a query.

In our KUA model, we focus on online attack settings, where

the attacker tries to impersonate the target user by making remote

login attempts at another web service, using guessed passwords.

These are easy to launch and are one of the most prevalent forms

of attacks [16, 28]. However, in an online setting, the web service

should monitor failed login attempts and lock an account after too

many incorrect password submissions. Therefore, the attacker gets

only a small number of attempts. We use a variable q, called the

guessing budget, to represent the allowed number of attempts.

Should the adversary additionally have access to password hashes

stolen from the target web site, they can instead mount an offline

cracking attack. Offline cracking could be sped up by knowledge of

client C3 queries, and one can extend our results to consider the

offline setting by increasing q to reflect computational limits on ad-

versaries (e.g., q = 10
10
) rather than limits on remote login attempts.

Roughly speaking, we expect the leakage of HIBP and GPC to be

proportionally as damaging here, and that our new protocol FSB

will not provide as much benefit for very large q (see discussion in

Section 6). IDB will provide no benefit to offline cracking attacks

(assuming they already know the username).

Finally, we focus in threat model (2) on honest-but-curious ad-

versaries, meaning that the malicious server does not deviate from

its protocol. Such actively malicious servers could lie to the client

about the contents of
˜𝒮 in order to encourage them to pick a weak

password. Monitoring techniques might be useful to catch such

misdeeds. For the protocols we consider, we do not know of any

other active attacks advantageous to the adversary, and do not

consider them further.

Potential approaches. A C3 protocol requires, at core, a secure

setmembership query. Existing protocols for private set intersection

(a generalization of set membership) [22, 31, 42, 43] cannot currently

scale to the set sizes required in C3 settings, N ≈ 2
30
. For example,

the basic PSI protocol that uses an oblivious pseudorandom function

(OPRF) [31] computes yi = Fκ (ui ,wi) for (ui ,wi) ∈ ˜𝒮 where Fκ is

the secure OPRF with secret key κ (held by the server). It sends

all y1, . . . ,yN to the client, and the client obtains y = Fκ (u,w) for

2
This is conservative because the C3 server need not, and should not, store passwords

in-the-clear, and it should instead obfuscate them using an oblivious PRF.

Credentials

checked

Name Bucket identifier B/w

(KB)

RTL

(ms)

Security

loss

Password

HIBP 20-bits of SHA1(w) 32 220 12x

FSB Figure 6, q̄ = 10
2

558 527 2x

(Username, GPC 16-bits of Argon2(u ∥w) 1,066 489 10x

password) IDB 16-bits of Argon2(u) 1,066 517 1x

Figure 2: Comparison of different C3 protocols and their
bandwidth usage, round-trip latency, and security loss (com-
pared to an attacker that has no bucket identifier informa-
tion). HIBP [6] and GPC [44] are two C3 services used in
practice. We introduce frequency-smoothing bucketization
(FSB) and identifier-based bucketization (IDB). Security loss
is computed assuming query budget q = 10

3 for users who
have not been compromised before.

its input (u,w) by obliviously computing it with the server. The

client can then check if y ∈ {y1, . . . ,yN }. But clearly for large N
this is prohibitively expensive in terms of bandwidth. One can use

Bloom filters to more compactly represent the set y1, . . . ,yN , but

the result is still too large. While more advanced PSI protocols exist

that improve on these results asymptotically, they are unfortunately

not yet practical for this C3 setting [30, 31].

Practical C3 schemes therefore relax the security requirements,

allowing the protocol to leak some information about the client’s

queried (u,w) but hopefully not too much. To date no one has inves-

tigated how damaging the leakage of currently proposed schemes

is, so we turn to doing that next. In Figure 2, we show all the dif-

ferent settings for C3 we discuss in the paper and compare their

security and performance. The security loss in Figure 2 is a com-

parison against an attacker that only has access to the username

corresponding to a C3 query (and not a bucket identifier).

3 BUCKETIZATION SCHEMES AND
SECURITY MODELS

In this section we formalize the security models for a class of C3

schemes that bucketize the breach dataset into smaller sets (buckets).

Intuitively, a straightforward approach for checking whether or not

a client’s credentials are present in a large set of leaked credentials

hosted by a server is to divide the leaked data into various buckets.

The client and server can then perform a private set intersection

between the user’s credentials and one of the buckets (potentially)

containing that credential. The bucketization makes private set

membership tractable, while only leaking to the server that the

password may lie in the set associated to a certain bucket.

We give a general framework to understand the security loss

and bandwidth overhead of different bucketization schemes, and

we will use this framework to evaluate existing C3 services.

Notation. To easily describe our constructions, we fix some nota-

tion. Let 𝒲 be the set of all passwords, and pw be the associated

probability distribution; let 𝒰 be the set of all user identifiers, and

p be the joint distribution over 𝒰 ×𝒲 . We will use 𝒮 to denote the

domain of credentials being checked, i.e., for password-only C3 ser-

vice, 𝒮 =𝒲 , and for username-password C3 service, 𝒮 = 𝒰 ×𝒲 .

Below we will use 𝒮 to give a generic scheme, and specify the

setting only if necessary to distinguish. Similarly, s ∈ 𝒮 denotes a

Symbol Description

u / 𝒰 user identifier (e.g., email) / domain of users

w /𝒲 password / domain of passwords

𝒮 domain of credentials

˜𝒮 set of leaked credentials, | ˜𝒮 | = N
p distribution of username-password pairs over 𝒰 ×𝒲
pw distribution of passwords over𝒲
p̂s estimate of pw used by C3 server

q query budget of an attacker

q̄ parameter to FSB, estimated query budget of an attack

β function that maps a credential to a set of buckets

α function thatmaps a bucket to the set of credentials it contains

Figure 3: The notation used in this paper.

Guess𝒜(q)

(u, w) ←p 𝒰 ×𝒲
{w̃1, . . . , w̃q } ← 𝒜(u, q)
return w ∈ {w̃1, . . . , w̃q }

BucketGuess𝒜
′

β (q)

(u, w) ←p 𝒰 ×𝒲 ; s ← (u, w)
B ← β (s); b ←$ B
{w̃1, . . . , w̃q } ← 𝒜′(u, b, q)
return w ∈ {w̃1, . . . , w̃q }

Figure 4: The guessing games used to evaluate security.

password or a username-password pair, based on the setting. Let
˜𝒮

be the set of leaked credentials, and | ˜𝒮 | = N .

Let H be a cryptographic hash function from {0, 1}∗ 7→ {0, 1}ℓ ,

where ℓ is a parameter of the system. We use ℬ to denote the set of

buckets, and we let β : 𝒮 7→ 𝒫 (ℬ) \ {∅} be a bucketizing function

which maps a credential to a set of buckets. A credential can be

mapped to multiple buckets, and every credential is assigned to

at least one bucket. An inverse function to β is α : ℬ 7→ 𝒫 (𝒮),
which maps a bucket to the set of all credentials it contains; so,

α(b) =
{
s ∈ 𝒮

��b ∈ β(s)}. Note, α(b) can be very large given it

considers all credentials in 𝒮 . We let α̃ be the function that denotes

the credentials in the buckets held by the C3 server, α̃ (b) = α(b)∩ ˜𝒮 .
The client sendsb to the server, and then the client and the server

engage in a set intersection protocol between {s} and α̃ (b).

Bucketization schemes. Bucketization divides the credentials

held by the server into smaller buckets. The client can use the

bucketizing function β to find the set of buckets for a credential,

and then pick one randomly to query the server. There are different

ways to bucketize the credentials.

In the first method, which we call hash-prefix-based bucketiza-

tion (HPB), the credentials are partitioned based on the first l bits
of a cryptographic hash of the credentials. GPC [44] and HIBP [6]

APIs use HPB. The distribution of the credentials is not considered

in HPB, which causes it to incur higher security loss, as we show

in Section 4.

We introduce a new bucketizingmethod, whichwe call frequency-

smoothing bucketization (FSB), that takes into account the distri-

bution of the credentials and replicates credentials into multiple

buckets if necessary. The replication “flattens” the conditional distri-

bution of passwords given a bucket identifier, and therefore vastly

reduces the security loss. We discuss FSB in more detail in Section 5.

In both HPB and FSB, the bucketization function depends on the

user’s password. We give another bucketization approach — the

most secure one — that bucketizes based only on the hash prefix

of the user identifier. We call this identifier-based bucketization

(IDB). This approach is only applicable for username-password C3

services. We discuss IDB in Section 4.

Security measure. The goal of an attacker is to learn the user’s

password. We will focus on online-guessing attacks, where an at-

tacker tries to guess a user’s password over the login interface

provided by a web service. An account might be locked after too

many incorrect guesses (e.g., 10), in which case the attack fails.

Therefore, we will measure an attacker’s success given a certain

guessing budget q. We will always assume the attacker has access

to the username of the target user.

The security games are given in Figure 4. The game Guess mod-

els the situation in which no information besides the username is re-

vealed to the adversary about the password. In the gameBucketGuess,
the adversary also gets access to a bucket that is chosen according

to the credentials s = (u,w) and the bucketization function β .
We define the advantage against a game as the maximum proba-

bility that the game outputs 1. Therefore, we maximize the proba-

bility, over all adversaries, of the adversary winning the game in q
guesses.

Advgs(q) = max

𝒜
Pr

[
Guess𝒜(q) ⇒ 1

]
,

and

Advb-gsβ (q) = max

𝒜′
Pr

[
BucketGuess𝒜

′

β (q) ⇒ 1

]
.

The probabilities are taken over the choices of username-password

pairs and the selection of bucket via the bucketizing function β .
The security loss ∆β (q) of a bucketizing protocol β is defined as

∆β (q) = Advb-gsβ (q) − Advgs(q) .

Note,

Pr

[
Guess𝒜(q) ⇒ 1

]
=

∑
u

Pr [w ∈ 𝒜(u,q) ∧U = u] .

To maximize this probability, the attacker must pick the q most

probable passwords for each user. Therefore,

Advgs(q) =
∑
u

max

w1, ...,wq

q∑
i=1

Pr [W = wi ∧U = u] . (1)

In BucketGuessβ , the attacker has access to the bucket identifier,
and therefore the advantage is computed as

Advb-gsβ (q) =
∑
u

∑
b

max

w1, ...,wq

q∑
i=1

Pr [W = wi ∧U = u ∧ B = b]

=
∑
u

∑
b

max

(u1,w1), ...,(uq,wq)

∈α (b)

q∑
i=1

Pr [W = wi ∧U = u]

|β((u,wi))|

(2)

The second equation follows because for b ∈ β((u,w)), each bucket

in β(w) is equally likely to be chosen, so

Pr [B = b | W = w ∧U = u] =
1

|β((u,w))|
.

The joint distribution of usernames and passwords is hard to

model. To simplify the equations, we divide the users targeted by

the attacker into two groups: compromised (users whose previously

compromised accounts are available to the attacker) and uncompro-
mised (users for which the attacker has no information other than

their usernames).

