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Abstract
As computer security threats continue to grow, it is critical that
all computer science (CS) students develop foundational security
principles, including the complex but essential concept of a secu-
rity mindset. However, much of the existing security education
literature lacks grounding in the learning sciences, often portray-
ing students as passive recipients of facts rather than active co-
constructors of knowledge. To address this gap, we conducted a
qualitative study to examine evidence of a security mindset in situ,
laying the foundation for future research on when and how this
mindset emerges. We analyzed think-aloud coding sessions mod-
eled on the Build-It phase of the Build-It, Break-It, Fix-It (BIBIFI)
competition. Despite limited or no prior exposure to computer se-
curity, participants exhibited core aspects of a security mindset,
including secure design practices and threat perception. These find-
ings suggest that students can demonstrate meaningful security
reasoning even without formal coursework, highlighting opportuni-
ties for low-overhead interventions to cultivate a security mindset.
Our results inform future research and pedagogical design targeting
foundational security thinking in undergraduate CS education.
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1 Introduction
The increasing prevalence of cyberattacks [23] and the use of our
digital technologies in every aspect of society underscore the ur-
gency of integrating security into undergraduate education. Yet,
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computer security remains an afterthought in many curricula. Al-
though the Joint Task Force on Computing Curricula incorporated
security into undergraduate CS standards in 2013 [17], many stu-
dents still graduate without meaningful exposure to the topic due
to limited course offerings, non-mandatory electives, and high pre-
requisite barriers [3, 9]. This lack of exposure is concerning given
that undergraduates are expected to design and maintain complex
software systems. Security should be foundational, enabling them
to conduct threat modeling, apply best practices, and incorporate
secure design principles.

Research on how undergraduates learn computer security is
still emerging. Much of the current work focuses on evaluating
student performance (e.g., fact recall or error rates) or assessing
specific tools and modules. However, performance metrics do not
necessarily reflect conceptual understanding. To address this, we
adopt a constructivist lens [10], emphasizing that students actively
build knowledge through experience and prior learning. Applying
this framework to security education offers a path toward deeper
understanding, better preparing students to anticipate and defend
against evolving threats.

This study is part of a broader initiative to equip all CS undergrad-
uates with the practices, skills, and mindset necessary to recognize
and mitigate security threats—without significantly burdening al-
ready full curricula. As a first step, we explore the following research
question:

How do CS undergraduates, regardless of experience, exhibit in-
stances of a security mindset while completing a security-focused
BIBIFI task?

We answer this question through qualitative analysis of indi-
vidual think-aloud sessions with CS undergraduates that mirror
the Build-It phase of Build-It, Break-It, Fix-It (BIBIFI) competitions.
Participants were tasked with reinforcing a simple game to pre-
vent players from cheating, primarily through writing new code
responsible for managing the game’s state and for designing a pass-
code system. This activity was chosen to help make the concept
of a threat tangible as a scaffold to help them engage with deeper
security questions, many for the first time.

We conducted this study with fifteen undergraduate computer
science students. We analyze their think-aloud sessions and the
code they wrote to identify behaviors that reflect traits of a secu-
rity mindset, particularly through the notions of secure design and
threat perception. For example, some students discussed develop-
ing passcode systems to prevent cheating but also acknowledged
the challenge of protecting passcodes from “cheaters” who could
read the code. Only two of our participants had taken a formal
security-related course.
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The security mindset demonstrated by these students was often
incomplete and inconsistent. However, the key takeaway from our
study is that students do possess the foundational elements of a
security mindset, which can be further developed through low-
overhead interventions in CS undergraduate courses—such as a
single BIBIFI assignment and a few short lectures on the fundamen-
tals of computer security. We hope that our research will inspire
further studies in security education that leverage the Zone of Prox-
imal Development [48] and constructionism [26] for undergraduate
computer science students.

