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ABSTRACT

Introductory computer systems courses teach students how a single
program is executed inside a computer, providing them with their
first exposure to the logical internals of computing systems. This is
one of the first introductory courses where students can learn about
security and the need for robust coding. However, currently, these
courses are taught with a focus on functionality and efficiency only,
ignoring security almost entirely.

In this paper, we provide a basic security analysis of computer
systems courses from 16 of the top 20 CS undergraduate programs
at R1 universities in the US. We collected more than 760 thousand
lines of C/C++ code written by 253 students and used by instructors
in lectures and for assignments. We found students frequently use
unsafe functions such as strcpy, strcat, and system, many of
which can lead to serious security vulnerabilities. These unsafe
functions are present in course materials such as in lecture slides
and textbooks, and even in the code provided by instructors. We
also show a high correlation between the unsafe functions used by
students with those used by their instructors.
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1 INTRODUCTION

As our world’s key infrastructure is increasingly reliant on informa-
tion technology, the need for a skilled workforce capable of building
reliable and secure software tools is more important now than ever
before. Security vulnerabilities in software can lead to sensitive
data theft [35], unavailability of services [24], and, even worse,
disruption of critical infrastructure, such as power grids [45, 50].
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Despite the dire need, in the current computer science (CS) cur-
riculum in the United States (US), students are not introduced to
computer security early on [43]. Even worse, as we show in this
paper, instructors often accidentally introduce students to unsafe
functions, which can easily lead to severe security vulnerabilities,
via their lectures, course contents, or code skeletons provided for as-
signments. Effectively, students are trained to use unsafe functions
without learning their security problems. As a result, our software
developers are prone to introduce severe vulnerabilities in code,
which attackers can exploit to compromise web services [35] and
steal sensitive information [15, 40].

Studies have shown that introductory courses often overlook
security vulnerabilities while teaching [47, 55]. For example, Taylor
et al. [55] showed that introduction to database courses regularly
teach students with vulnerable code that will lead to SQL injec-
tion attacks [9]. Taking a similar perspective, we ask, “Do other
introductory courses also teach similar vulnerable code?”

In this paper, we investigate how students are taught CS intro-
ductory courses with unsafe functions and coding practices, and
how they repeat similar dangerous mistakes in the code they write
for programming assignments. For our analysis, we focus on a mid-
level computer science course, commonly named Introduction to
Computer Systems or computer systems, for short. We chose the
computer systems course since it is the first course in the intro-
ductory sequence of required courses and the bedrock for teaching
students subsequent computer science concepts. We also believe
this course has a high potential for introducing topics related to
computer security since this course focuses on low-level topics in
computing, such as, call stack. The course is mostly standardized
across the US and usually taught using the C or C++ programming
language, including some form of an assembly language (e.g., Intel
x86 Assembly). Given that, we aim to answer the following two
research questions in our study:

RQ1: Do students use unsafe functions while writing code in com-
puter systems courses?

RQ2: Are students being taught computer systems courses with
unsafe functions?

To answer these questions, we gathered code samples from a
number of US universities. We considered the top 20 R1 universi-
ties — universities that grant doctoral degrees and have very high
research activity — based on US News rankings [42], and identify
the courses equivalent to computer systems in these universities.
From 16 of the 20 universities, we were able to find a matching
computer systems course that is taught in C/C++ and had some
publicly available course content. We downloaded the code snippets
provided by instructors to their students on the course websites. We
also collected code relevant for computer systems courses in these
universities from public GitHub repositories. (Students often share
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their code on public GitHub, despite some universities discourag-
ing students from doing so.) We collected more than 760 thousand
lines of C/C++ code in this process, out of which 567.3 KLOC! are
written by 253 students, and 193.2 KLOC are written or provided
by instructors.?

Using a static analysis tool named Flawfinder [56], we identify
the use of several dangerous functions, such as strcpy, strcat,
and atoi in these lines of code. Despite the availability of secure
alternatives, such as strncpy or strncat, such functions are still
taught and used in introductory courses. Often, the main argument
for teaching these functions is to reduce cognitive load on students
by focusing primarily on teaching basic string operations rather
than secure programming practices. Usually, the burden of teaching
computer security related topics (e.g., secure programming) is saved
for separate, dedicated computer security courses that students can
take later in their CS curriculum.

However, our further investigation reveals that in many R1 uni-
versities in the US, students can graduate with a CS degree without
taking a single computer security course since security courses
are mostly offered as upper-level electives (e.g. [2, 3]). This means
that students may not learn the perils of using unsafe functions or
their alternative safer versions in their entire CS curriculum. As
such, we are not training our software engineering workforce with
adequate knowledge of safe programming. This might have severe
consequences on the safety and security of the key infrastructure
that relies on software.

We believe that our study highlights the problems with our
computer systems courses, with respect to security, and shows the
importance of the discussion of security-related topics in these
courses — especially as it might be the only place where many
of our CS majors learn about security. We hope that our study
creates a valuable discussion among the CS education community
about the importance of computer security and ways to integrate
it into our current curriculum. We consider our study to be one of
the first steps toward teaching secure programming practices in
lower-division undergraduate CS courses.

The main contributions of our paper are the following:

(1) By analyzing more than 760 thousand lines of code written
by students and instructors for computer systems courses in
the US, we present the security issues that are most commonly
found in these code snippets.

(2) We show that students often use unsafe functions that are
often used by instructors and provided in textbooks. However,
they rarely learn the security consequences behind them, and
sometimes despite knowing the safer alternatives, continue
using the unsafe ones.

(3) We highlight the lack of security focus in our present CS cur-
riculum. We provide some suggestions on how to improve
computer systems courses by integrating computer security.

2 RELATED WORK

Given the importance of teaching computer security to software
developers, several papers have been published in the last two

IKLOC = kilo lines of code, 1 KLOC = 1000 lines of code
2Researchers can contact the first author at malmansoori2@wisc.edu for access to the
anonymized dataset.

decades focusing on cybersecurity education and including security
awareness in introductory computer science courses [32, 38].

Svabensky et al. [52] analyze 71 papers from SIGCSE and ITiCSE
(no security-related papers in ICER!) and synthesize their results
to summarize the current trends in cybersecurity education. They
show that there are two main directions of cybersecurity research.
The first direction is on teaching core security topics, such as net-
work security, software security, and human aspects of security.
The second direction is to improve students’ behavior in writing se-
cure code. Several studies, such as [21, 31, 49, 54], focused on trying
to teach and encourage students to write safe code. Nevertheless,
Svabensky et al. noted that the prior work rarely provides concrete,
actionable suggestions for the instructors, and did not release their
artifacts or datasets.