We assume there is no direct correlation between the username

and password.
3
Therefore, an attacker cannot use the knowledge of

only the username to tailor guesses. This means that in the uncom-

promised setting, we assume Pr [W = w | U = u] = Pr [W = w].
Assuming independence of usernames and passwords, we define in

the uncompromised setting

λq = Advgs(q) = max

w1, ...,wq

q∑
i=1

Pr [W = wi] . (3)

We give analytical (using Equations 2 and 3) and empirical anal-

ysis of security in this setting, and show that the security of un-

compromised users is impacted by existing C3 schemes much more

than that of compromised users.

In the compromised setting, the attacker can use the username

to find other leaked passwords associated with that user, which

then can be used to tailor guesses [40, 47]. Analytical bounds on the

compromised setting (using Equations 1 and 2) are less informative,

so we evaluate this setting empirically in Section 6.

Bandwidth. The bandwidth required for a bucketization scheme

is determined by the size of the buckets. The maximum size of the

buckets can be determined using a balls-and-bins approach [20],

assuming the client picks a bucket randomly from the possible set of

buckets β(s) for a credential s , and β(s) also maps s to a random set

of buckets. In totalm =
∑
s ∈ ˜𝒮 |β(s)| credentials (balls) are “thrown”

into n = |ℬ | buckets. Ifm > |ℬ | · log |ℬ |, then standard results [20]

give that the maximum number of passwords in a bucket is less than

m
n ·

(
1 +

√
n logn
m

)
≤ 2 · mn , with very high probability 1− o(1). We

will use this formula to compute an upper bound on the bandwidth

requirement for specific bucketization schemes.

For HPB schemes, each credential will be mapped to a random

bucket if we assume that the hash function acts as a random oracle.

For FSB, since we only randomly choose the first bucket and map a

credential to a range of buckets starting with the first one, it is not

clear that the set of buckets a credential is mapped to is random. We

also show empirically that these bounds hold for the C3 schemes.

4 HASH-PREFIX-BASED BUCKETIZATION
Hash-prefix-based bucketization (HPB) schemes are a simple way

to divide the credentials stored by the C3 server. In this type of C3

scheme, a prefix of the hash of the credential is used as the criteria

to group the credentials into buckets — all credentials that share

the same hash-prefix are assigned to the same bucket. The total

number of buckets depends on l , the length of the hash-prefix. The

number of credentials in the buckets depends on both l and | ˜𝒮 |. We

will use H(l)(·) to denote the function that outputs the l-bit prefix
of the hash H(·). The client shares the hash prefix of the credential

they wish to check with the server. While a smaller hash prefix

reveals less information to the server about the user’s password, it

3
Though prior work [33, 47] suggests knowledge of the username can improve efficacy

of guessing passwords, the improvement is minimal. See Appendix A for more on this.

also increases the size of each bucket held by the server, which in

turn increases the bandwidth overhead.

Hash-prefix-based bucketization is currently being used for cre-

dential checking in industry : HIBP [6] and GPC [44]. We introduce

a new HPB protocol called IDB that achieves zero security loss for

any query budget. Below we will discuss the design details of these

three C3 protocols.

HIBP [6]. HIBP uses HPB bucketization to provide a password-

only C3 service. They do not provide compromised username-

password checking. HIBPmaintains a database of leaked passwords,

which contains more than 501 million passwords [6]. They use the

SHA1 hash function, with prefix length l = 20; the leaked dataset is

partitioned into 2
20

buckets. The prefix length is chosen to ensure

no bucket is too small or too big. With l = 20, the smallest bucket

has 381 passwords, and the largest bucket has 584 passwords [19] .

This effectively makes the user’s password k-anonymous. However,

k-anonymity provides limited protection, as shown by numerous

prior works [35, 38, 50] and by our security evaluation.

The passwords are hashed using SHA1 and indexed by their hash

prefix for fast retrieval. A client computes the SHA1 hash of their

password w and queries HIBP with the 20-bit prefix of the hash;

the server responds with all the hashes that share the same 20-bit

prefix. The client then checks if the full SHA1 hash ofw is present

among the set of hashes sent by the server. This is a weak form

of PSI that does not hide the leaked passwords from the client —

the client learns the SHA1 hash of the leaked passwords and can

perform brute force cracking to recover those passwords.

HIBP justifies this design choice by observing that passwords in

the server side leaked dataset are publicly available for download

on the Internet. Therefore, HIBP lets anyone download the hashed

passwords and usernames. This can be useful for parties who want

to host their own leak checking service without relying on HIBP.

However, keeping the leaked dataset up-to-date can be challenging,

making a third-party C3 service preferable.

HIBP trades server side privacy for protocol simplicity. The pro-

tocol also allows utilization of caching on content delivery net-

works (CDN), such as Cloudflare.
4
Caching helps HIBP to be able

to serve 8 million requests a day with 99% cache hit rate (as of

August 2018) [18]. The human-chosen password distribution is

“heavy-headed”, that is a small number of passwords are chosen by

a large number of users. Therefore, a small number of passwords

are queried a large number of times, which in turn makes CDN

caching much more effective.

GPC [44, 45]. Google provides a username-password C3 service,

called Password Checkup (GPC). The client — a browser extension

— computes the hash of the username and password together using

the Argon2 hash function (configured to use a single thread, 256

MB of memory, and a time cost of three) with the first l = 16 bits

to determine the bucket identifier. After determining the bucket,

the client engages in a private set intersection (PSI) protocol with

the server. The full algorithm is given in Figure 5. GPC uses a com-

putationally expensive hash function to make it more difficult for

an adversary to make a large number of queries to the server.

4
https://www.cloudflare.com/

Precomputation by C3 Server
Let

˜𝒮 = {(u1, w1), . . . , (uN , wN)}

∀j ∈ [0, . . . , 2
l − 1]

zj ←
{
Fκ (ui ∥wi)

��H(l)(u ∥w) = j)
}

zj ←
{
Fκ (ui ∥wi)

��H(l)(u) = j)
}

Client C3 server

Input: (u, w) Input: κ, z
r ←$ Zq

x ← Fr (u ∥w)

b ← H(l)(u ∥w)

b ← H(l)(u)
x,b

−−−−−−−−→

y,zb
←−−−−−−−−− y = xκ

x̃ ← y
1

r

Return x̃ ∈ zb

Figure 5: Algorithms for GPC, and the change in IDB given
in the box. F(·)(·) is a PRF.

GPC uses an OPRF-based PSI protocol [45]. Let Fa (x) be a func-
tion that first calls the hash function H on x , then maps the hash

output onto an elliptic curve point, and finally, exponentiates the

elliptic curve point (using elliptic curve group operations) to the

power a. Therefore it holds that (Fa (x))
b = Fab (x).

The server has a secret key κ which it uses to compute the

values yi = Fκ (ui ∥wi) for each (ui ,wi) pair in the breach dataset.

The client shares with the server the bucket identifier b and the

PRF output x = Fr (u∥w), for some randomly sampled r . The server
returns the bucket zb = {yi

��H(ui ∥wi) = b} andy = xκ . Finally, the

client completes the OPRF computation by computing x̃ = y
1

r =

Fκ (u∥w), and checking if x̃ ∈ zb .
The GPC protocol is significantly more complex than HIBP, and

it does not allow easy caching by CDNs. However, it provides

secrecy of server-side leaked data — the best case attack is to follow

the protocol to brute-force check if a password is present in the

leak database.

Bandwidth. HPB assigns each credential to only one bucket; there-

fore,m =
∑
w ∈ ˜𝒮 |β(w)| = |

˜𝒮 | = N . The total number of buckets is

n = 2
l
. Following the discussion from Section 3, themaximumband-

width for a HPB C3 service should be no more than 2 · mn = 2 · N
2
l .

We experimentally verified bandwidth usage, and the sizes of

the buckets for HIBP, GPC, and IDB are given in Section 7.

Security. HPB schemes like HIBP and GPC expose a prefix of

the user’s password (or username-password pair) to the server. As

discussed earlier, we assume the attacker knows the username of

the target user. In the uncompromised setting — where the user

identifier does not appear in the leaked data available to the attacker,

we show that giving the attacker the hash-prefix with a guessing

budget of q queries is equivalent to giving as many as q · |ℬ | queries
(with no hash-prefix) to the attacker. As a reminder, |ℬ | is the
number of buckets. For example, consider a C3 scheme that uses

a 5-character hash prefix as a bucket identifier (2
20

buckets). If

an attacker has 10 guesses to figure out a password, then given a

bucket identifier, they can eliminate any guesses on their list that

https://www.cloudflare.com/

don’t belong in that bucket. If their original guesses are distributed

equally across all buckets, then knowing the 5-character hash prefix

can help them get through around q · 220
of those guesses.

Theorem 4.1. Let βHPB : 𝒮 7→ ℬ be the bucketization scheme
that, for a credential s ∈ 𝒮 , chooses a bucket that is a function of
H(l)(s), where s contains the user’s password. The advantage of an
attacker in this setting against previously uncompromised users is

Advb-gsβHPB
(q) ≤ Advgs(q · |ℬ |) .

Proof: First, note that |βHPB(s)| = 1, for any input s , as every
password is assigned to exactly one of the buckets. Following the

discussion from Section 3, assuming independence of usernames

and passwords in the uncompromised setting, we can compute the

advantage against game BucketGuess as

Advb-gsβHPB
(q) =

∑
b ∈ℬ

max
w1, ...,wq
∈α (b)

q∑
i=1

Pr [W = wi] ≤ Advgs(q · |ℬ |) .

We relax the α(b) notation to denote set of passwords (instead of

username-password pairs) assigned to a bucket b. The inequality
follows from the fact that each password is present in only one

bucket. If we sum up the probabilities of the top q passwords in

each bucket, the result will be at most the sum of the probabilities

of the top q · |ℬ | passwords. Therefore, the maximum advantage

achievable is Advgs(q · |ℬ |).

Theorem 4.1 only provides an upper bound on the security loss.

Moreover, for the compromised setting, the analytical formula in

Equation (2) is not very informative. So, we use empiricism to find

the effective security loss against compromised and uncompromised

users. We report all security simulation results in Section 6. Notably,

with GPC using a hash prefix length l = 16, an attacker can guess

passwords of 59.7% of (previously uncompromised) user accounts

in fewer than 1,000 guesses, over a 10x increase from the percent it

can compromise without access to the hash prefix. (See Section 6

for more results.)

Identifier-based bucketization (IDB). As our security analysis

and simulation show, the security degradation of HPB can be high.

The main issue with those protocols is that the bucket identifier is

a deterministic function of the user password. We give a new C3

protocol that uses HPB style bucketing, but based only on username.

We call this identifier-based bucketization (IDB). IDB is defined for

username-password C3 schemes.

IDB is a slight modification of the protocol used by GPC—we use

the hash-prefix of the username, H(l)(u), instead of the hash-prefix

of the username-password combination, H(l)(u ∥w), as a bucket

identifier. The scheme is described in Figure 5, using the changes

in the boxed code. The bucket identifier is computed completely

independently of the password (assuming the username is indepen-

dent of the password). Therefore, the attacker gets no additional

advantage by knowing the bucket identifier.