2 Related Work & Background
One of the foundational principles in computer security is the secu-
rity mindset. Although there is no universally accepted definition,
we adopt a broad interpretation: the security mindset involves ac-
tively considering potential threats and taking steps to monitor or
defend against them [8, 35, 37].

Schoenmakers et al. [34] further conceptualize the security mind-
set through three interconnected practices: (1) monitoring for vul-
nerabilities or attacks, (2) evaluating the feasibility of those threats,
and (3) assessing their potential impact or damage. These com-
ponents do not follow a strict sequence but rather function as a
dynamic and reinforcing process. Embracing a security mindset
thus requires a shift in how software is designed and developed—
foregrounding adversarial thinking alongside functionality.

2.1 Undergraduate Security Education
Integrating computer security topics across the curriculum can
yield significant benefits [5, 7, 38, 41]. Given that security applies to
all CS topics, distributing it across the curriculum not only allows
us to discuss topic-specific security concerns when relevant (i.e.
SQL injections in a database course) but allows us to introduce
concepts early and reinforce them often. Approaches to incorporate
these concepts into non-security courses include examples such as
security-based assignments [21, 30], writing attack scripts for their
own code [19], and security review interventions [39]. Some of these
approaches were used for students at the CS0 or CS1 level. To offset
the potential additional work for instructors to incorporate security
concepts into their courses, such as assignment development, prior
work has developed and evaluated interactive security modules at
various levels [11, 12, 40–42] and have also developed cybersecurity
concept inventories [22, 24, 29].

Other researchers have focused on evaluating security in com-
mon “traditional” CS learning resources, finding insecure code
examples in textbooks [3, 43], undergraduate lectures and materi-
als [2], and the popular programming Q&A site, StackOverflow [1].
In non-security courses, researchers have evaluated students’ ability
to code securely and found insecure code written by students. They
also examined that awareness (or lack thereof) of specific topics in
security affected their ability to write “clean” code in both embed-
ded programming [15] and systems [2, 4] courses. Another group
of researchers has developed a measure for students’ self-efficacy
of secure programming [6].

Previous work has also examined students who have taken or
are currently taking a security course and uncovered common

misconceptions (e.g., over-generalizations, incorrect assumptions,
and conflation of concepts) [44].

Behind most of these approaches is an assumption that providing
“good” tools and/or simply conveying the knowledge in class is
sufficient for improving student understanding. The results of prior
research predominantly comes from examining mistakes made by
students or assessments of the students’ ability to recall simple facts
through pre- and post-tests. The latter is also noted as a trend in a
review of the security education literature [47]. While the ability
to quantify the errors that students make is helpful, we know little
about how students learn various aspects of computer security. As
such, further work is needed to understand not only their learning
process but also what information and experiences we can draw
upon to improve security education. In this work, we use methods
from the Learning Sciences to investigate “security mindset” as one
such means.

2.2 Constructivism & Learning
Constructivism is a wide-encompassing theory in the Learning Sci-
ences, based on the work of Jean Piaget [16] and Lev Vygotsky [48],
that people learn by constructing their own understandings of
knowledge. In constructivism, learners are active participants in
the process. Each individual brings their own set of knowledge,
experiences, and pre-conceptions that form and shape the under-
standings that they construct. Learning cannot be a unidirectional
“network transmission”, nor are people “blank slates” when we
encounter them; conveying information is an insufficient means
to support understanding new content [10]. While there are sev-
eral different approaches in constructivism (e.g., social, cultural,
cognitive, constructionist), all agree that knowledge is constructed
rather than transmitted. To our knowledge, there are relatively few
examples of constructivist computer security education research. In
contrast, general CS and programming education research is often
strongly based on and commonly leverages constructivism and con-
structionism, such as Papert’s LOGO [26], Scratch [20], teaching
CS through the creation of video games [18], or using e-textiles
(e.g., [13]). Constructivist theories of learning promote social, active
learning contexts in which people “learn for deeper understanding”
(as opposed to, say, memorization or rote skill acquisition). In the
context of computer security, this would allow students to adapt to
the ever-changing landscape of technologies and attacks.