Introduce security early to students. Prior research [18,41] has
shown that introducing computer security early in the student’s
computer science curriculum helps students develop a security
mindset and the foundation for writing secure code. Bishop and
Frincke [25] describe the cruciality of improving software assurance
by having students focus on secure programming practices early on
and by being exposed to major but frequent security mistakes. They
encourage familiarizing students with buffer-overflow vulnerability
and explain the role of checklists in an aircraft scenario as a method
of implementing secure code principles. The main message is that
writing secure code should be one of the fundamentals taught for
every computer science student.

Moving a step forward to having students write and get feedback
on their code, Bishop and Orvis [18, 19] designed a security clinic.
Students were required to submit their programming assignments
to the clinic before it was due. Through the clinic, each student
met with a graduate student who gave them feedback about their
code’s robustness. The students can change their code before they
submitted their assignments for a grade. Bishop and Orvis analyzed
the differences between the code submitted to the clinic vs. the
final submission (for a grade). They found that, after the clinic, a
majority of students understood the issues in their code better and
took measures to fix them. Overall, they show that programming
clinics are a viable method to reinforce writing secure code.

Irvine et al. [30, 32] took a similar approach to teach students
secure coding practices and information assurance. In addition to
improving the security of code, Hooshangi et al. [29] show that
inculcating a security mindset also enhances students’ ability to
test their own programs and write robust code.

Tools for secure programming. Though security clinics (such
as the one by Bishop and Orvis [18, 19]) are a great way to give
students feedback, they require significant person-power to run.
Also, given large — and increasing — class sizes of computer science
courses, the security clinic by itself is not scalable. Zhu et al. [58]
introduce the use of an interactive tool, called ASIDE, as a potential
avenue for helping students learn and practice secure programming.
As a plug-in for IDEs, ASIDE detects and flags potential security
issues in students’ code as they are writing. It then interactively
assists students in fixing the issues by giving resources on those
vulnerabilities. Despite some deficiencies in the tool, Zhu et al.
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conclude that ASIDE can be an effective tool for teaching security
vulnerabilities.

Whitney et al. [57] extended ASIDE framework to build ESIDE
that can provide nearly real-time instructional guidance and feed-
back with regards to secure coding practices. By studying two sets
of students in an advanced web programming course, Whitney et
al. show the potential of ESIDE for raising awareness in program-
ming security. They also note that such a tool proved to be more
effective when instructors incentivize its use. A similar conclusion
was reached by Tabassum et al. [53] as well. They combine the two
methods — the ESIDE tool and one-to-one security clinics with
teaching assistants (TAs). They observe students’ interaction with
brief tutorials shown by ESIDE and how students discuss those
issues with TAs. Tabassum et al. conclude that though ESIDE helps
to raise security awareness, it alone is not sufficient; students need
to be incentivized to write secure code.

Security issues in course curriculum. Though there were sev-
eral approaches to include security in computer science courses,
little research looked into how existing computer science courses
measure up to the best security practices. Taylor and Sakharkar [55]
were the first to examine whether or not SQL injection (SQLi) vul-
nerabilities [9] are mentioned in popular undergraduate database
textbooks and course contents. Alarmingly none discusses the SQLi
vulnerability in detail, despite SQLi being on the most frequent
cause of data theft for decades [23]. Furthermore, two textbooks
provided easily injectable example code. While Tylor and Sakharkar
looked at database courses, there is a need to re-evaluate all the
required introductory courses in computer science to ensure that
we are not teaching insecure code to students.

Fischer et al. [26] extensively studied code snippets on Stack
Overflow by scanning for code used in Android applications. They
found that 15.4% of 1.3 million Android apps contained security-
related code snippets from Stack Overflow. Of these, about 98%
contained at least one insecure code snippet.

The missing pieces. Much of the prior security education re-
search has been aimed towards examining or supplementing the
quality of security education using resources outside the instruc-
tors’ control, such as implementing a supplemental security clinic
or a plugin for IDE. Although informative and useful, instructors
might not have the time, expertise, and resources to implement
them for their course.

Furthermore, we notice that much of this research does not
directly address the root of the issue — the effects of not teaching
security. Our study highlights the issues of not teaching security-
related topics explicitly and how it might affect our students’ code
writing behavior. We found that unsafe functions are being taught
or used by instructors in these courses. Students emulate their
instructors and use these insecure functions when writing their
own code for their class assignments, effectively perpetuating the
use of these insecure functions. Moreover, we show that many of
our students may graduate without even taking a single computer
security course and so the poor coding practices they may have
acquired while at school might hamper their professional careers.

Also, most of the prior work in security education mainly fo-
cuses on interventions to help students learn secure programming

Unsafe Reason Safer  alternatives /
func. Suggestions

strcpy Use strncpy/strlcpy
strcat Can cause buffer overflow due to Use strncat/strlcat
(v)sprintf  out of bound write. Use (v)snprintf

gets (CWE-120, CWE-121, CWE-785) Use fgets

realpath Ensure output buffer is

larger than PATH_MAX.
memcpy Ensure the destination
buffer is large enough.

atoi Can cause integer-overflow. Use strtol.
(CWE-190)
popen, Can lead to OS command injec- Use library calls instead of
system, tion. (CWE-78, CWE-88) calling external processes.
execx
getoptx Can cause buffer overflow Limit the length of string in-
and change control flow. puts.
(CWE-20, CWE-120)
*printf Variable format string can al- Format string must be con-

low arbitrary stack manipulation.  stant.
(CWE-134)

Figure 1: The list of flaws we considered in our study. We
note why a flaw can lead to security vulnerability and how
we can avoid them. We also show the associated common
weakness enumeration (CWE) number in the last column.

practices [25, 41, 53]. To the best of our knowledge, there is no
prior work highlighting the security issues in a particular course
by analyzing the thousands of lines of code snippets written by
instructors and students. We believe that exposing the security
problems present in instructors’ and students’ code will enable a
much-needed conversation among CS education researchers about
integrating security tightly with how we (and our students) write
code, not just as an add-on to our courses.