Because IDB uses the hash-prefix of the username as the bucket

identifier, two hash computations are required on the client side for

each query (as opposed to one for GPC). With most modern devices,

this is not a significant computing burden, but the protocol latency

may be impacted, since we use a slow hash (Argon2) for hashing

both the username and the password. We show experimentally how

the extra hash computation affects the latency of IDB in Section 7.

Since in IDB, the bucket identifier does not depend on the user’s

password, the conditional probability of the password given the

bucket identifier remains the same as the probability without know-

ing the bucket identifier. As a result, exposing the bucket identifier

does not lead to security loss.

Theorem 4.2. With the IDB protocol, for all q ≥ 0

Advb-gs
IDB
(q) = Advgs(q).

Proof: Because the IDB bucketization scheme does not depend on

the password, Pr [B = b | W = w ∧U = u] = Pr [B = b | U = u].
We can upper bound the success rate of an adversary in the

BucketGuessIDB game by

Advb-gs
IDB
(q)

=
∑
u

∑
b

max

w1, ...,wq

q∑
i=1

Pr [W = wi ∧U = u] · Pr [B = b | U = u]

=
∑
u

(∑
b

Pr [B = b | U = u]

)
max

w1, ...,wq

q∑
i=1

Pr [W = wi ∧U = u]

= Advgs(q)

The first step follows from independence of password and bucket

choice, and the third step is true because there is only one bucket

for each username.

We would like to note, though IDB reveals nothing about the

password, learning the username becomes easier (compared to GPC)

— an attacker can narrow down the potential users after seeing the

bucket identifier. While this can be concerning for user’s privacy,

we believe the benefit of not revealing anything about the user’s

password outweighs the risk.

Unfortunately, IDB does not work for the password-only C3

setting because it requires that the server store username-password

pairs. In the next section we introduce a more secure password-only

C3 scheme.

5 FREQUENCY-SMOOTHING
BUCKETIZATION

In the previous sectionwe showed how to build a username-password

C3 service that does not degrade security. However, many services,

such as HIBP, only provide a password-only C3 service. HIBP does

not store username-password pairs so, should the HIBP server ever

get compromised, an attacker cannot use their leak database to

mount credential stuffing attacks. Unfortunately, IDB cannot be

extended in any useful way to protect password-only C3 services.

Therefore, we introduce a new bucketization scheme to build

secure password-only C3 services. We call this scheme frequency-

smoothing bucketization (FSB). FSB assigns a password to multiple

buckets based on its probability — frequent passwords are assigned

to many buckets. Replicating a password into multiple buckets effec-

tively reduces the conditional probabilities of that password given

a bucket identifier. We do so in a way that makes the conditional

probabilities of popular passwords similar to those of unpopular

passwords to make it harder for the attacker to guess the correct

βFSB(w) :

γ ← min

{
|ℬ |,

⌈
|ℬ|·p̂s (w)
p̂s (wq̄)

⌉}
s ← f (w)
If s + γ < |ℬ | then

r ← [s, s + γ − 1]

Else

r ← [0, s + γ − 1 mod |ℬ |]
r ← r ∪ [s, |ℬ | − 1]

Return r

α̃
FSB
(b) :

/* returns {w ∈ ˜𝒮
��b ∈ β (w)} */

A←𝒲q̄

Forw ∈ ˜𝒮 \𝒲q̄ do

If b ∈ βFSB(w) then
A← A ∪ {w }

return A

Figure 6: Bucketizing function βFSB for assigning passwords
to buckets in FSB. Here p̂s is the distribution of passwords;
𝒲q̄ is the set of top-q̄ passwords according to p̂s ; ℬ is the set
of buckets; f is a hash function f : W 7→ Z |B | ; ˜𝒮 is the set of
passwords hosted by the server.

password. FSB, however, is only effective for non-uniform creden-

tial distributions, such as password distributions.
5
Therefore, FSB

cannot be used to build a username-password C3 service.

Implementing FSB requires knowledge of the distribution of

human-chosen passwords. Of course, obtaining precise knowledge

of the password distribution can be difficult; therefore, we will

use an estimated password distribution, denoted by p̂s . Another
parameter of FSB is q̄, which is an estimate of the attacker’s query

budget. We show that if the actual query budget q ≤ q̄, FSB has

zero security loss. Larger q̄ will provide better security; however,

it also means more replication of the passwords and larger bucket

sizes. So, q̄ can be tuned to balance between security and bandwidth.
Below we will give the two main algorithms of the FSB scheme:

βFSB and α̃
FSB

, followed by a bandwidth and security analysis.

Bucketizing function (βFSB). To map passwords to buckets, we

use a hash function f : 𝒲 7→ Z |ℬ | . The algorithm for bucketization

βFSB(w) is given in Figure 6. The parameter q̄ is used in the follow-

ing way: β replicates the most probable q̄ passwords,𝒲q̄ , across all

|ℬ | buckets. Each of the remaining passwords are replicated propor-

tional to their probability. A passwordw with probability p̂s (w) is

replicated exactly γ =
⌈
|ℬ | ·p̂s (w)
p̂s (wq̄)

⌉
times, wherewq̄ is the q̄th most

likely password. Exactly which buckets a password is assigned to

are determined using the hash function f . Each bucket is assigned

an identifier between [0, |ℬ | − 1]. A passwordw is assigned to the

buckets whose identifiers fall in the range [f (w), f (w) + γ − 1]. The

range can wrap around. For example, if f (w) + γ > |ℬ |, then the

password is assigned to the buckets in the range [0, f (w) + γ − 1

mod |ℬ |] and [f (w), |ℬ | − 1].

Bucket retrieving function (α̃). Retrieving passwords assigned

to a bucket is challenging in FSB. An inefficient — linear in N —

implementation of α̃ is given in Figure 6. Storing the contents of

each bucket separately is not feasible, since the number of buckets

in FSB can be very large, |ℬ | ≈ N . To solve the problem, we utilize

the structure of the bucketizing procedure where passwords are

assigned to buckets in continuous intervals. This allows us to use

an interval tree [8] data structure to store the intervals for all of the

passwords. Interval trees allow fast queries to retrieve the set of

5
Usernames (e.g., emails) are unique for each users, so the distribution of usernames

and username-password pairs are close to uniform.

intervals that contain a queried point (or interval) — exactly what

is needed to instantiate α̃ .
This efficiency comes with increased storage cost: storing N en-

tries in an interval tree requires𝒪 (N logN) storage. The tree can be
built in 𝒪 (N logN) time, and each query takes 𝒪 (logN + |α̃ (b)|)
time. The big-O notation only hides small constants.

Estimating password distributions. To construct the bucketiza-
tion algorithm for FSB, the server needs an estimate of the password

distribution pw . This estimate will be used by both the server and

the client to assign passwords to buckets. One possible estimate is

the histogram of the passwords in the leaked data
˜𝒮 . Histogram

estimates are typically accurate for popular passwords, but such

estimates are not complete — passwords that are not in the leaked

dataset will have zero probability according to this estimate. More-

over, sending the histogram over to the client is expensive in terms

of bandwidth, and it may leak too much information about the

dataset. We also considered password strength meters, such as

zxcvbn [48] as a proxy for a probability estimate. However, this

estimate turned out to be too coarse for our purposes. For example,

more than 10
5
passwords had a “probability” of greater than 10

−3
.

We build a 3-gram password model p̂n using the leaked pass-

words present in
˜𝒮 . Markov models or n-gram models are shown

to be effective at estimating human-chosen password distribu-

tions [34], and they are very fast to train and run (unlike neural

network based password distribution estimators, such as [37]). How-

ever, we found the n-gram model assigns very low probabilities to

popular passwords. The sum of the probabilities of the top 1,000

passwords as estimated by the 3-gram model is only 0.032, whereas

those top 1,000 passwords are chosen by 6.5% of users.

We therefore use a combined approach that uses a histogram

model for the popular passwords and the 3-gram model for the

rest of the distribution. Such combined techniques are also used

in practice for password strength estimation [37, 48]. Let p̂s be

the estimated password distribution used by FSB. Let p̂h be the

distribution of passwords implied by the histogram of passwords

present in
˜𝒮 . Let ˜𝒮t be the set of the t most probable passwords

according to p̂h . We used t = 10
6
. Then, the final estimate is

p̂s (w) =


p̂h (w) ifw ∈ ˜𝒮t ,

p̂n (w) ·
1−

∑
w̃∈ ˜𝒮t p̂h (w)

1−
∑
w̃∈ ˜𝒮t p̂n (w)

otherwise.

Note that instead of using the 3-gram probabilities directly, we

multiply them by a normalization factor that allows

∑
w p̂(w) = 1,

assuming that the same is true for the distributions p̂h and p̂n .

Bandwidth. We use the formulation provided in Section 3 to

compute the bandwidth requirement for FSB. In this case, m =

|ℬ | · q̄ + |ℬ |
p̂s (wq̄)

+ N , and n = |ℬ |. Therefore, the maximum size of

a bucket is with high probability less than 2 ·

(
q̄ + 1

p̂s (wq̄)
+ N
|ℬ |

)
.

The details of this analysis are given in Appendix B.

In practice, we can choose the number of buckets to be such

that |ℬ | = N . Then, the number of passwords in a bucket depends

primarily on the parameter q̄. Note, bucket size increases with q̄.

Security analysis. We show that there is no security loss in the

uncompromised setting for FSB when the actual number of guesses

q is less than the parameter q̄ and the estimate p̂ is accurate. We

also give a bound for the security loss when q exceeds q̄.

Theorem 5.1. Let FSB be a frequency based bucketization scheme

that ensures ∀w ∈𝒲, |βFSB(w)| = min

{
|ℬ |,

⌈
|ℬ | ·p̂s (w)
p̂s (wq̄)

⌉}
. Assum-

ing that the distribution estimate p̂s = pw , then for the uncompro-
mised users,

(1) Advb-gsβFSB
(q) = Advgs(q) for q ≤ q̄, and

(2) for q > q̄ ,
λq − λq̄

2

≤ ∆q ≤ (q − q̄) · p̂s (wq̄) − (λq − λq̄)

Recall that the probabilities λq are defined in Equation (3). We

include the full proof for Theorem 5.1 in Appendix C. Intuitively,

since the top q passwords are repeated across all buckets, having a

bucket identifier does not allow an attacker to more easily guess

these q passwords. Moreover, the conditional probability of these

q passwords given the bucket is greater than that of any other

password in the bucket. Therefore, the attacker’s best choice is

to guess the top q passwords, meaning that it does not get any

additional advantage when q ≤ q̄, leading to part (1) of the theorem.

The proof of part (2) follows from the upper and lower bounds

on the number of buckets each password beyond the top q is placed

within. The bounds we prove show that the additional advantage

in guessing the password in q queries is less than the number of

additional queries times the probability of the q̄th password and at

least half the difference in the guessing probabilities λq and λq̄ .
Note that this analysis of security loss is based on the assumption

that the FSB scheme has access to the precise password distribution,

p̂s = pw . We empirically analyze the security loss in Section 6 for

p̂s , pw , in both the compromised and uncompromised settings.