2.3 Build-It, Break-It, Fix-It (BIBIFI) Activities
Build-It, Break-It, Fix-It (BIBIFI) security competitions were pro-
posed in order to help understand the tools, languages, processes,
and methods that could lead to secure software as “a new soft-
ware security contest that is a fun experience for contestants, as
well as an experimental testbed by which researchers can gather
empirical evidence about secure development” [33]. BIBIFI activi-
ties, from their inception, are inherently security-focused and have
not been widely used in non-security-based contexts. In contrast
to the more popular Capture the Flag (CTF) competitions, which
traditionally focus on practicing from an attacker’s perspective, BIB-
IFI activities incorporate defending and fixing components. This
more closely mimics the real-world security “workflow” where a
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piece of software is (ideally) designed securely, then once an at-
tack is launched or a vulnerability discovered, team works towards
implementing a fix — encapsulating Schneier’s idea of computer
security being a “constantly evolving arms race between attacker
and defender” [35]. Competitions occur in three sequential phases
where competing teams: (1) create a piece of software according to
some specifications, (2) find and document bugs or vulnerabilities
in others’ implementations, and (3) attempt to fix any discovered
issues in their implementation. Teams are scored in two different
categories, with “security-relevant” matters being weighted more
in the scoring.

Research using and revolving around BIBIFI competitions is still
relatively immature, and there is much to learn about them given
their potential. The existing literature focuses on categorizing the
mistakes made or existing vulnerabilities made by senior software
engineers [46] and students in a security class [14]. BIBIFI has also
been seen used in several security-focused classes [28, 32, 45]. How-
ever, we know little about the actual discourse of students engaging
with it or its impact, positive or negative, regarding learning when
used in a formal education setting.

3 Method: Think-Aloud Build-It Study
The goal of the study is to elicit explicit conversations about organic
security threats, observe how students assess the applicability and
likelihood of different threats, and explore how they conceptualize
solutions to protect their software. Constructivist assessment —
how to know what people understand — is commonly used for
theory building. This paper builds on work such as Sherin [36]
exploring how to build better learning environments by assessing
students’ initial understanding of the topic. Thus, we are interested
in understanding how students think about and approach software
security, even in the absence of formal instruction on the topic; in
the study, we are not focused on the specific solutions they devise.
Gaining this understanding can help inform the development of
effective interventions in undergraduate CS curricula to foster a
security mindset without requiring drastic changes.

3.1 Build-It Activity Design
We model the task based on the “Build-It” phase of a BIBIFI com-
petition [27]. Participants were asked to secure a linear, text-based
adventure game, in which players progress through levels collecting
items, finding health upgrades, and fighting enemies. As players
progress, their game state (e.g., current level, health, health up-
grades, and collected items) is updated. When a player chooses to
pause, the game generates a passcode representing their progress,
allowing them to resume it later.

The participants were provided with stub code to begin work-
ing on a specific task: developing the secure passcode system to
enable game un/pausing and then secure other aspects of game.1
We designed that tasks such that students who have completed
CS2 (which covers object-oriented programming and data structures)
would be adequately prepared to engage in the study.

Participants were explicitly informed that players of the game
would attempt to cheat and that other participants might try to

1More context on passcode systems and the specifics of the prompt can be found in
Appendices A and B respectively.

“break” their code (Break-It phase) — this statement framed the exis-
tence of an attacker within the context of the task. Beyond this, the
threat was deliberately left open-ended without any detailed model.
The game and its starter code is designed to offer multiple path-
ways for participants to implement security measures and complex
enough that no participant could be expected to completely “solve”
the task. Anticipated pathways included, but were not limited to: (1)
encoding the passcode to obscure its contents and prevent cheating,
(2) patching an exploit in the pause/resume feature that allowed infi-
nite health upgrades, (3) ensuring the player’s current health could
not exceed the maximum limit when manually restored, and (4)
enforcing boundary conditions on passcode data to maintain game
integrity (e.g., preventing invalid health values or items beyond
their intended availability).