3 BACKGROUND

We investigate an introductory level course in the computer science
curriculum — computer systems — to motivate the need to teach
secure programming and instill a security mindset in computer
science students. Taking this course as a case study, we show that
there is a dire need for teaching students to avoid certain functions
that can be dangerous if misused. We give a brief background on
those unsafe functions and why we should teach not to use them
in computer systems classes. We focus on a few concrete mistakes
that have caused several vulnerabilities and security breaches in
the past. In Figure 1, we noted the unsafe functions we consider for
this study and their secure alternatives.

Buffer overflow. The buffer overflow [4, 16] vulnerability has
been known for nearly four decades [22]. The first well known
exploit of stack-based buffer overflow was used in the Morris
worm [44] in 1988. The buffer overflows when a (user-controlled)
input larger than the size of a buffer is written to the buffer with-
out checking the bounds. As C and C++ provide low-level access
to the memory and stack, a buffer overflow can be exploited to
run arbitrary code of the attacker’s choice [17]. While buffer over-
flow can result from several insecure coding styles, some functions
particularly increase the chance of inserting these buffer overflow



vulnerabilities: gets, strcpy, strcat, and (v)sprintf. We should
avoid these functions, and use their secure alternatives, such as
strncpy, strlcpy, strncat, strlcat, (v)snprintf, etc. Some im-
plementations of certain standard library C/C++ functions such
as memcpy, getopt, and realpath had vulnerabilities in the past.
These functions, therefore, should be avoided or used with caution.

Integer overflow. Similar to buffer overflow, integer overflow [6]
vulnerabilities appear due to the limit on the size of integers in
traditional computers. It usually occurs due to arithmetic operations
that result in a number larger than the maximum size allowed, e.g.,
2,147,483,647 for 32-bit signed int. A value larger than that results
in “integer rounding”, which is interpreted as a negative number
by the computer; so 2,147,483,648 is interpreted as -2,147,483,648. A
popular function that can cause integer overflow if misused is atoi.
An attacker can exploit integer overflow vulnerabilities and control
program flow by circumventing some security measurements. It
is advised to avoid using atoi, and instead use safer alternatives
such as strtol.

OS command injection. Functions such as system, popen, or
exec* family of functions allow running a new process from user-
provided commands or executing a command by spawning a shell.
If an attacker can control the input to these functions, he can inject
arbitrary commands in the inputs which will be executed by the
vulnerable program [7, 8]. Therefore, system and popen should not
be used at all and exec* should be used with caution. Many of the
commands executed using these functions can be done through
their equivalent library functions without running a new process.
Students should be taught about those alternatives and perils of
misusing these functions.

Format string vulnerabilities. Formatting functions from the
*printf family, such as sprintf, fprintf, and printf, can be
vulnerable if the format string is controlled by user input. An at-
tacker can provide a crafted format string that will result in an
out-of-bounds buffer read, revealing sensitive information on the
buffer, or buffer manipulation, resulting in hijacking the control
flow. Format string vulnerabilities [5] are normally easy to avoid
by using constant formatting strings.

Security analysis. Identifying security problems can be challeng-
ing. Therefore, program analysis techniques for finding general
bugs, such as static and dynamic analysis, are used to identify se-
curity issues. In static analysis, the program binary is analyzed
without executing it, while in dynamic analysis, the program is ex-
ecuted in a strictly monitored environment to identify its behavior.
Static analysis is done on the program source code, compiled byte
code, or native binaries. Static analysis is often faster to execute
than dynamic analysis and easier to explain to a developer.

Computer systems. Computer systems is a mid-level computer
science course taught in almost every US university that grants
a bachelor’s degree in computer science. In this course, students
learn the internal details of “how a single program runs on a com-
puter”. The key learning objectives include familiarizing students
with different parts of a process’s memory, such as the stack, heap,
and data sections, and how they change during process execution.
With a few exceptions, the course is typically taught using C/C++

and an assembly language. Being able to program in a high-level
programming language is a prerequisite for this course. In some
universities, students also take a course on data structures before
taking computer systems.

A subset of the following topics are usually taught in most Com-
puter Systems courses: (1) C programming, (2) assembly level pro-
gramming, (3) stack, (4) dynamic memory allocators (e.g., malloc),
(5) cache memories, (6) linking and loading, (7) virtual memory, (8)
concurrency, (9) exceptional control flow, and (10) network pro-
gramming. One of the widely used textbooks for this course is “Com-
puter Systems: A Programmer’s Perspective” [20]. Another more
recent online textbook for the course is “Dive Into Systems” [39].

In some universities, security-related topics, such as buffer over-
flow and stack smashing, are taught during Computer Systems
course with varying levels of depth. Nevertheless, as shown in our
study, the code snippets produced by instructors and students in
this course contain many security vulnerabilities.

4 METHODOLOGY

We aim to understand how often students of top US universities
learn — or rather do not learn — about unsafe coding practices.
To do so, we pick the computer systems course for our analysis
and collect code samples written by students and instructors of the
course in the top US universities. We analyze these code samples
using a static analysis tool to find the use of unsafe functions. We
further collect textbooks, lecture notes, and other resources used
in these courses and assess their discussions about security and
unsafe functions — if any is found. In this section, we describe how
we collected the code samples and the static analysis tool.

Selecting universities. We consider the top 20 R1 universities
(according to a US News article published in 2018 [42]) that provide
bachelor’s degrees in computer science for our investigation. In
each of these university’s curricula, we find the course that teaches
computer systems. The list of universities and the course we found
closest to teaching computer systems is given in Figure 2. For each
of these courses, we note the course numbers, the links to the
website of the most recent offering of the course, the information
related to instructor contacts, course materials, such as textbooks
and links to other websites, and the skeleton code used by the
instructor in lectures or class assignments.

Not all courses are suitable for our study. For example, at MIT
and Columbia, computer systems courses are not taught in C/C++.
As the focus of this paper is to look at unsafe functions used in
C/C++, we do not consider these two universities further. In Prince-
ton University and UIUC, we could not find a course that teaches
computer systems. Hereafter, we will only focus on the sixteen
remaining universities for which we could gather sufficient details
about the computer system courses offered.

4.1 Gathering Code

After deciding on the universities, our goal is to find code snippets
written or provided by instructors as well as code written by the
students during the course. While the code used by instructors will
provide insights into how unsafe functions are still used during



University

Course No. and Title

Carnegie Mellon Univ. (CMU)
MA Inst. of Tech (MIT)*
Stanford Univ.

Univ. of CA, Berkeley (UCB)
Univ. of IL (UIUC)

Cornell Univ.

Univ. of WA (UWash)
Georgia Inst. of Tech (GTech)
Princeton Univ.