6 EMPIRICAL SECURITY EVALUATION
In this sectionwe empirically evaluate and compare the security loss

for different password-only C3 schemes we have discussed so far —

hash-prefix-based bucketization (HPB) and frequency-smoothing

bucketization (FSB).

We focus on known-username attacks (KUA), since in many

deployment settings a curious (or compromised) C3 server can

figure out the username of the querying user. We separate our

analysis into two settings: previously compromised users, where the

attacker has access to one or more existing passwords of the target

user, and previously uncompromised users, where no password

corresponding to the user is known to the attacker (or present in

the breached data).

We also focus on what the honest-but-curious C3 server can

learn from knowing the bucket. In our experiment, we show the

success rate of an adversary that knows the exact leak dataset used

by the server. We expect that an adversary that doesn’t know the

exact leak dataset will have slightly lower success rates.

First wewill look into the unrestricted settingwhere no password

policy is enforced, and the attacker and the C3 server have the

same amount of information about the password distribution. In

the second experiment, we analyze the effect on security of giving

the attacker more information compared to the C3 server (defender)

˜𝒮 T T ∩ ˜𝒮 Tsp Tsp ∩ ˜𝒮

users 901.4 12.9 5.9 (46%) 8.4 3.9 (46%)

passwords 435.9 8.9 5.7 (64%) 6.7 3.9 (59%)

user-pw pairs 1,316.6 13.1 3.2 (24%) 8.5 2.0 (23%)

Figure 7: Number of entries (in millions) in the breach
dataset ˜𝒮 , test dataset T , and the site-policy test subset Tsp.
Also reported are the intersections (of users, passwords, and
user-password pairs, separately) between the test dataset en-
tries and the whole breach dataset that the attacker has ac-
cess to. The percentage values refer to the fraction of the
values in each test set that also appear in the intersections.

by having a password policy that the attacker is aware of but the

C3 server is not.

Password breach dataset. We used the same breach dataset used

in [40]. The dataset was derived from a previous breach compila-

tion [21] dataset containing about 1.4 billion username-password

pairs. We chose to use this dataset rather than, for example, the

password breach dataset from HIBP, because it contains username-

password pairs.

We cleaned the data by removing non-ASCII characters and

passwords longer than 30 characters. We also combined username-

password pairs with the same case-insensitive username, and we

removed users with over 1,000 passwords, as they didn’t seem to be

associated to real accounts. The authors of [40] also joined accounts

with similar usernames and passwords using a method they called

the mixed method. We joined the dataset using the same mixed

method, but we also kept the usernames with only one email and

password.

The final dataset consists of about 1.32 billion username-password

pairs.
6
We remove 1% of username-password pairs to use as test

data, denoted as T . The remaining 99% of the data is used to simu-

late the database of leaked credentials
˜𝒮 . For the experiments with

an enforced password policy, we took the username-password pairs

inT that met the requirements of the password policy to createTsp.
We use Tsp to simulate queries from a website which only allows

passwords that are at least 8 characters long and are not present in

Twitter’s list of banned passwords [11]. For all attack simulations,

the target user-password pairs are sampled from the test dataset T
(or Tsp).

In Figure 7, we report some statistics aboutT ,Tsp, and ˜𝒮 . Notably,
5.9 million (46%) of the users inT are also present in

˜𝒮 . Among the

username-password pairs, 3.2 million (24%) of the pairs inT are also

present in
˜𝒮 . This means an attacker will be able to compromise

about half of the previously compromised accounts trivially with

credential stuffing. In the site-policy enforced test dataTsp, a similar

proportion of the users (46%) and username-password pairs (23%)

are also present in
˜𝒮 .

Experiment setup. We want to understand the impact of reveal-

ing a bucket identifier on the security of uncompromised and com-

promised users separately. As we can see from Figure 7, a large

proportion of users in T are also present in
˜𝒮 . We therefore split

T into two parts: one with only username-password pairs from

6
Note, there are duplicate username-password pairs in this dataset.

compromised users (users with at least one password present in

˜𝒮), Tcomp, and another with only pairs from uncompromised users

(users with no passwords present in
˜𝒮), Tuncomp. We generate two

sets of random samples of 5,000 username-password pairs, one

fromTcomp, and another fromTuncomp. We chose 5,000 because this

number of samples led to a low standard deviation (as reported

in Figure 8). For each pair (u,w), we run the games Guess and
BucketGuess as specified in Figure 4. We record the results for

guessing budgets of q ∈ {1, 10, 10
2, 10

3}. We repeat each of the

experiments 5 times and report the averages in Figure 8.

For HPB, we compared implementations using hash prefixes of

lengths l ∈ {12, 16, 20}. We use the SHA256 hash function with a

salt, though the choice of hash function does not have a noticeable

impact on the results.

For FSB, we used interval tree data structures to store the leaked

passwords in
˜𝒮 for fast retrieval of α̃ (b). We used |ℬ | = 2

30
buckets,

and the hash function f is set to f (x) = H(30)(x), the 30-bit prefix
of the (salted) SHA256 hash of the password.

Attack strategy. The attacker’s goal is to maximize its success in

winning the games Guess and BucketGuess. In Equation (1) and

Equation (2) we outline the advantage of attackers against Guess
and BucketGuess, and thereby specify the best strategies for at-

tacks. Guess denotes the baseline attack success rate in a scenario

where the attacker does not have access to bucket identifiers corre-

sponding to users’ passwords. Therefore the best strategy for the

attacker 𝒜 is to output the q most probable passwords according

to its knowledge of the password distribution.

The optimal attack strategy for 𝒜′ in BucketGuess will be to
find a list of passwords according to the following equation,

argmax

w1, ...,wq
b ∈β ((u,wi))

q∑
i=1

Pr [W = wi | U = u]

|β((u,wi))|
,

where the bucket identifier b and user identifier u are provided to

the attacker. This is equivalent to taking the top-q passwords in the

set α(b) ordered by Pr [W = w | U = u] /|β((u,w))|.
We compute the list of guesses outputted by the attacker for a

user u and bucket b in the following way. For the compromised

users, i.e., if (u, ·) ∈ ˜𝒮 , the attacker first considers the passwords
known to be associated to that user and the list of 10

4
targeted

guesses generated based on the credential tweaking attack intro-

duced in [40]. If any of these passwords belong to α(b) they are

guessed first. This step is skipped for uncompromised users.

For the remaining guesses, we first construct a list of candidates L
consisting of all 436 million passwords present in the breached data-

base
˜𝒮 sorted by their frequencies, followed by 500×10

6
passwords

generated from the 3-gram password distribution model p̂n . Each
passwordw inL is assigned aweight p̂s (w)/|β((u,w))| (See Section 5

for details on p̂s and p̂n). The list L is pruned to only contain unique

guesses. Note L is constructed independent of the username or

bucket identifier, and it is reordered based on the weight values.

Therefore, it is constructed once for each bucketization strategy.

Finally, based on the bucket identifier b, the remaining guesses are

chosen from {α(b) ∩ (u,w) | w ∈ L} in descending order of weight.

For the HPB implementation, each password is mapped to one

bucket, so |β(w)| = 1 for all w . For FSB, |β(·)| can be calculated

using the equation in Theorem 5.1.

Since we are estimating the values to be used in the equation,

the attack is no longer optimal. However, the attack we use still

performs quite well against existing C3 protocols, which already

shows that they leak too much information. An optimal attack can

only perform better.

Results. We report the success rates of the attack simulations

in Figure 8. The baseline success rate (first row) is the advantage

Advgs, computed using the same attack strategy stated above except

with no information about the bucket identifier. The following

rows record the success rate of the attack for HPB and FSB with

different parameter choices. The estimated security loss (∆q) can
be calculated by subtracting the baseline success rate from the HPB

and FSB attack success rates.

The security loss from using HPB is large, especially for previ-

ously uncompromised users. Accessibility to the l = 20-bit hash

prefix, used by HIBP [6], allows an attacker to compromise 32.9%

of previously uncompromised users in just one guess. In fewer

than 10
3
guesses, that attacker can compromise more than 70%

of the accounts (12x more than the baseline success rate with

10
3
guesses). Google Password Checkup (GPC) uses l = 16 for

its username-password C3 service. Against GPC, an attacker only

needs 10 guesses per account to compromise 33% of accounts. Re-

ducing the prefix length l can decrease the attacker’s advantage.

However, that would also increase the bucket size. As we see for

l = 12, the average bucket size is 105,642, so the bandwidth required

to perform the credential check would be high.

FSB resists guessing attacks much better than HPB does. For q ≤
q̄ the attacker gets no additional advantage, even with the estimated

password distribution p̂s . The security loss for FSB when q > q̄ is

much smaller than that of HPB, even with smaller bucket sizes. For

example, the additional advantage over the baseline against FSB

withq = 100 and q̄ = 10 is only 2.4%, despite FSB also having smaller

bucket sizes than HPB with l = 16. Similarly for q̄ = 100, ∆
10

3 =

2.2%. This is because the conditional distribution of passwords

given an FSB bucket identifier is nearly uniform, making it harder

for an attacker to guess the correct password in the bucket α(b) in
q guesses.

For previously compromised users — users present in
˜𝒮 — even

the baseline success rate is very high: 41% of account passwords

can be guessed in 1 guess and 56% can be guessed in fewer than

1,000 guesses. The advantage is supplemented even further with

access to the hash prefix. As per the guessing strategy, the attacker

first guesses the leaked passwords that are both associated to the

user and in α(b). This turns out to be very effective. Due to the

high baseline success rate the relative increase is low; nevertheless,

in total, an attacker can guess the passwords of 83% of previously

compromised users in fewer than 1,000 guesses. For FSB, the secu-

rity loss for compromised users is comparable to the loss against

uncompromised users for q ≤ q̄. Particularly for q̄ = 10 and q = 100,

the attacker’s additional success for a previously compromised user

is only 2.7% higher than the baseline. Similarly, for q̄ = 100 an

attacker gets at most 1.4% additional advantage for a guessing bud-

get of q=1,000. Interestingly, FSB performs significantly worse for

Protocol Params

Bucket size Uncompromised Compromised

Avg max q = 1 q = 10 q = 10
2 q = 10

3 q = 1 q = 10 q = 10
2 q = 10

3

Baseline N/A N/A N/A 0.7 (±0.1) 1.5 (±0.1) 2.9 (±0.3) 5.8 (±0.4) 41.1 (±0.4) 51.1 (±0.8) 53.3 (±0.9) 55.7 (±1.0)

HPB

l = 20
‡

413 491 32.9 (±0.5) 49.5 (±0.3) 62.5 (±0.4) 71.1 (±0.5) 67.3 (±0.8) 74.5 (±0.6) 79.4 (±0.6) 82.9 (±0.4)
l = 16

†
6602 6891 17.9 (±0.5) 33.4 (±0.6) 47.3 (±0.3) 59.7 (±0.2) 61.1 (±0.9) 67.4 (±0.8) 73.6 (±0.6) 78.2 (±0.7)

l = 12 105642 106668 8.2 (±0.4) 17.5 (±0.6) 30.7 (±0.6) 44.4 (±0.4) 56.3 (±1.0) 60.8 (±1.0) 66.5 (±0.8) 72.3 (±0.6)

FSB

q̄ = 1 83 122 0.7 (±0.1) 4.7 (±0.4) 69.8 (±0.5) 71.1 (±0.5) 53.7 (±0.9) 55.7 (±0.9) 82.6 (±0.4) 83.0 (±0.4)
q̄ = 10 852 965 0.7 (±0.1) 1.5 (±0.1) 5.3 (±0.3) 70.8 (±0.5) 52.8 (±0.9) 54.2 (±1.0) 56.0 (±0.9) 83.0 (±0.4)
q̄ = 10

2
6299 6602 0.7 (±0.1) 1.5 (±0.1) 2.9 (±0.3) 8.0 (±0.4) 51.9 (±0.8) 53.8 (±0.9) 54.8 (±1.0) 57.1 (±1.0)

q̄ = 10
3

25191 25718 0.7 (±1.0) 1.5 (±0.1) 2.9 (±0.3) 5.8 (±0.4) 51.4 (±0.9) 53.2 (±0.9) 54.7 (±1.0) 55.9 (±0.9)

‡
HIBP uses l = 20 for its password-only C3 service.