By designing the task with these flexibilities, we allowed par-
ticipants to approach security in ways that reflected their own
reasoning and understanding, so that the data could yield insights
into their preexisting security mindset.

Rationale behind the task choice. BIBIFI activities allow partici-
pants to engage in a software development task (“Build-It” phase)
while considering realistic threat of security attacks (“Break-It”
phase). Since this activity was likely their first encounter with com-
puter security, making the existence of an attacker more tangible, it
served as a scaffold (from Vygotsky’s Zone of Proximal Development
(ZPD) [48]) through simulation [31]. We designed this study to help
participants recognize the presence of an attacker while keeping
the security threat open-ended, preventing restriction to a single
predefined attack type and encouraging independent realizations
and responses to potential security threats.

Second, this task is simple, engaging —most students play games
and are therefore likely familiar with game save codes — yet very
hard to solve “correctly”, even with security and cryptography train-
ing. This design constraint was intentional so that students could
not find a “standard solution”. Instead, the task was structured to
encourage “open-ended” thinking and exploration through multiple
potential solutions to find their limitations — in some sense, it was
a small-scale, simultaneous building-, breaking-, and fixing-phase
task. This approach was designed to make manifest the different
ways that students conceptualize and perceive security threats.

Without sufficient scaffolding, students might not naturally con-
sider security aspects in their development process. Our goal was to
examine students’ perceptions and intuitive understanding of secu-
rity threats rather than test their formal cybersecurity knowledge.
Similar to Young and Krishnamurthi’s adversarial thinking [49], we
did not expect students to anticipate or address all possible security
threats comprehensively, but observe how they perceive different
threats and adjust their software design.

Study protocol. The study is conducted over Zoom in 1-hour
individual think-aloud sessions with a singular researcher. The par-
ticipants are given a security-based prompt and a starter code sent
at the start of the think-aloud session. The participants download
and open the code using their choice of IDE/text editor to read
and make modifications. We recorded the video of their computer
screen and the session’s audio. We transcribed the audio and took
detailed notes of the screen recordings for further analysis. At the
end of the session, we collected a copy of their code and a conducted
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a brief semi-structured interview to follow-up on their approach
and thinking. Additionally, participants filled out a short survey
which gathered their completed CS coursework (including secu-
rity courses), program year, and other prior security experience.
The protocol was reviewed by the Institutional Review Board (IRB)
of our university and approved as a “minimal-risk human subject
study”.

Participants were allowed to utilize online resources (e.g., web-
sites, online tutorials, documentation, notes from classes). Since
LLMs could be used to list potential attack and defense suggestions,
participants were prohibited from using LLMs such as Copilot or
ChatGPT. The think-aloud coding sessions enabled us to collect
live indicators of a security mindset, allowing insight into possible
avenues and completed successful attempts and failures to account
for security threats.

3.2 Participant Recruitment & Data Collection
We recruited 15 students from an R1 university in the Midwestern
USA to participate in our study through a department mailing list
and flyers. Interested students submitted a screening survey that
asks if their major (intended or declared) was CS and if they had
completed a CS2 (or equivalent) course. Those who met this criteria
were then invited to participate in the study.

Thirteen of the participants were male, one was female, and one
preferred not to answer. The participants were all at various points
in their undergraduate careers. Five participants were sophomores
(2nd year), seven juniors (3rd year), two seniors (4th year), and one
was in their 5th year. In addition to the CSmajor, six participants had
secondary majors: Data Science (DS) (3), Mathematics (Math) (2),
Computer Engineering (CE) (2), Legal Studies (LS) (1), and Psychol-
ogy (PSYCH) (1). Participants reported a range of CS coursework
beyond an introductory programming and foundational computing
classes as displayed in Fig. 1. Two participants (P8 and P15) cited
previous security experience, having taken a cryptography class.