Univ. of Tx. (UT), Austin

CA Inst. of Tech. (CalTech)
Univ. of Mi. (UMich)
Columbia Univ."

Univ. of CA, LA (UCLA)
Univ. of WI (UW-Madison)
Harvard Univ.

Univ. of CA, SD (UCSD)
Univ. of MD, CP (UMD)
Univ. of PA (UPenn)

Purdue Univ.

15-213: Intro to Computer Systems

6.033: Computer Systems Engineering

CS 107: Computer Organization & Systems
CS61C: Great Ideas in Comp. Arch.

(No relevant course available)

CS 3410: Comp. System Org. & Prog.

CSE 351: The Hardware/Software Interface
CS 2200: An Intro to Comp. Systems & Nw
(No relevant course available)

CS 429: Computer Organization & Architecture
CS 24: Intro to Computing Systems

EECS 370: Intro to Computer Organization
CSEE W3827: Fundamentals of Comp. Systems
CS 33: Intro to Computer Organization
CS/ECE 354: Intro to Comp. Systems

CS 61: Sys. Prog. & Machine Org.

CSE 30: Comp. Org. & Systems Prog.

CMSC 216: Intro to Computer Systems

CIS 240: Intro to Computer Systems

CS 252: Systems Programming

T Does not teach the course using C/C++.

Figure 2: Top 20 universities in the US that offer bachelor’s in
computer science (or equivalent) according to US News [42].
We also note the courses we found that are closest to a com-
puter systems course in their undergraduate curricula. We
do not consider 4 of the top-20 universities.

teaching introductory systems courses, students’ code will show
how students reuse similar vulnerabilities in their code.

Code from course websites. Instructors often use code snippets
in their study materials or provide code skeletons for home or in-
class assignments. We collected such code from the course websites.
For many universities, such code examples are publicly available; for
others, they are kept behind university login. For five universities,
we could not find any code as they require special permission to
access. We contacted instructors who teach these courses, asking
them for a copy of these code snippets. Unfortunately, while we
received a response from 4 instructors, none of them were willing
to share their solution code with us over the concern of the code
being leaked to the public.? Even after assuring that we will not
publicly release any of the code, the instructors were still reluctant
to share their code snippets or skeletons, stating that those were
written without security in mind.

Code from git repositories. Students often upload their code, in-
cluding assignment solutions, to code repositories hosting services,
such as GitHub [10], Bitbucket [1], and GitLab [11], to publicize
their work. To understand the use of unsafe functions by students,
we turn to find code written by students for their computer systems
course available on public code hosting services.

We tried using Google’s site-specific search option [13] to find
student’s code in all three code hosting services mentioned above.
We used the name of the university and the course number as search

3The assignment code is often reused over multiple years. The instructors would have
to create new assignments if the code is posted publicly.

queries. Although such search returned many results, only a few of
them were relevant to the courses we are interested in.

Therefore, we started searching using the search tools provided
by those three code hosting services. We kept our queries simple
and short to minimize noisy results. For each university, we started
the search using the course number only. Whenever we received too
many irrelevant results — such as when two universities share the
same course number — we added the name of the university or the
name of the course to the query to improve the search results. This
method resulted in several relevant code repositories in GitHub,
but none on Bitbucket or GitLab.

To expand our dataset of code, we also utilized the ‘search-by-
code’ functionality provided by GitHub [14]. From the repositories
we already collected, we pick unique lines of code (e.g., function
declarations) to find more similar repositories. We removed reposi-
tories that do not contain C/C++ code using GitHub filters.

Code cleaning. Many of the repositories returned by these search
techniques were not relevant to the computer systems course. So we
further filtered the code repositories to remove false positives. For
filtering, we manually checked whether any file (esp. the README
file) in the repository mentions the university’s name or the cor-
responding course name/number. If so, we include the repository
to our dataset. Sometimes, the repository did not include any such
information; in those cases, we check whether the projects are sim-
ilar to the repositories we already included in our dataset. We also
checked the user’s GitHub profile to determine if the user attended
the university we are searching for. If we were not able to conclude
that a repository is for a computer systems course and belongs to
a user from one of the universities we are interested in, then it is
excluded from our dataset. Further, we removed the repositories
that only contain skeleton code provided by instructors.

We found 295 repositories from 253 students. We assumed each
user account in GitHub corresponds to a distinct student. Though,
in theory, students can create multiple GitHub user accounts and
upload their code to multiple user accounts, we believe this will
be unlikely to happen in practice. We downloaded all such reposi-
tories. Some users put the code for all of their assignments in one
repository, while others created separate repositories for each as-
signment. Some repositories even contain code from other courses;
we manually went over the repositories and removed them.

As we are interested in finding the use of unsafe functions in
C/C++ code, we only considered files with .c, .cpp, and .cc ex-
tensions, ignoring all other files, including header (. h) files. We
assumed that header files primarily contain function declarations,
and do not invoke any function (including unsafe functions). We
noticed that some repositories contain folders named include and
cgi-src that only contain standard library functions. This code is
unlikely to be written by the instructors or students; so, we removed
those folders and their contents from our dataset. After filtering,
we have 740,114 lines of code in 7,208 files.

Code attribution. Note, students often start from skeleton code
provided by their instructors. As such, students’ and instructors’
code can be present in the same file. Therefore, we separate chunks
of code in a file and attribute them to written by students or provided
by instructors.



All the code we downloaded from the course websites are at-
tributed to the instructors. The code downloaded from GitHub is
attributed in the following way. We assume students’ code is likely
to be distinct from each other. Therefore, all the files present in mul-
tiple user’s repositories are considered as not written by students,
and are attributed to instructors. For each of the remaining files in
our dataset, we considered all code chunks of / lines and checked
if they are present in multiple students’ repositories, if so, those
chunks of code are attributed to instructors. We create validation
data by manually going over all the lines of code of a randomly
chosen university and flagging them as written by instructors or by
students. Then we tested the accuracy of our algorithm based on
different values of I. We found I = 10 provided the best result. Any
code that is not attributed to instructors is assumed to be written
by students.

Eventually, we have 193,239 lines of code from instructors and
567,342 lines of code from students. In the next section, we show
how we analyzed the security of these code files.