†
GPC uses l = 16 for username-password C3 service.

Figure 8: Comparison of attack success rate given q queries on different password-only C3 settings. All success rates are in
percent (%) of the total number of samples (25,000). The standard deviations across the 5 independent experiments of 5,000
samples each are given in the parentheses. Bucket size, the number of passwords associated to a bucket, is measured on a
random sample of 10,000 buckets.

compromised users compared to uncompromised users for q = 1.

This is because the FSB bucketing strategy does not take into ac-

count targeted password distributions, and the first guess in the

compromised setting is based on the credential tweaking attack.

In our simulation, previously compromised usersmade up around

46% of the test set. We could proportionally combine the success

rates against uncompromised and compromised users to obtain an

overall attack success rate. However, it is unclear what the actual

proportion would be in the real world, so we choose not to combine

results from the two settings.

Password policy experiment. In the previous set of experiments,

we assumed that the C3 server and the attacker use the same esti-

mate of the password distribution. To explore a situation in which

the attacker has a better estimate of the password distribution than

the C3 server, we simulated a website which enforces a password

policy. We assume that the policy is known to the attacker but not

to the C3 server.

For our sample password policy, we required that passwords

have at least 8 characters and that they must not be on Twitter’s

banned password list [11]. The test samples are drawn from Tsp,
username-password pairs from T where passwords follow this pol-

icy. The attacker is also given the ability to tailor their guesses

to this policy. The server still stores all passwords in
˜𝒮 , without

regard to this policy. Notably, the FSB scheme relies on a good

estimate of the password distribution to be effective in distributing

passwords evenly across buckets. Its estimate, when compared to

the distribution of passwords in Tsp, should be less accurate than

it was in the regular simulation, when compared to the password

distribution from T .
We chose the parameters k = 16 for HPB and q̄ = 100 for FSB,

because they were the most representative of how the HPB and FSB

bucketization schemes compare to each other. These parameters

also lead to similar bucket sizes, with around 6,500 passwords per

bucket. Overall, we see that the success rate of an attacker decreases

in these simulations compared to the general experiments (without

a password policy). This is because after removing popular pass-

words, the remaining set of passwords that we can choose from

has higher entropy, and each password is harder to guess. FSB still

defends much better against the attack than HPB does, even though

the password distribution estimate used by the FSB implementation

Protocol

Uncompromised Compromised

q = 1 10 10
2

10
3 q = 1 10 10

2
10

3

Baseline 0.1 0.5 1.3 3.4 42.2 49.0 49.8 51.1

HPB (l = 16) 12.6 25.9 36.3 48.9 54.6 59.9 65.9 70.3

FSB (q̄ = 10
2
) 0.1 0.5 1.5 13.2 49.2 50.0 50.4 54.9

Figure 9: Attack success rate (in %) comparison for HPBwith
l = 16 (effectively GPC) and FSB with q̄ = 10

2 for password
policy simulation. The first row records the baseline success
rate Advgs(q). There were 5,000 samples each from the un-
compromised and compromised settings.

is quite inaccurate, especially at the head of the distribution. The

inaccuracy stems from FSB assigning larger probability estimates

to passwords that are banned according to the password policy.

We also see that due to the inaccurate estimate by the C3 server

for FSB, we start to see some security loss for an adversary with

guessing budget q = 100. In the general simulation, the password

estimate p̂s used by the server was closer to p, so we didn’t have

any noticeable security loss where q ≤ q̄.

7 PERFORMANCE EVALUATION
We implement the different approaches to checking compromised

credentials and evaluate their computational overheads. For fair

comparison, in addition to the algorithms we propose, FSB and IDB,

we also implement HIBP and GPC with our breach dataset.

Setup. We build C3 services as serverless web applications that pro-

vide REST APIs. We used AWS Lambda [1] for the server-side com-

putation and Amazon DynamoDB [4] to store the data. The benefit

of using AWS Lambda is it can be easily deployed as Lambda@Edge

and integrated with Amazon’s content delivery network (CDN),

called CloudFront [3]. (HIBP uses Cloudflare as CDN to serve more

than 600,000 requests per day [7].) We used Javascript to implement

the server and the client side functionalities. The server is imple-

mented as a Node-JS app. We provisioned the Lambda workers to

have a maximum of 3 GB of memory. For cryptographic operations,

we used a Node-JS library called Crypto [12].

For pre-processing and pre-computation of the data we used a

desktop with an Intel Core i9 processor and 128 GB RAM. Though

some of the computation (e.g., hash computations) can be expedited

using GPUs, we did not use any for our experiment. We used the

same machine to act as the client. The round trip network latency of

the Lambda API from the client machine is about 130 milliseconds.

The breach dataset we used is the one described in Figure 7. It

contains 436 million unique passwords and 1,317 million unique

username-password pairs.

To measure the performance of each scheme, we pick 20 random

passwords from the test setT and run the full C3 protocol with each

one. We report the average time taken for each run in Figure 10.

In the figure, we also give the breakdown of the time taken by

the server and the client for different operations. The network

latency had very high standard deviation (25%), though all other

measurements had low (< 1%) standard deviations compared to

their mean values.

HIBP. The implementation of HIBP is the simplest among the four

schemes. The set of passwords in
˜𝒮 is hashed using SHA256 and

split into 2
20

buckets based on the first 20 bits of the hash value (we

picked SHA256 because we also used the same for FSB). Because the

bucket sizes in HIBP are so small (< 500), each bucket is stored as a

single value in a DynamoDB cell, where the key is the hash prefix.

For larger leaked datasets, each bucket can be split into multiple

cells. The client sends the 20 bit prefix of the SHA256 hash of their

password, and the server responds with the corresponding bucket.

Among all the protocols HIBP is the fastest (but also weakest in

terms of security). It takes only 220 ms on average to complete a

query over WAN. Most of the time is spent in round-trip network

latency and the query to DynamoDB. The only cryptographic op-

eration on the client side is a SHA256 hash of the password, which

takes less than 1 ms.

FSB. The implementation of FSB is more complicated than that

of HIBP. Because we have more than 1 billion buckets for FSB and

each password is replicated in potentially many buckets, storing all

the buckets explicitly would require too much storage overhead. We

use interval trees [8] to quickly recover the passwords in a bucket

without explicitly storing each bucket. Each password w in the

breach database is represented as an interval specified by βFSB(w).
We stored each node of the tree as a separate cell in DynamoDB. We

retrieved the intervals (passwords) intersecting a particular value

(bucket identifier) by querying the nodes stored in DynamoDB.

FSB also needs an estimate of the password distribution to get the

interval range for a tree. We use p̂s as described in Section 4. The

description of p̂s takes 8.9 MB of space that needs to be included as

part of the client side code. This is only a one-time bandwidth cost

during client installation. The client would then need to store the

description to use.

The depth of the interval tree is logN , where N is the number of

intervals (passwords) in the tree. Since each node in the tree is stored

as a separate key-value pair in the database, one client query re-

quires logN queries to DynamoDB. To reduce this cost, we split the

interval tree into r trees over different ranges of intervals, such that

the i-th tree is over the interval [(i − 1) · ⌊|ℬ |/r⌋ , i · ⌊|ℬ |/r⌋ − 1].

The passwords whose bucket intervals span across multiple ranges

are present in all corresponding trees. We used r = 128, as it ensures

each tree has around 4 million passwords, and the total storage

overhead is less than 1% more than if we stored one large tree.

Protocol

Client Server Total Bucket

Crypto Server call Comp DB call Crypto time size

HIBP 1 217 2 40 – 220 413

FSB 1 524 2 273 – 527 6,602

GPC 47 433 9 72 6 489 16,121

IDB 72 435 10 74 6 517 16,122

Figure 10: Time taken in milliseconds to make a C3 API call.
The client and server columns contain the time taken to per-
form client side and server side operations respectively.

Each interval tree of 4 million passwords was generated in paral-

lel and took 3 hours in our server. Each interval tree takes 400 MB

of storage in DynamoDB, and in total 51 GB of space. FSB is the

slowest among all the protocols, mainly due to multiple DynamoDB

calls, which cumulatively take 273 ms (half of the total time, in-

cluding network latency). This can be sped up by using a better

implementation of interval trees on top of DynamoDB, such as

storing a whole subtree in a DynamoDB cell instead of storing each

tree node separately. We can also split the range of the range tree

into more granular intervals to reduce each tree size. Nevertheless,

as the round trip time for FSB is small (527 ms), we leave such

optimization for future work. The maximum amount of memory

used by the server is less than 91 MB during an API call.

On the client side, the computational overhead is minimal. The

client performs one SHA256 hash computation. The network band-

width consumed for sending the bucket of hash values from the

server takes on average 558 KB.

IDB and GPC. Implementations of IDB and GPC are very similar.

We used the same platforms — AWS Lambda and DynamoDB —

to implement these two schemes. All the hash computations used

here are Argon2id with default parameters, since GPC in [44] uses

Argon2. During precomputation, the server computes the Argon2

hash of each username-password pair and raises it to the power

of the server’s key κ. These values can be further (fast) hashed

to reduce their representation size, which saves disk space and

bandwidth. However, hashing would make it difficult to rotate

server key. We therefore store the exponentiated Argon2 hash

values in the database, and hash them further during the online

phase of the protocol. The hash values are indexed and bucketized

based on either H(l)(u∥w) (for GPC) or H(l)(u) (for IDB). We used

l = 16 for both GPC and IDB, as proposed in [44].

We used the secp256k1 elliptic curve. The server (for both IDB

and GPC) only performs one elliptic curve exponentiation, which

on average takes 6 ms. The remaining time incurred is from network

latency and calling Amazon DynamoDB.