3.3 Qualitative Data Analysis
Our research question focuses on exploring how and when CS
undergraduates, regardless of experience, demonstrate a security
mindset or threat modeling. This is explicitly distinct from the secu-
rity of the code that they write. In our analysis, we do not evaluate
gaps or flaws in their thinking, such as if their approach intro-
duces more vulnerabilities or if there is a “more secure” solution.
As a result, we utilize the general overarching definition of secu-
rity mindset as a basis for our qualitative coding scheme’s initial
pass. After constructivist work on learning for understanding by
Sherin [36], we base our coding scheme on both an a priori target
content breakdown and a more empirical catalog of the ways that
students perceived their actions. As such, we use an inductive ap-
proach to coding. We began with an initial pass of coding in which
instances of security related thinking were marked and labeled
with a summary description. Researchers then met and discussed
the initial labeling on a sample of three Sessions, examined the
individual labels for similarities, abstracting one level of specificity.
For example, use SHA-256 for the passcode and apply a Caesar ci-
pher to passcode both involve applying cryptographic concepts, and
thus were merged into the Cryptographic Techniques code. These

P Yr. Gender Major(s) Advanced CS Courses Taken

P1 3rd Not Given CS, DS AI, BD
P2 2nd Male CS, Math –
P3 3rd Male CS –
P4 3rd Male CS ALGO, DSPROG
P5 4th Male CS, DS ALGO, DSPROG, OS, AI, BD, HCI
P6 3rd Male CS ALGO, DB, AI
P7 3rd Male CS, CE –
P8 5th Male CS ALGO, DB, OS, CRYPTO, OPT
P9 2nd Male CS –
P10 3rd Female CS, DS ALGO, OS, AI
P11 2nd Male CS AI, BD
P12 4th Male CS ALGO, NM, PL, GRAPH
P13 3rd Male CS, CE –
P14 2nd Male CS, LS, PSYCH ALGO, AI
P15 2nd Male CS, Math ALGO, AI, CRYPTO, PL

Figure 1: Demographics of the participants and the advanced
CS courses they have taken. All students have taken Object-
Oriented Programming & Basic Data Structures (OOP), Ad-
vanced Data Structures & Programming (ADSP), and In-
tro to Computer Engineering (INTROCE), and most have
taken Discrete Math (DM) and Machine Organization (MO).
Some students have also taken courses like: Data Science
Programming (DSPROG), Artificial Intelligence (AI), Algo-
rithms (ALGO), Big Data (BD), Databases (DB), Cryptography
(CRYPTO), Computer Graphics (GRAPH), Operating Systems
(OS), Human Computer Interaction (HCI), Numerical Meth-
ods (NM), Optimization (OPT), Programming Languages &
Compilers (PL).

preliminary codes were iteratively revised, refined through group
discussion until we reached agreement on two high level codes and
then reapplied to the data until they reached a stasis. One researcher
coded the data in close discussion with the whole research group.

In our data, we see two sub-elements of a security mindset quite
clearly: threat perception and secure design, as elements of the “Pro-
tect &Defend” roles and “Design &Develop” roles, respectively [34].
We also see various ways that the relationships between monitor-
ing, evaluating, and investigating are described by Schoenmakers
et. al. [34]. Two highest-level codes were aggregated from several
sub-codes that appeared as we analyzed the sessions and code for
instances of them securing a part of the game or discussing how to
secure the game or prevent an attacker. Overall, threat perception is
evidenced by participant discussing potential attacks and threats,
hypothetical strategies to counteract those threats, and acknowl-
edgment of the insecurity of an implementation. Secure design is
evidenced by good coding practices (in accounting for possible
threats) and attempting to design a secure passcode system. The
complete set of high-level codes that we use to describe the data is
shown in Fig. 2.