4.2 Static analysis.

We analyzed the security of all code we collected from course
websites and GitHub using a simple static analysis tool called
Flawfinder [56]. Flawfinder is a simple yet powerful static anal-
ysis tool that searches for a predefined list of unsafe functions in
C/C++ code, without executing it. Admittedly the precision and
recall in finding security vulnerabilities of Flawfinder is worse than
other state-of-the-art static analysis tools [36]. However, there are
two main benefits of Flawfinder. First, unlike many other tools,
Flawfinder is fast and runs on code snippets as well as on code with
compilation errors. This is crucial as much of the code snippets
we collected do not compile. Second, by focusing on a handful of
egregiously unsafe functions, such as strcpy, we hope to provide
more actionable advice to the instructors. We examined other static
analysis tools as well, such as Infer [12] and Graudit [37], but none
could match Flawfinder’s performance and ease of use.

We noticed that Flawfinder does not correctly distinguish func-
tion declaration or definition from function invocation. We, there-
fore, applied a heuristic on top of Flawfinder results to ignore func-
tion definitions and descriptions. Besides, Flawfinder, in its default
configuration, provides a large number of warnings, many of which
might not lead to security flaws. Instead of giving too many false
alarms, we are focusing on a small number of unsafe functions that

should be avoided.

Flaws re-evaluation. Flawfinder uses levels to determine the
severity of a flaw: level 1 to level 5, where level 5 is the most severe,
and level 1 is the least severe. These flaws are typically based on
use of unsafe functions. We re-evaluated and simplified the levels
to make it more suitable for analyzing computer systems courses.
We regrouped the different flaws identified by Flawfinder into three
levels: LO, L1, and L2.

Level 2 (L2) flaws can cause buffer overflow [4] or code injec-
tion [7, 8] vulnerability. This category of flaws uses functions such
as strcpy, strcat, (v)sprintf, system, and gets. These func-
tions therefore should be avoided.

We used level 1 (L1) to denote the flaws that are less security
critical — less likely to be a cause of a security vulnerability — than

Level Unsafe func. Student Instructor Total Flaw category

atoi 738 1,099 1,837  integer overflow
memcpy 335 392 727  buffer overflow
getopt* 69 283 352  buffer overflow

L1 execx 74 82 156 code injection
(v)snprintf 18 17 35 format string
realpath 10 0 10  buffer overflow
popen 2 7 9  code injection
strcpy 693 1011 1,704  buffer overflow
(v)sprintf 442 908 1,350  buffer overflow

L2 strcat 692 361 1,053  buffer overflow
system 19 76 95  code injection
gets 7 2 9  buffer overflow
Total 3,099 4,238 7,337

exec* includes execvp, execlp, execl, execle, and execv.
getoptx includes getopt and getopt_long

Figure 3: Count of L1 and L2 flaws across all universities and
their categories (the last column) as noted by Flawfinder. We
combine some family of functions into one, such as exec*
and getopt* for ease of presentation.

L2. These functions should be avoided if possible, and one should
be careful while using them. This category includes atoi, exec*,
memcpy, etc. Flawfinder also warns about certain use of functions
such as scanf, access, readlink, and printf. We classified these
flaws as level zero (L@) and decided to ignore them for the purpose
of this study. We focus on L1 and L2 flaws since they are known
to cause severe security vulnerabilities in practice. In Figure 3, we
record the list of L1 and L2 functions. The security problems caused
by them and their safer alternatives are given in Figure 1.

5 RESULTS

We analyze the code we collected using Flawfinder [56]. In this
section, we report what types of errors we find in code written
by students and the code provided by instructors. We show that
instructors teach computer systems course with several unsafe
functions and students frequently use those functions. Moreover,
we found that, in some universities, students are aware of safer
alternatives to these functions, but still use the safe functions in
conjunction with unsafe functions or misuse them, rendering them
equally insecure.

5.1 Use of Unsafe Functions

We collected 760,581 lines of code produced by students and instruc-
tors of 16 of the top 20 R1 universities in the US. We ran Flawfinder
with modified flaw levels (as described in Section 4.2) on the code.
We present the frequency of different flaws in Figure 3 as ob-
served in students’ and instructors’ code. We found the use of level
two (L2) unsafe functions — which can be very dangerous to be
used in production code — are used more frequently than level
one (L1) functions. About 57% of all the unsafe functions we found
belong to the L2 category. The most widely used L2 flaw among
students and instructors is strcpy, used 1,704 times in our whole
code dataset, though instructors used this function more frequently
than students. Students of all universities except U7, U9, U12, and
U13 used strcpy at least once in their code, and instructors of all
universities but U3 and U16 used strcpy. Other L2 errors, such



Students’ code Instructors’ code

Univ.

L1 L2 KLOC fKLOC L1 L2 KLOC fKLOC
U1 134 337 70.7 6.7 324 706 30.9 33.3
U2 46 69 414 2.8 112 57 20.4 8.3
U3 * 19 380 16.9 23.6 0 34 0.3 113.3
U4 70 392 85.9 5.4 142 151 11.5 255
Us 195 77 58.7 4.6 228 65 28.9 10.1
U6 * 43 163 31.5 6.5 1 34 1.6 21.9
u7 7 0 31.8 0.2 153 263 18.6 224
U8 * 57 233 50.1 59 124 561 13.6 50.4
U9 102 0 18.2 5.6 91 77 5.3 31.7
U10 221 73 11.8 24.9 91 74 0.7 235.7
U11 40 19 60.6 1.0 152 151 29.3 10.3
Ui12 73 1 26.4 2.8 366 70 15.1 28.9
U13 98 0 21.8 4.5 36 14 2.3 21.7
U14 101 58 18.8 8.5 29 80 4.7 23.2
U15* 19 18 12.1 3.1 27 21 7.9 6.1
U16 * 21 33 10.7 5.0 4 0 2.1 1.9

Total 1,246 1,853 567.3 5.5 ‘ 1,880 2,358 193.2 21.9

* No instructor code snippet is available publicly.

Figure 4: The frequency of level one (L1) and two (L2) unsafe
functions in the code written by students and provided by
instructors. We also note the kilo lines of code for each uni-
versity we found for students and instructors. The columns
fKLOC denote the flaws per KLOC.

as strcat, system, and (v)sprintf, are also used quite frequently
by students and instructors alike.

Among the L1 flaws, atoi was the most frequently used. The
function atoi is used to convert a string into an integer. An attacker
can provide a crafted string that will overflow the integer value [6]
and force the code to deviate from the legitimate control flow. Other
prevalent L1 flaws include memcpy and getopt, both of which can
lead to a buffer overflow if used in unsafe ways.

In our code dataset, we found 3,126 instances of L1 flaws and
4,211 instances of L2 flaws. We show the number of flaws we found
for each university in Figure 4, broken down by the code written
by students and the code provided by instructors.