On the client side, one Argon2 hash has to be computed for GPC

and two for IDB. Computing the Argon2 hash of the username-

password pairs takes on an average 20 ms on the desktop machine.

We also tried the same Argon2 hash computation on a personal

laptop (Macbook Pro), and it took 8 ms. In total, hashing and ex-

ponentiation takes 47 ms for GPC, and 72 ms (an additional 25 ms)

for IDB. The cost of checking the bucket is also higher (compared

to HIBP and FSB) due to larger bucket sizes.

IDB takes only 28 ms more time on average than GPC (due

to one extra Argon2 hashing), while also leaking no additional

information about the user’s password. It is the most secure among

all the protocols we discussed (should username-password pairs be

available in the leak dataset), and runs in a reasonable time.

8 DEPLOYMENT DISCUSSION
Here we discuss different ways C3 services can be used and as-

sociated threats that need to be considered. A C3 service can be

queried while creating a password — during registration or pass-

word change — to ensure that the new password is not present in a

leak. In this setting C3 is queried from a web server, and the client

IP is potentially not revealed to the server. This, we believe, is a

safer setting to use than the one we will discuss below.

In another scenario, a user can directly query a C3 service. A

user can look for leaked passwords themselves by visiting a web

site or using a browser plugin, such as 1Password [5] or Password

Checkup [44]. This is themost prevalent use case of C3. For example,

the client can regularly check with a C3 service to proactively

safeguard user accounts from potential credential stuffing attacks.

However, there are several security concerns with this setting.

Primarily, the client’s IP is revealed to the C3 server in this setting,

making it easier for the attacker to deanonymize the user. Moreover,

multiple queries from the same user can lead to a more devastat-

ing attack. Below we give two new threat models that need to be

considered for secure deployment of C3 services (where bucket

identifiers depend on the password).

Regular password checks. A user or web service might want

to regularly check their passwords with C3 services. Therefore,

a compromised C3 server may learn multiple queries from the

same user. For FSB the bucket identifier is chosen randomly, so

knowing multiple bucket identifiers for the same password will

help an attacker narrow down the password search space by taking

an intersection of the buckets, which will significantly improve

attack success.

We can mitigate this problem for FSB by derandomizing the

client side bucket selection using a client side state (e.g., browser

cookie) so the client always selects the same bucket for the same

password. We let c be a random number chosen by the client and

stored in the browser. To check a passwordw with the C3 server,

the client always picks the jth bucket from the range β(w), where
j ← f (w ∥c) mod |β(w)|.

This derandomization ensures queries from the same device

are deterministic (after the c is chosen and stored). However, if

the attacker can link queries of the same user from two different

devices, the mitigation is ineffective. If the cookie is stolen from

the client device, then the security of FSB is effectively reduced to

that of HPB with similar bucket sizes.

Similarly, if an attacker can track the interaction history between

a user and a C3 service, it can obtain better insight about the user’s

passwords. For example, if a user who regularly checks with a C3

service stops checking a particular bucket identifier, that could

mean the associated password is possibly in the most up-to-date

leaked dataset, and the attacker can use that information to guess

the user’s password(s).

Checking similar passwords. Another important issue is query-

ing the C3 service with multiple correlated passwords. Some web

services, like 1Password, use HIBP to check multiple passwords for

a user. As shown by prior work, passwords chosen by the same user

are often correlated [24, 40, 47]. An attacker who can see bucket

identifiers of multiple correlated passwords can mount a stronger

attack. Such an attack would require estimating the joint distribu-

tion over passwords. We present an initial analysis of this scenario

in Appendix D.

9 RELATEDWORK

Private set intersection. The protocol task facing C3 services is

private set membership, a special case of private set intersection

(PSI) [29, 36]. The latter allows two parties to find the intersection

between their private sets without revealing any additional infor-

mation. Even state-of-the-art PSI protocols do not scale to the sizes

needed for our application. For example, Kiss et al. [30] proposed

an efficient PSI protocol for unequal set sizes based on oblivious

pseudo-random functions (OPRF). It performs well for sets with

millions of elements, but the bandwidth usage scales proportionally

to the size of the leak dataset and so performance is prohibitive

in our setting. Other efficient solutions to PSI [22, 31, 42, 43] have

similarly prohibitive bandwidth usage.

Private information retrieval (PIR) [23] is another cryptographic

primitive used to retrieve information from a server. Assuming the

server’s dataset is public, the client can use PIR to privately retrieve

the entry corresponding to their password from the server. But

in our setting we also want to protect the privacy of the dataset

leak. Even if we relaxed that security requirement, the most ad-

vanced PIR schemes [17, 39] require exchanging large amounts of

information over the network, so they are not useful for checking

leaked passwords. PIR with two non-colluding servers can provide

better security [26] than the bucketization-based C3 schemes, with

communication complexity sub-polynomial in the size of the leaked

dataset. It requires building a C3 service with two servers guar-

anteed to not collude, which may be practical if we assume that

the breached credentials are public information. However, with a

dataset size of at least 1 billion credentials, the cost of one query is

likely still too large to be practical.

Compromised credential checking. To the best of our knowl-

edge, HIBP was the first publicly available C3 service. Junade Ali

designed the current HIBP protocol which uses bucketization via

prefix hashing to limit leakage. Google’s Password Checkup ex-

tends this idea to use PSI, which minimizes the information about

the leak revealed to clients. They also moved to checking username,

password pairs.

Google’s Password Checkup (GPC) was described in a paper by

Thomas et al. [45], which became available to us after we began

work on this paper. They introduced the design and implementation

of GPC and report on measurements of its initial deployment. They

recognized that their first generation protocol leaks some bits of

information about passwords, but did not analyze the potential

impact on password guessability. They also propose (what we call)

the ID-based protocol as a way to avoid this leakage. Our paper

provides further motivation for their planned transition to it.

Thomas et al. point out that password-only C3 services are likely

to have high false positive rates. Our new protocol FSB, being in the

password-only setting, inherits this limitation. That said, should

one want to do password-only C3 (e.g., because storing username,

password pairs is considered too high a liability given their utility

for credential tweaking attacks [40]), FSB represents the best known

approach.

Other C3 services include, for example, Vericlouds [15] and

GhostProject [13]. They allow users to register with an email ad-

dress, and regularly keep the user aware of any leaked (sensitive)

information associated with that email. Such services send infor-

mation to the email address, and the user implicitly authenticates

(proves ownership of the email) by having access to the email ad-

dress. These services are not anonymous and must be used by the

primary user. Moreover, these services cannot be used for password-

only C3.

Distribution-sensitive cryptography. Our FSB protocol uses an

estimate of the distribution of human chosen passwords, making it

an example of distribution-sensitive cryptography, in which con-

structions use contextual information about distributions in order

to improve security. Previous distribution-sensitive approaches in-

clude Woodage et al. [49], who introduced a new type of secure

sketch [25] for password typos, and Lacharite et al.’s [32] frequency-

smoothing encryption. While similar in that they use distributional

knowledge, their constructions do not apply in our setting.

10 CONCLUSION
We explore different settings and threat models associated with

checking compromised credentials (C3). The main concern is the

secrecy of the user passwords that are being checked. We show,

via simulations, that the existing industry deployed C3 services

(such as HIBP and GPC) do not provide a satisfying level of security.

An attacker who obtains the query to such a C3 service and the

username of the querying user can more easily guess the user’s

password. We give more secure C3 protocols for checking leaked

passwords and username-password pairs. We implemented and

deployed different C3 protocols onAWS Lambda and evaluated their

computational and bandwidth overhead. We finish with several

nuanced threat models and deployment discussions that should be

considered when deploying C3 services.

ACKNOWLEDGMENTS
We would like to thank the authors of [45] for sharing their work

with us prior to publication. This work was supported in part by

NSF grants CNS-1564102, CNS-1514163, and CNS-1704527.

REFERENCES
[1] 2018. Argon2. https://www.npmjs.com/package/argon2/. (2018).

[2] 2018. AWSlambda. https://aws.amazon.com/lambda/. (2018).

[3] 2018. CloudFront. https://aws.amazon.com/cloudfront/. (2018).

[4] 2018. DynamoDb. https://aws.amazon.com/dynamodb/. (2018).

[5] 2018. Finding pwned passwords with 1Password. https://blog.1password.com/

finding-pwned-passwords-with-1password/. (2018).

[6] 2018. Have I Been Pwned: API v2. https://haveibeenpwned.com/API/v2. (2018).

[7] 2018. I Wanna Go Fast: Why Searching Through 500M

Pwned Passwords Is So Quick. https://www.troyhunt.com/

i-wanna-go-fast-why-searching-through-500m-pwned-passwords-is-so-quick/.

(2018).

[8] 2018. Interval Tree. https://en.wikipedia.org/wiki/Interval_tree. (2018).

[9] 2018. List of data breaches. https://en.wikipedia.org/wiki/List_of_data_breaches.

(2018).

[10] 2018. SECURITY UPDATE - Q2 2018. https://www.eveonline.com/article/pc29kq/

an-update-on-security-the-fight-against-bots-and-rmt. (2018).

[11] 2018. Twitter’s List Of 370 Banned Passwords. http://www.businessinsider.com/

twitters-list-of-370-banned-passwords-2009-12. (2018). Accessed: 2015-11-06.

[12] 2019. Crypto Nodejs. https://nodejs.org/api/crypto.html. (2019).

[13] 2019. GhostProject. https://ghostproject.fr/. (2019).

[14] 2019. Testing Firefox Monitor, a New Security Tool. https://blog.mozilla.org/

futurereleases/2018/06/25/testing-firefox-monitor-a-new-security-tool/. (2019).

[15] 2019. Vericlouds. https://my.vericlouds.com/. (2019).

[16] 4iQ. 2018. Identities in the Wild: The Tsunami of Breached Identities Contin-

ues. https://4iq.com/wp-content/uploads/2018/05/2018_IdentityBreachReport_

4iQ.pdf/. (2018).

[17] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.

2016. XPIR: Private information retrieval for everyone. Proceedings on Privacy
Enhancing Technologies 2016, 2 (2016), 155–174.

[18] Junade Ali. 2018. Optimising Caching on Pwned Passwords (with Workers).

https://blog.cloudflare.com/optimising-caching-on-pwnedpasswords. (2018).

[19] Junade Ali. 2018. Validating Leaked Passwords with k-Anonymity. https://blog.

cloudflare.com/validating-leaked-passwords-with-k-anonymity/. (2018).

[20] P. Berenbrink, T. Friedetzky, Z. Hu, and R. Martin. 2008. On weighted balls-into-

bins games. Theoretical Computer Science 409, 3 (2008), 511–520.
[21] Julio Casal. Dec, 2017. 1.4 Billion Clear Text Credentials Dis-

covered in a Single Database. https://medium.com/4iqdelvedeep/

1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14.

(Dec, 2017).

[22] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast private set intersection from

homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1243–1255.

[23] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private

information retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer
Science. IEEE, 41–50.