4 Results
We discovered two ways students exhibit a security mindset: (1)
through identifying realistic threats that their software might be
exposed to, which we call threat perception, and (2) make design
choices to overcome such threats, which we call secure design.
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Code Definition #

Secure Design Describing a design decision with the intent to enhance security. 13
– Encoding of Passcodes Prevent cheating by not leaving the game state information in plaintext. 11

– Cryptographic Techniques Hides the game state information in the passcode using encryption or hashing. 5
– Stenographic Techniques Obscures the game state information in the passcode. 7

– Defensive Tactics Prevent cheating by enforcing rules or other attacks. 9
– Enforce Rules of Game Ensure specific rules in the game is being followed. 7
– Misc. Defensive Tactics Secure the game from other types of violations/attacks, e.g., limit on how

many wrong passcodes can be entered
7

Threat Perception Identifies potential attacks or attackers for the given task. 13
– Perform an Attack Performs an attack on the stub code or in their code/design. 8
– Describe potential attack or attacker Describes an attack on the game or identifies an attacker. 9
– Acknowledge insecurity of approach Points out a flaw in the stub code or in their code/design. 7
– Recognize task is security-related Explicitly mentions that the goal is to secure the game. 6

Figure 2: The qualitative codes and their definitions applied to the data as a part of the analysis. Sub-codes are indicated by
indentation.

4.1 Threat Perception
We define threat perception as the understanding of realistic threat
that their software might be subject to. The threat perception is
a requirement towards security mindset. To prompt participants’
threat perception, we framed the problem of potential threats and
attacks as “players will attempt to cheat” without outlining possible
skills or resources that may be necessary to conduct those attacks.
Nevertheless, we observed participants mentioned or demonstrated
several instances of threat perception during the think-aloud ses-
sions. We identified any design decisions or code snippets that are
potentially related to security during our initial coding, which we
then refine and categorize as threat perception if it is related to
one the following four: (1) describe a potential attack; (2) attempt
to perform an attack (on a base implementation or on their own
implementation); (3) acknowledge that some aspect of an imple-
mentation is not secure; or (4) recognizing the security aspect of
the task from the prompt. We did not expect participants to model
all possible threats, nor evaluate the feasibility of an attack or type
of attacker existing. Some level of threat perception was demon-
strated by all but two participants — P10 and P11. P10 and P11 did
not even consider the problem to be security related and designed
their solution assuming no possible threat exists (which is clearly
insecure).

Describing Potential Attacks. Out of the 13 participants who
demonstrated threat perception, nine (P4, P6–P9, P12–P15) of them
described (or attempted to describe) at least one potential attack
or attacker. P14 described that a cheating player with high tech-
nical skills could somehow obtain a copy of the game code and
reverse engineer it to find ways to circumvent their defenses and
understand the passcode encoding. P14 also mentioned integer
under/overflow by inputting negative values and using a forged
passcode to get more health upgrades than the limit or to skip to a
level without having the items required to be previous levels. Both
P12 and P14 noted attacks with a forged passcode where the current
health could exceed the maximum allowed health. Two participants
(P9 and P12) pointed out an unlimited health upgrade cheat that
could occur from exploiting the resume and level map generation
features in the game’s design. Thus they demonstrated security
thinking and identifying security flaws in the software’s design.

P4, P6, and P15 all explained attacks on their passcode design.
They mentioned that a player could crack the scheme by either
brute-forcing all possible combinations or generating and testing
enough passcodes to “detect a pattern.” Finally, and most commonly,
attacks that involved a cheating player simply reading and inter-
preting a plaintext passcode and thus letting them create passcodes
that they never obtained from the game. This was described by P7,
P8, P12, P13, and P14.