Flaws in instructors’ code. Instructors frequently use unsafe
functions in their lectures or assignment code skeletons. Though
we have fewer code written by instructors, we found a much higher
proportion of flaws in instructor code. We collected about 193.2
KLOC that is provided by instructors. The modified Flawfinder
flagged about 22 flaws (L1 or L2) on an average per KLOC of in-
structors’ code. In U1, U7, and U8, we have seen more than 200
invocations of L2 functions for each university. We found that the
instructors in all the universities, except U16, have used at least
two different unsafe functions.

Not every invocation of an unsafe function leads to a vulnerabil-
ity. To understand whether these flaws are exploitable, we randomly
sampled 20 strcpy flaws in instructor code flagged by Flawfinder
and analyzed if an attacker can exploit them. We found that at least
8 out of the 20 flaws (40%) we evaluated can be exploited for stack
smashing attacks [17]. Only 8 of them (40%) were used in a way
that can be safe. For example, by ensuring that the source string is
constant: strcpy(dst, "Hello").

Flaws in students’ code. We had more than 560 thousand lines
of code written by 253 students; median 2 KLOC per student. Some

int int

main(int argc, charx* argv) { main(int argc, charx* argv) {
char *pointer;
pointer = malloc(SIZE);
strpcy(pointer, argv[11);

char buffer[20];
strepy(buffer, argv[1]);

(a) Student code (b) Instructor code

Figure 5: Examples of strcpy in instructor and student code

#L2 KLOC

Univ.  #Students Avg Median Median

U1 21 16 5 4.7
U2 22 3 0 1.8
U3 12 32 3 1.2
U4 21 19 12 4.5
U5 22 3 1 3.8
U6 10 16 13 3.0
U8 14 17 0 2.8
U10 11 7 7 1.2
U14 10 6 11 1.9

Figure 6: Table shows the number of students (2"d column)
in our dataset, the average and median number of times
L2 unsafe function are used (3’d and 4th column), and the
median KLOC (5" column) for universities where students
used L2 unsafe functions at least 50 times.

students had significantly more lines of code than others. Some
students had multiple projects on the GitHub code repositories,
while others had only one or two. Despite having a lot more lines
of code than instructors, we found significantly fewer instances of
L1 and L2 unsafe function usage in student’s code than instructors.

The distribution of flaws in student’s code varies widely. For
some universities, such as U7, U9, and U13, we did not find any
use of L2 unsafe functions by students. While in U1, U3, U4, Us,
U8, and U10, students used L2 unsafe functions more than four
times every one thousand lines of code. The cumulative usage of
strcat and strcpy in students’ code is very similar to that used
in instructors’ code. Instructors use sprintf more than students,
while students use strcat quite frequently. All of these functions
can cause a buffer overflow.

We analyzed students’ use of strcpy to compare against that of
instructors. We pick 20 random instances of strcpy in student code,
and manually analyzed for security issues. We found that 8 (40%) of
the 20 invocations are vulnerable. Only 6 (30%) uses are appropriate
in terms of security. Two representative vulnerable examples from
students’ and instructors’ usage of strcpy are given in Figure 5.
The student code (on the left) is vulnerable to overflow on heap,
and the instructor code (on the right) is vulnerable to overflow on
the stack, which is even worse.

The distribution of usage of unsafe functions is not uniform. At
U7, the rate of use of unsafe functions is less than one per KLOC,
whereas, for U3 and U10, it is almost 25 per KLOC. If we focus
only on L2 flaws, four universities (highlighted in Figure 4) have
more than 200 instances at a rate of over four flaws per KLOC.

In Figure 6, we show the median number of L2 errors per uni-
versity for universities with more than 50 instances of L2 unsafe



function invocation. As can be seen in the figure, 50% of students
in U4, U6, and U14 made more than 11 level two (L2) flaws. In
U2, U5, and U8, many students had less than one thousand lines of
code, while others had a significantly large amount of code, which
is why the median is below 1, but have high number of L2 flaws.

Next, we see how similar the usage of unsafe functions is between
students and instructors.

5.2 Correlation of Flaws

We hypothesize that students often use these unsafe functions be-
cause instructors use them in classes or assignment code snippets.
To see whether this hypothesis is true, that is, do students make
similar mistakes as their instructors, we compute the similarity
between the flaws we see in instructors’ code with the ones in
students’ code. We do not look into the fine-grained usage patterns
of these functions, for example, whether students replicate a par-
ticular type of use of an unsafe function or not. Our approach also
looks at correlation and does not provide causation — we cannot
say beyond a reasonable doubt that instructors are the sole reason
students learn and use unsafe functions.

We compute the similarity between student and instructor code
in the following way. For each university, we count the number
of times students and instructors use each unsafe function (men-
tioned in Figure 3) and note them as a vector. So, for each univer-
sity, let s ' and fj be the number of times j-th unsafe function is
used by students and instructors, respectively. Then we compute
the similarity between the usage of unsafe functions between in-
structors and students as the dot product of the vectors SandT,
Sim@S,T)=§.T= 2450

IS 11l
of the vector d. The similarity score is always between [0, 1]. A
similarity score of 0 means they are not similar at all, while a score
of 1 means they are completely similar. We compute this similarity
for each university. The similarities between students’ and instruc-
tors’ code for each university is shown in the rightmost column
of Figure 7. We also show the most frequent three flaws by students
and instructors for each university in the same figure.

We found that across all universities, the types and rates of flaws
done by students and instructors are quite similar. Interestingly
for U1, U5, Ull, and U12, the similarity score is above 0.9, and
students and instructors in those universities have used unsafe
functions more than 50 times. For U3, U6, U10, U13, and U16 we
do not have enough code for instructors to make any conclusive
remark.