[24] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng

Wang. 2014. The Tangled Web of Password Reuse.. In NDSS, Vol. 14. 23–26.
[25] Y. Dodis, L. Reyzin, and A. Smith. 2004. Fuzzy Extractors: How to Generate

Strong Keys from Biometrics and Other Noisy Data. In Eurocrypt 2004, C. Cachin
and J. Camenisch (Eds.). Springer-Verlag, 523–540. LNCS no. 3027.

[26] Zeev Dvir and Sivakanth Gopi. 2015. 2-server PIR with sub-polynomial com-

munication. In Proceedings of the forty-seventh Annual ACM Symposium on the
Theory of Computing. ACM, 577–584.

[27] Steven Englehardt, Jeffrey Han, and Arvind Narayanan. 2018. I never signed up

for this! Privacy implications of email tracking. Proceedings on Privacy Enhancing
Technologies 2018, 1 (2018), 109–126.

[28] Verizon Enterprise. 2017. 2017 Data breach investigations report. (2017).

[29] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. 2004. Efficient pri-

vate matching and set intersection. In Advances in Cryptography–EUROCRYPT.
Springer, 1–19.

[30] Ágnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and Benny Pinkas. 2017.

Private set intersection for unequal set sizes with mobile applications. Proceedings
on Privacy Enhancing Technologies 2017, 4 (2017), 177–197.

[31] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-

ficient batched oblivious PRF with applications to private set intersection. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 818–829.

[32] Marie-Sarah Lacharité and Kenneth G Paterson. 2018. Frequency-smoothing

encryption: preventing snapshot attacks on deterministically encrypted data.

IACR Transactions on Symmetric Cryptology 2018, 1 (2018), 277–313.

[33] Yue Li, Haining Wang, and Kun Sun. 2016. A study of personal information

in human-chosen passwords and its security implications. In IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer Communications.
IEEE, 1–9.

[34] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. 2014. A Study of Probabilistic

Password Models. In Proceedings of the 2014 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 689–704.

[35] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrish-

nan Venkitasubramaniam. 2006. l-diversity: Privacy beyond k-anonymity. In

22nd International Conference on Data Engineering (ICDE’06). IEEE, 24–24.
[36] Catherine Meadows. 1986. A more efficient cryptographic matchmaking protocol

for use in the absence of a continuously available third party. In 1986 IEEE
Symposium on Security and Privacy. IEEE, 134–134.

[37] William Melicher, Blase Ur, Sean M Segreti, Saranga Komanduri, Lujo Bauer,

Nicolas Christin, and Lorrie Faith Cranor. [n. d.]. Fast, lean and accurate: Modeling

password guessability using neural networks.

[38] A Naranyanan and V Shmatikov. 2008. Robust de-anonymization of large datasets.

In Proceedings of the 2008 IEEE Symposium on Security and Privacy, May 2008.
[39] Femi Olumofin and Ian Goldberg. 2011. Revisiting the computational practi-

cality of private information retrieval. In International Conference on Financial
Cryptography and Data Security. Springer, 158–172.

https://www.npmjs.com/package/argon2/
https://aws.amazon.com/lambda/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/dynamodb/
https://blog.1password.com/finding-pwned-passwords-with-1password/
https://blog.1password.com/finding-pwned-passwords-with-1password/
https://haveibeenpwned.com/API/v2
https://www.troyhunt.com/i-wanna-go-fast-why-searching-through-500m-pwned-passwords-is-so-quick/
https://www.troyhunt.com/i-wanna-go-fast-why-searching-through-500m-pwned-passwords-is-so-quick/
https://en.wikipedia.org/wiki/Interval_tree
https://en.wikipedia.org/wiki/List_of_data_breaches
https://www.eveonline.com/article/pc29kq/an-update-on-security-the-fight-against-bots-and-rmt
https://www.eveonline.com/article/pc29kq/an-update-on-security-the-fight-against-bots-and-rmt
http://www.businessinsider.com/twitters-list-of-370-banned-passwords-2009-12
http://www.businessinsider.com/twitters-list-of-370-banned-passwords-2009-12
https://nodejs.org/api/crypto.html
https://ghostproject.fr/
https://blog.mozilla.org/futurereleases/2018/06/25/testing-firefox-monitor-a-new-security-tool/
https://blog.mozilla.org/futurereleases/2018/06/25/testing-firefox-monitor-a-new-security-tool/
https://my.vericlouds.com/
https://4iq.com/wp-content/uploads/2018/05/2018_IdentityBreachReport_4iQ.pdf/
https://4iq.com/wp-content/uploads/2018/05/2018_IdentityBreachReport_4iQ.pdf/
https://blog.cloudflare.com/optimising-caching-on-pwnedpasswords
https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/
https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14

Distance %

0 1.2

≤ 1 1.7

≤ 2 2.3

≤ 3 3.1

≤ 4 4.6

Figure 11: Statistics on samples with low edit distance be-
tween username and password, as a percentage of a random
sample of 10

5 username-password pairs.

[40] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas Ristenpart. 2019. Beyond

Credential Stuffing: Password Similarity using Neural Networks. IEEE Symposium
on Security and Privacy (2019).

[41] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,

Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.

Let’s Go in for a Closer Look: Observing Passwords in Their Natural Habitat. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 295–310.

[42] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:

Private set intersection using permutation-based hashing. In 24th {USENIX}
Security Symposium ({USENIX} Security 15). 515–530.

[43] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. 2018.

Efficient circuit-based PSI via cuckoo hashing. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 125–157.

[44] Jennifer Pullman, Kurt Thomas, and Elie Bursztein. 2019. Protect your accounts

from data breaches with Password Checkup. https://security.googleblog.com/

2019/02/protect-your-accounts-from-data.html. (2019).

[45] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick

Gage Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel,

Dan Boneh, and Elie Bursztein. 2019. Protecting Accounts from Credential Stuff-

ing with Password Breach Alerting. In USENIX Security Symposium. USENIX.

[46] Troy Hunt. 2018. Have I Been Pwned? https://haveibeenpwned.com/Passwords/.

(2018).

[47] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. 2016. Targeted

online password guessing: An underestimated threat. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. ACM, 1242–

1254.

[48] Dan Lowe Wheeler. 2016. zxcvbn: Low-budget password strength estimation. In

Proc. USENIX Security.
[49] Joanne Woodage, Rahul Chatterjee, Yevgeniy Dodis, Ari Juels, and Thomas

Ristenpart. 2017. A new distribution-sensitive secure sketch and popularity-

proportional hashing. In Annual International Cryptology Conference. Springer,
682–710.

[50] Lei Zhang, Sushil Jajodia, and Alexander Brodsky. 2007. Information disclosure

under realistic assumptions: Privacy versus optimality. In Proceedings of the 14th
ACM conference on Computer and communications security. ACM, 573–583.

A CORRELATION BETWEEN USERNAME
AND PASSWORDS

In Section 3, we choose to model the username and password

choices of previously uncompromised users independently.

To check whether this assumption would be valid or not, we ran-

domly sampled 10
5
username-password pairs from the dataset used

in Section 6 and calculated the Levenshtein edit distance between

each username and password in a pair. We have recorded the result

of this experiment in Figure 11.

We found that the mean edit distance between a username and

password was 9.4, while the mean password length was 8.4 char-

acters and the mean username length was 10.0 characters. This

supports that while there are some pairs where the password is

almost identical to the username, a large majority are not related

to the username at all.

The statistics on edit distance between username and password

in our dataset are similar to the statistics in the dataset used by

Wang et al. [47], who determined that approximately 1-2% of the

English-website users used their email prefix as their password.

This data does not prove that usernames and passwords are inde-

pendent. However, even if an attacker gains additional advantage

in the few cases where a user chooses their username as their pass-

word, the overwhelming majority of users have passwords that are

not closely related to their usernames.

B BANDWIDTH OF FSB
To calculate the maximum bandwidth used by FSB, we use the balls-

and-bins formula as described in Section 3. Each password w is

stored in |β(w)| buckets, so the total number of balls, or passwords

being stored, can be calculated as

m =
∑
w ∈ ˜𝒮

|β(w)|

=
∑

w ∈𝒲q̄∩ ˜𝒮

|ℬ | +
∑

w ∈ ˜𝒮\𝒲q̄

⌈
|ℬ | · p̂s (w)
p̂s (wq̄)

⌉
≤ |𝒲q̄ ∩ ˜𝒮 | · |ℬ | +

∑
w ∈ ˜𝒮\𝒲q̄

(
|ℬ | · p̂s (w)
p̂s (wq̄)

+ 1

)
≤ |ℬ | · q̄ + |ℬ | · 1

p̂s (wq̄)
+ N

The first equality is obtained by replacing the definition of β(w); the
second inequality holds because ⌈x⌉ ≤ x + 1; the third inequality

holds because S ⊆W .

The number of bins n = |ℬ |, andm > n logn, if q̄ > logn. There-
fore, the maximum bucket size for FSB would with high probability

be no more than 2 ·

(
q̄ + 1

p̂s (wq̄)
+ N
|ℬ |

)
.

C PROOF OF THEOREM 5.1
First we calculate the general form of the BucketGuessβFSB advan-

tage. Then, we show that for q ≤ q̄, Advb-gsβFSB
(q) = Advgs(q), and we

bound the difference in the advantages for the games when q > q̄.

Advb-gsβFSB
(q) =

∑
u

∑
b

max
w1, ...,wq
∈α (b)

q∑
i=1

Pr [W = wi ∧U = u]

|βFSB(wi)|

=
∑
b

max
w1, ...,wq
∈α (b)

q∑
i=1

p̂s (wi)

|βFSB(wi)|

The second step follows from the independence of usernames and

passwords in the uncompromised setting.

We will use 𝒲q̄ to refer to the top q̄ passwords according to

password distribution p̂s = pw , and wq̄ to refer to the q̄th most

popular password according to p̂s .
For w ∈ 𝒲q̄ , we can calculate the fraction in the summation

exactly as
p̂s (w)
|βFSB(w) |

=
p̂s (w)
|ℬ | .

For any otherw ∈𝒲 \𝒲q̄ , we can bound the fraction using the

bound on the number of buckets a password is placed in.

|ℬ | · p̂s (w)
p̂s (wq̄)

≤ |βFSB(w)| <
|ℬ | · p̂s (w)
p̂s (wq̄)

+ 1.

https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://haveibeenpwned.com/Passwords/

Corr-Guess𝒜β (q)

(u, w1) ←p 𝒰 ×𝒲
w2←τ(u,w

1
)𝒲 \ ˜𝒮w

b1 ← β (w1); b2 ← β (w2)

{w̃1, . . . , w̃q } ← 𝒜(u, b1, b2)

return w2 ∈ {w̃1, . . . , w̃q }

Figure 12: A game to describe a simple correlated password
query scenario. Here, we let ˜𝒮w be the set of all passwords
in the breach dataset.

We can use the lower bound on |βFSB(w)| to find that

p̂s (w)

|βFSB(w)|
≤

p̂s (wq̄)

|ℬ |
.