One interesting case of this happening was with P13, who started
to consider the real-world example we mentioned in our prompt
first to help them frame the attack and its defense:

P13: “How did Metroid do it?”
Researcher: “Why are you thinking about Metroid
right now? How does that relate to the task you are
trying to accomplish?”
P13: “I was thinking if they [the developers] did really
check for progress, or could the player have cheated
their way in? I was assuming that Metroid checked for
progress, but I’m not sure because I’ve never played the
game.”

While information about the design of Metroid’s (a video game
from the 80s) passcode system is easily available on the web, P13
did not investigate further. As a result, they made an (incorrect)
assumption about the security of Metroid’s passcode system.2 Nev-
ertheless, framing their mindset in such a way was a strategy they
employed to conceptualize a way one could try to cheat and thus
start thinking about countermeasures to that attack by example.

Performing An Attack. Eight participants (P1, P2, P4, P5, P7, P8,
P12, P13) attempted to perform an attack on either the insecure
stub implementation or their implementation. After reading the
prompt and playing the game with the base implementation a bit,
P4 started to attack the provided starter code after reviewing the
section of the prompt that mentioned cheating players:

“Then I’ll just check if I can cheat the game [the base
implementation]. What are the level names?” [reviews
the provided list of level names] “Okay, I’m gonna see
if I can directly skip to ’Ruin of the Ancients’.” [provides

2Metroid’s password system never checks it for a logical game progression. Rather,
the game checks for a “valid” password using a checksum. Checksums were a pretty
common practice in game password systems.



ICER 2025 Vol. 1, August 3–6, 2025, Charlottesville, VA, USA Michelle Jensen, Matthew Berland, and Rahul Chatterjee

the game with “Ruin of the Ancients” as the passcode;
the game skips resumes at a level they had not reached
before in gameplay] “We can just comment that the
passcode is just level name. Very easy to cheat.”

–P4

Their attack took advantage of the fact that the stub implementa-
tion’s passcode was simply the name of the current level (in plain-
text) and, as such, could be used to skip to any level, as demonstrated
by the above quote. This suggests that attempting and succeeding
at the attack helped them consider ideas to strengthen their imple-
mentation. P13 also conducted the same attack. The most common
attack performed by participants (P1, P2, P4, P5, P8, P12, P13) hap-
pened while they played the game to get familiar with it. They
exploited the fact that the health restore action allowed players to
input any number. Using this “hack”, they could exceed maximum
allowed health.

Acknowledge An Implementation’s (In)Security. The third
way participants demonstrated threat perception was by verbally
acknowledging the insecurity of an implementation, whether their
own or the provided stub implementation. These are situations
where participants noted that something was “easy to cheat” or
“insecure” and were able to follow-up with why they thought so.
We did not include situations indicated by protestations of low self-
confidence in their abilities. Instances of these acknowledgments
occurred for seven participants (P3, P4, P6, P7, P12, P13, and P14).
For example, here, P6 talks about how their implementation adds
some level of security through the use of a Caesar cipher but likely
not as much as other cryptographic methods:

“I guess it doesn’t really offer too much additional se-
curity given the Caesar cipher is kinda like, I don’t
know, pretty basic? I’m guessing it’s completely useless
by most cryptographic standards but... I don’t know. I
assumed it might help a bit more [than nothing].” –P6

Besides noting their own implementation’s passcode, participants
pointed out that the stub implementation’s plaintext passcode was
insecure. Some were even surprised that it was simple to crack.
Another example of this subcategory comes from P13:

“ I don’t think I’ve been able to implement a way to
make sure that they [the player] really have completed
the level. Probably the one layer of security that I’ve
tried to implement is adding that cipher to the passcode.”
–P13

They are aware of an attack but know they have not addressed it
due to their implementation only addressing a different attack.