We cannot determine the causality of student’s use of unsafe
functions based on this similarity analysis. For example, it might
be that in the general population of developers, the rate of use of
unsafe functions is similar to what we are seeing in our restricted
sample of developers — students and instructors in computer sys-
tems course in the US. However, as we do not see a uniformly high
rate of similarity across all universities, and as the rate of use of
unsafe functions by students differ at different universities, it is
probably the case that instructors are influencing the choice of
unsafe functions that students use. Nevertheless, we need more
studies to conclude this hypothesis: the use of unsafe functions by
instructors is the reason why students use those functions.

where ||d|| denote the quadratic norm

University ~ Student flaws Instructor flaws  Similarity

sprintf: 162  sprintf: 355

U1 strecpy: 106  strcpy: 263 0.98
atoi: 81 atoi: 204
sprintf: 35 atoi: 82
U2 memcpy: 26  sprintf: 26 0.72
strcpy: 22 strcpy: 22
strcat: 244  strcat: 32
U3 sprintf: 78  sprintf: 2 0.94
strecpy: 58
strcat: 202 exec™ 68
U4 strepy: 112 sprintf: 65 0.63
sprintf: 77  strcpy: 61
memcpy: 160  memcpy: 161
U5 strcpy: 65 getopt: 39 0.95
exec™: 18 strcpy: 34
strcpy: 127  strcpy: 14
Ué6 strcat: 22 system: 12 0.76
exec™: 22 strcat: 8
atoi: 6 sprintf: 120
u7 getopt: 1 atoi: 88 0.52
strcpy: 76
strcat: 137  sprintf: 222
us sprintf: 52 strcpy: 176 0.83
strecpy: 44  strcat: 156
atoi: 100  strcpy: 77
U9 getopt: 2 atoi: 71 0.67
getopt™: 20
atoi: 220  atoi: 91
U10 strecpy: 73  strcpy: 74 0.94
memcpy: 1
atoi: 23 strcpy: 116
U11 strecpy: 15 atoi: 97 0.93
memcpy: 9 getopt™: 29
atoi: 56 atoi: 303
U12 memcpy: 11 strecpy: 39 0.99
getopt™: 6 memcpy: 37
atoi: 90 atoi: 22
U13 memcpy: 8 strcpy: 12 0.83
memcpy: 10
memcpy: 58 strcpy: 44
U14 strcpy: 34  sprintf: 24 0.73
atoi: 32 memcpy: 16
memcpy: 9 atoi: 14
U15 sprintf: 8 sprintf: 8 0.77
strcpy: 6  system: 8
strecpy: 31 atoi: 4
uU16 sprintf: 10 0.00
getopt™: 5

Figure 7: Table shows the top 3 flaws in students’ and instruc-
tors’ code and the similarity between the use of unsafe func-
tions by students and instructors (right column).

5.3 Unsafe use of functions

Unsafe functions clearly should be discouraged, and safer alterna-
tives should be used to improve the safety of user code. However,
using safe functions is not sufficient to write secure code. We found
several instances where safer alternative functions are used in un-
safe ways, effectively voiding the security benefits. For example,
strncpy is often advised to be used instead of strcpy. However,



Discuss  Safe

Textbook # Uni.
sec. code

Comp. Systems: A Programmer’s Persp. [20] 8 Yes No
The C Programming Language [33] 6 No No
Comp. Org. & Design: The HW/SW Interface [46] 3 No No
C: A Reference Manual [27] 2 Yes No
Dive Into Systems [39] 2 Yes Yes
Digital Design and Computer Arch. [28] 1 Yes No
C Programming: A Modern Approach [34] 1 No Yes
Advanced Programming in the UNIX Env. [51] 1 Yes No

Figure 8: Textbooks used in computer systems courses. The
third and the fourth columns show whether or not buffer
overflow is discussed, and any unsafe functions are used in
code snippets in the textbook. We only consider textbooks
used by at least two universities and textbooks that discuss
security or do not use unsafe functions.

we found some use cases where students misuse it. We give an
example from our dataset below:

int main(int argc, charx argv[]) {
char buf[SIZE];
strncpy(buf, argv[1], strlen(argv[1]) + 1);

In this code example, an attacker can still cause a buffer overflow
by supplying an argv[1] that is larger than SIZE.

In several instances we found students use both strcpy and
strncpy in the same file. This means some students are aware of the
safer alternative but unaware of their security benefits. Therefore,
it is not enough to tell students to use the safer alternative, but
it is also necessary to teach (a) why the unsafe functions should
be avoided and (b) how to write safer code. This can be done in
the computer systems course as students learn about the logical
execution of a single program in computer systems. They also learn
about the memory layout of a running program, including stack
and heap. Therefore, students can be introduced to the basics of
stack smashing and how it can be avoided. This class will be a great
place to teach students about the problem of writing data into a
buffer without properly checking the bounds.

5.4 Class Resources

In addition to the instructors’ code, we also examined textbooks and
lecture slides (when available) used for these courses. We examined
twelve textbooks recommended and required by these universi-
ties, checking for the use of unsafe functions, warnings against
buffer overflow, and a dedicated security-related section. As seen
in Figure 8, only five textbooks warned against buffer overflow as
a security issue, and only two textbooks had a dedicated section
on security (highlighted in Figure 8). We found that even the text-
books that warn against certain unsafe functions such as strcpy
and sprintf, do not always offer alternatives such as strncpy
or snprintf. Furthermore, some textbooks continue using unsafe
functions throughout many of their code snippets, even after men-
tioning that these functions are unsafe to use.

Our assessment showed that Dive Into Systems [39] is the only
textbook that discusses buffer overflow in detail and does not have
any insecure code snippet. One textbook [34] did not address secu-
rity but introduced the unsafe functions as functions that could lead

to “undefined behavior” and explained how to use safer alternatives
such as strncpy. According to the textbook, undefined behavior
could lead to a segmentation fault or some garbage value, but it
does not list their security issues.

Similarly, we examined the lecture slides and notes provided
by the universities. Unfortunately, slides and other resources for
U3, U6, Ul1, and U15 were inaccessible. Therefore, we only ex-
amined the notes from the remaining 12 universities by looking
for examples containing unsafe functions and discussions about
security-related topics. We found that only five universities dis-
cussed buffer overflow, unsafe functions, or other security issues
(U2, U5, U7, U14, and U16). Although some of the universities
introduced safer alternatives, they kept using the unsafe versions
in the slides throughout the course.

We found U1, U7, U13, and U15 had a lab about exploiting a
buffer overflow vulnerability to control the program’s flow. The
benefit of such a lab can be seen in the low usage of L2 functions by
students of U7, U13, and U15 (see Figure 4). For U1, we see a high
rate of L2 function usage, however we could not determine why
it is so; further investigation is needed. Nevertheless, we envision
such hands-on experience should be used to teach students about
security issues with unsafe functions.

We noticed that only for U7 and U9, students did better than
instructors, so we investigated that further by analyzing the nature
of the programming assignments. For U9, students’ projects focused
on using pointers and structures, understanding the cache and
CPU, memory allocation, and getting familiar with x86 Assembly
language. These assignments did not require the use of L2. Thus,
we could not conclude that students are actually aware of these
unsafe functions because the assignments do not require using
them. Unfortunately, we were not able to examine the assignments
of U7 since the details of projects are not publicly available.