Using the upper bound on |βFSB(w)|,

p̂s (w)

|βFSB(w)|
>

p̂s (w)
|ℬ | ·p̂s (w)
p̂s (wq̄)

+ 1

=
p̂s (w) · p̂s (wq̄)

|ℬ | · p̂s (w) + p̂s (wq̄)
=

p̂s (wq̄)

|ℬ | + p̂s (wq̄)

p̂s (w)

Since the values of
p̂s (w)
|βFSB(w) |

are always larger for w ∈ 𝒲q̄ , the

values ofw1, . . . ,wq chosen for each bucket will be the top q̄ pass-

words overall, along with the top q − q̄ of the remaining passwords

in the bucket, ordered by
p̂s (·)
|βFSB(·) |

.

To find an upper bound on Advb-gsβFSB
(q),∑

b

max
w1, ...,wq
∈α (b)

q∑
i=1

p̂s (wi)

|βFSB(wi)|

≤
∑
b

©­«
∑

w ∈𝒲q̄

p̂s (w)

|ℬ |
+ (q − q̄)

p̂s (wq̄)

|ℬ |
ª®¬

= λq̄ + (q − q̄) · pq̄

For q ≤ q̄, we have Advb-gsβFSB
(q) ≤ λq̄ .

To find a lower bound onAdvb-gsβFSB
(q), letw∗q̄+1

, . . . ,w∗q be theq−q̄

passwords in α(b) \𝒲q̄ with the highest probability of occurring,

according to p̂s (·).∑
b

max
w1, ...,wq
∈α (b)

q∑
i=1

p̂s (wi)

|βFSB(wi)|

>
∑
b

©­­«
∑

w ∈𝒲q̄

p̂s (w)

|ℬ |
+

q∑
i=q̄+1

p̂s (wq̄)

|ℬ | + p̂s (wq̄)

p̂s (w∗i)

ª®®¬
≥ λq̄ +

q∑
i=q̄+1

⌈
|ℬ | · p̂s (w∗i)
p̂s (wq̄)

⌉
·

p̂s (wq̄)

|ℬ | + p̂s (wq̄)

p̂s (w∗i)

≥ λq̄ +

q∑
i=q̄+1

|ℬ | · p̂s (w∗i)

|ℬ | + p̂s (wq̄)

p̂s (w∗i)

≥ λq̄ +

q∑
i=q̄+1

p̂s (w
∗
i)

1 +
p̂s (wq̄)

p̂s (w∗i)· |ℬ |

≥ λq̄ +

q∑
i=q̄+1

p̂s (w
∗
i)/2 ≥ λq̄ + (λq − λq̄)/2 =

λq + λq̄

2

Therefore, ∆q ≥
λq−λq̄

2
.

Note, for every password to be assigned to a bucket, |ℬ | ≥
p̂s (wq̄)/p̂s (w), or for allw ∈𝒲 ,

p̂s (wq̄)

p̂s (w)· |ℬ |
≤ 1.

D ATTACKS ON CORRELATED PASSWORD
QUERIES

An adversary might gain additional advantage in guessing pass-

words underlying C3 queries when queries are correlated. For exam-

ple, when creating a new password, a client might have to generate

multiple passwords until the chosen password is not known to be

in a leak. These human-generated passwords are often related to

each other. Users also pick similar passwords across different web-

sites [24, 40, 41, 47]. If such passwords are checked with a C3 server

(maybe by a password manager [5]), and the attacker could identify

multiple queries from the same user (for example, by joining based

on the IP address of the client), then the attacker could mount an

attack on the correlated queries. As we described, the adversary

does need a lot of information to mount such an attack, but the

idea is worth exploring, since attacks on correlated queries have

not been analyzed before.

Let {τ(u,w)} be a family of distributions, such that for a given

u ∈ 𝒰 , w ∈ 𝒲 , τ(u,w) models a probability distribution across all

passwords related tow for the user u. For example, the probability

of user u choosing a password w2 given that they already have

passwordw1 is τ(u,w1)(w2).

The attack game for correlated password queries is given in

Figure 12. A client first picks a passwordw1 for some web service

and learns that the password is present in a leaked data. The client

then picks another passwordw2, potentially correlated tow1, that

is not known to be in a leak and is accepted by the web service.

(For simplicity, we only consider two attempts to create a password.

However, our analysis can easily be extended to more than two

attempts.) In the game, the passwordw2 is chosen from the set of

passwords not stored by the server, according to the distribution of

passwords from the transformation ofw1. The adversary, given the

buckets b1 and b2, tries to guess the final password,w2.

To find the most likely password given the buckets accessed (the

maximum a posteriori estimation), an adversary would want to

calculate the following:

argmax

w
Pr [w2 = w | b1,b2]

= argmax

w
Pr [b1,b2 | w2 = w] ·

Pr [w2 = w]

Pr [b1,b2]

= argmax

w
Pr [b1,b2 | w2 = w] · Pr [w2 = w] .

Note that we view b1,b2 as fixed values for the two buckets, not

random variables, but we use the notation above to save space. We

can separate Pr [b1,b2 | w2 = w] into two parts.

Pr [b1,b2 | w2 = w] = Pr [b2 | w2 = w] · Pr [b1 | w2 = w,b2]

= Pr [b2 | w2 = w] · Pr [b1 | w2 = w]

The second step follows from the independence of b1 and b2 given

w2.

We know that the first term Pr [b2 | w2 = w] will be 0 if the

passwordw does not appear in bucket b2. For FSB, the buckets that

do containw have an equally probable chance of being the chosen

bucket. For HPB, only one bucket will have a nonzero probability

for each password.

Pr [b2 | w2 = w] =

{
1

|β (w) | if b2 ∈ β(w)

0 otherwise

.

Then, to find Pr [b1 | w2 = w], we need to sum over all pass-

words that are in b1. We define 𝒮w as the set of all possible pass-

words.

Pr [b1 | w2 = w] =
∑

w1∈𝒮w
Pr [b1 ∧w1 | w2 = w]

=
∑

w1∈α (b1)

Pr [w1 | w2 = w]

=
∑

w1∈α (b1)

Pr [w2 = w | w1] · Pr [w1]

Pr [w2 = w]
.

Combining the argmax expression with the equations above, the

adversary therefore needs to calculate the following to find the

most likelyw :

argmax

w ∈α (b2)

1

|β(w)| · Pr [w2 = w]
·

∑
w1∈α (b1)

Pr [w2 = w | w1] · Pr [w1]

= argmax

w ∈α (b2)

1

|β(w)| · Pr [w2 = w]
·

∑
w1∈α (b1)

τ(u,w1)(w) · Pr [w1].

(4)

In practice, it would be infeasible to compute the above values

exactly. For one, the set of all possible passwords is very large, so it

would be difficult to iterate over all of the passwords that could be

in a bucket. We also don’t know what the real distribution τ(u,w) is
for any given u andw . For our simulations, we estimate the set of

all possible passwords in a bucket using the list constructed by the

attack from Section 6. To estimate Pr [w2 = w | w1], we use the

password similarity measure described in [40], transforming pass-

words into vectors and calculating the dot product of the vectors.

To simulate the correlated-query setting, we used the same

dataset as in Section 6. We first trim the test dataset T down to

users with passwords both present in the leaked dataset and ab-

sent from the leak dataset. We then sample 5,000 of these users

and randomly choose the first password from those present in the

leaked dataset and the second password from the ones not in the

leaked dataset. This sampling most closely simulates the situation

where users query a C3 server until they find a password that is

not present in the leaked data. We assume, as before, the adversary

knows the username of the querying user.

For the experiment, we give the attacker access to the leak dataset

and the buckets associated with the passwordsw1 andw2. Its goal is

to guess the second password,w2. The attacker first narrows down

the list constructed in the attack from Section 6 to only passwords

in bucket b2. As a reminder, we refer to this list of passwords as

α̃ (b2). The attacker then computes the similarity between every

pair of passwords in α̃ (b2) × α̃ (b1), which is α̃ (b1) times the com-

plexity of running a single-query attack (as described in Section 6).

It reorders the list of passwords α̃ (b2) using an estimate of the value

in Equation (4).

The results of this simulation are in Figure 13. We also measured

the success rate of the baseline and regular single-query attacks on

recovering the same passwordsw2.

Protocol Attack q = 1 10 10
2

10
3

Baseline single-query 0.2 1.0 2.9 6.4

HPB (l = 16)
single-query 18.8 31.9 45.9 58.4

correlated 8.8 10.3 13.0 26.0

FSB (q̄ = 10
2
)

single-query 0.2 1.0 2.9 8.4

correlated 2.7 3.3 4.6 11.5

Figure 13: Comparison of attack success rate given q queries
on our correlated password test set. All success rates are in
percent (%) of the total number of samples (5,000) guessed
correctly.

It turns out that this correlated attack performs significantly

worse than the single-query attack when the passwords are buck-

etized using HPB. For FSB, the correlated attack performs better,

but not by a large amount. Although there is an improvement in

the correlated attack success for FSB, the overall success rate of the

attack is still worse than both attacks against HPB.

The overall low success rate of the correlated attacks is likely

due to the error in estimating the password similarity, τ(·,w1)(w).
Though the similarity metric proposed by [40] is good enough for

generating ordered guesses for a targeted attack, it doesn’t quite

match the type of correlation among passwords used in the test

set. Even though we picked two passwords from the same user for

each test point, the passwords were generally not that similar to

each other. About 7% of these password pairs had an edit distance

of 1, and only 14% had edit distances of less than 5. The similarity

metric we used to estimate τ(·,w1)(w) heavily favors passwords that
are very similar to each other.

The single-query attack against HPB does quite well already,

so the correlated attack likely has a lower success rate because

it rearranges the passwords in α̃ (b2) according to their similarity

to the passwords in α̃ (b1). In reality, only a small portion of the

passwords in the test set are closely related. On the other hand, the

construction of FSB results in approximately equal probabilities

that each password in the bucket was chosen, given knowledge of

the bucket. We expect that the success rate for the correlated attack

against FSB is higher than that of the single-query attack because

the reordering helps the attacker guess correctly in the test cases

where the two sampled passwords are similar.

We believe the error in estimation is amplified in the attack

algorithm, which leads to a degradation in performance. If the

attacker knew τ perfectly and could calculate the exact values in

Equation (4), the correlated-query attack would perform better than

the single-query attack. However, in reality, even if we know that

two queries came from the same user, it is difficult to characterize

the exact correlation between the two queries. If the estimate is

wrong, then the success of the correlated-query attack will not

necessarily be better than that of the single-query attack. Given

that our attack did not show a substantial advantage for attackers,

it is still an open question to analyze how damaging attacks on

correlated queries can be.

	Abstract
	1 introduction
	2 Overview
	3 Bucketization Schemes and Security Models
	4 Hash-prefix-based Bucketization
	5 Frequency-Smoothing Bucketization
	6 Empirical Security Evaluation
	7 Performance Evaluation
	8 Deployment discussion
	9 Related Work
	10 Conclusion
	References
	A Correlation between username and passwords
	B Bandwidth of FSB
	C Proof of Theorem 5.1
	D Attacks on Correlated Password Queries