6 DISCUSSION

Through our analysis in Section 5, we show that (1) students in
introductory computer systems courses often use unsafe functions
that can lead to severe security vulnerabilities; and (2) similar usage
of unsafe functions is present in the code provided by instructors
as well as in many widely used textbooks. In this section, we first
give some suggestions on how to improve the status quo, and with
a discussion about the limitations of the study.

How to improve? Currently, students are not being primed with
how to write secure and robust code, and, even worse, they learn
from vulnerable code examples. To tackle this problem, we need a
multi-pronged approach.

Teach why avoid unsafe functions. First, we must ensure instruc-
tors and textbooks do not use unsafe functions without warning
about them or explaining their security implications. While avoid-
ing the unsafe functions is desirable, we argue that it is not sufficient
just to teach the safe alternatives of unsafe functions; students must
be taught why certain usages of certain functions are unsafe. With-
out such knowledge, students might use safe alternatives in an
insecure way, as shown in Section 5.3. Finally, incorporating fruit-
ful discussion about security in the existing course materials can
be challenging, especially when ensuring the course load remains



reasonable for students and instructors. Moreover, discussing un-
safe functions and their risk of leading to vulnerabilities can be
an important way to instill a security mindset early in students’
computer science education.

Update textbooks. Textbooks affect the functions students use.
We found very few instances of gets functions in the whole code
dataset. Possibly, this is because textbooks do not use them at all and
discuss buffer overflow vulnerabilities due to gets. Such a demon-
stration of security vulnerability helps instructors and students
avoid the function. Other unsafe functions are not discussed with
equivalent details, and therefore, despite being equally dangerous,
they are still used widely in textbooks, instructors’ code snippets,
and by students.

Training Instructors. Instructors use unsafe functions quite fre-
quently. Though some of those invocations might not be vulnerable,
it is unclear if the subtleties in usage are discussed in the class (and
students follow them). Moreover, instructors sometimes do not
teach safe alternatives to reduce the cognitive overload — because
safe alternatives of unsafe functions tend to be more complicated
to use. Therefore, it is more important to discuss security in the
computer systems course to help students understand the security
issues with unsafe functions and learn to avoid them. Right now,
security is discussed cursorily or not discussed at all in computer
systems courses in many universities. One possible reason instruc-
tors do not talk about security in introductory classes might be due
to the lack of expertise in computer security. Therefore, despite
having decades long research on security education in introductory
computer science courses, only few are actually implemented in
schools. We need to create training materials and workshops for
instructors so that they can incorporate security topics in their
courses.

Incentivize secure coding. The functionality of a program is typi-
cally the primary concern of students while writing code for their
assignments. Given that students are points-driven, we must dedi-
cate certain points to incentivize students to make sufficient effort
to avoid obvious security issues in their code. This could be done
by penalizing a certain percentage of the total score for potential
security flaws found in the code. Anecdotal evidence shows that
students’ code quality improves after being penalized for submit-
ting code that fails linting tests. For security checks, tools such as
ASIDE [58] or Flawfinder can be repurposed to help create similar
tests to encourage students write secure code.

We also highlight the fact that in all of the top 20 R1 universities,
security courses are saved for higher-level electives. While we could
not gather data about what fraction of students graduate without
taking a security course, it is possible that many students might not
learn the perils of using unsafe functions or how to write secure
code by the time they graduate with a computer science degree.
Therefore, introductory courses must inform students about the
basics of writing secure code.

Finally, tools such as Flawfinder [56] or LibFuzzer [48] could be
used to avoid the mistakes we discussed in this paper. However,
such tools are neither precise nor exhaustive. Therefore, developers
should be trained with a security mindset and safe programming
practices. Some might argue that security experts can deal with
vulnerable programs written by developers; however, it is safer to
avoid having exploitable applications in the first place. If developers

are more aware of security, then security experts will be able to
focus on more complicated vulnerabilities rather than simple ones
that are usually missed.

Limitations. Our study makes multiple assumptions, which are
possibly the key limitations of the study. We collected students’
code samples that are publicly posted on GitHub. This might not
be a good representation of the class of students taking computer
systems course in a school. Moreover, the course names on GitHub
could be erroneous. For example, students can post arbitrary code
in the name of the computer systems course. Though our manual
filtering did not find any such occurrences, a more authentic source
of code might be better. We have very little code provided by in-
structors for many universities. More collaboration with instructors
would help identify the key issues and address them effectively.

We show a high correlation between the usage of unsafe func-
tions used by instructors and by students. However, our analysis
does not show any causal relationship — why do students use un-
safe functions. This could be due to considering security secondary
to functionality while writing code. Such a “bolt-on security” atti-
tude is known to provide poor security, and we need to find ways
to ensure students are trained to take a “built-in security” approach.
We highlight some of the key problems, but it is still unclear how to
incorporate them into the course content (besides just to stop using
unsafe functions). A more longitudinal study with interventions
can help us find strategies to teach students about unsafe functions.

Also, we looked at a small number of egregious unsafe functions.
Not using those unsafe functions is a step in the right direction, but
it does not mean the code will be robust and free from all security
issues. We only focused on computer systems course; however,
similar security flaws might be present across different courses in
the CS curriculum. As computer security spans across almost all
areas of computer science, future work should investigate how other
courses include discussion of computer security in their course
materials as well as adhere to best security practices.

7 CONCLUSION

We analyzed more than 760 thousand lines of code written by stu-
dents and instructors for computer systems courses in the US. We
found thousands of invocations of unsafe functions such as strcpy,
strcat, and system in the code dataset. Evidently, students and
instructors alike do not consider security implications while writ-
ing code. Moreover, we found students use similar types of unsafe
functions that their instructors use. We highlight two core issues
with our CS curriculum: (1) students are not taught the security
implications of using unsafe functions, and (2) by frequently using
unsafe functions, instructors and textbooks are passively teaching
students to use them. Instructors favor focusing on the function-
ality in computer systems courses, (possibly) saving the computer
security related topics for a separate course. However, in all top
20 universities we studied, students can graduate with a CS major
without taking any computer security course. So, at this point, many
in our current software developer workforce are being trained to
use unsafe functions without learning their security implications
and can graduate without taking a formal security course. This is
a threat to our key infrastructures that rely on developers writing
safe and secure code.
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