Is Task Security Related? Lastly, we took note of whether a
participant framed the task provided as “anti-cheat” or “securing
code”, as this was one major step to start thinking about threats.
Students were explicitly asked to frame the task in their own words
after reading the prompt aloud. The framing of the task to involve
security was expected to be universal given the scaffolding we
provided in the task’s design; however, roughly two-thirds of the
students did not (P1, P2, P5, P8, P9, P10, P11, P14, P15) and the
remaining six did (P3, P4, P6, P7, P12, P13). P11 explicitly denied

the existence of a potential attack while working through an initial
approach to store all GameProgress objects3 in an ArrayList.

“For simplicity [regarding my implementation], I know
there are no crazy people who will start up like a million
GameProgresses.”–P11

During their discourse around an ArrayList possibly reaching
capacity, they never mentioned the impracticability that could deter
a cheating player from using that approach. Rather they decided no
one would think to do that. As a result of this difference in framing
with regards to the purpose of the task, the participants divided
themselves neatly into two groups.

Summary of students’ threat perception. Most participants identi-
fied attacks that involved decoding the passcode and its information.
Once the cheating player has done that, they can start creating and
using forged passcodes to (1) skip to later levels, (2) get “free” items
and health upgrades, or (3) break other rules in the game. Some
other threats discussed revolved around other features of the game.
With these threats in mind, participants used them to inform their
work in designing defenses. We elaborate on those defenses in the
next section.

4.2 Secure Design
The second category of evidence of a security mindset that was
observed is instances of secure design. Any design decisions im-
plemented or discussed that participants explicitly explained could
improve the security of the passcode system or game overall fell
into this category.

As discussed in Section 3.1, we are not concerned about actual
security issues that could result in implementing code (e.g., in-
complete functionality, implementation mistakes, insecure coding
practices such as resource leaks). Our analysis is concerned with
discovering evidence of secure design, not the quality of the de-
sign decisions. A total of thirteen of the participants demonstrated
evidence of secure design.

Encoding the Passcode. To give participants a context about
passcodes and how game state could be saved, the study prompt
contained an implicit design suggestion that encoding was a part
of the passcode systems in older video games. It never pointed
out that this could be a strategy to defer cheating players or as a
requirement. Participants had the freedom to use or ignore this
suggestion. Among our participants, 11 designed a technique for
generating and parsing passcodes without leaving the passcode’s
game information in plaintext. In terms of encoding the data, the
eleven fell into one of two categories: traditional cryptographic
methods or stenographic techniques.

Five participants used traditional cryptographic approaches like
encryption and hashing to encode the passcode. Three students
(P2, P6, and P13) used shift ciphers.4 Although shift ciphers are
vulnerable to simple known plaintext attack — knowing one pair
of plaintext and ciphertext can reveal the key (shift value) — none
of them had prior formal security or cryptography experiences.

3An object responsible for storing and maintaining aspects of the game state.
4Shift ciphers are an encryption method where each alphanumeric character in the
text is “shifted” to another character by some fixed amount. Ex. “Hello World” with
shift of 5 would become “Mjqqt Btwqi”.
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public String generatePasscode(){
//Convert the current and max health values from decimal to

hexadecimal
String currentHealthBytes =

Integer.toHexString(getCurrentHealth());
String maxHealthBytes = Integer.toHexString(getMaxHealth());
boolean[] itemTable = new boolean[9];
String itemsCollected = "";

// Marks element at index (levelNum-1) true if the player has
the item found in the corresponding level

for(String item : currentItems) {
switch(item) {

case "Lucky Charm":
itemTable[0] = true;
break;

case "Ascendant Boots":
itemTable[1] = true;
break;

// switch cases continue for each of the major items
}

}
// Builds a string of all 9 items in order with a "1" if item

obtained and "0" otherwise. Ex. Having the items of levels
1 & 3 would result in the String "101000000"

for(int i=0; i<itemTable.length; i++){
if(itemTable[i] == true) itemsCollected += "1";
else itemsCollected += "0";

}
return currentHealthBytes + maxHealthBytes + itemsCollected;

}

Figure 3: P12’s code which combines the use of hexadeci-
mal and binary to encode the game information. Comments
added by us for readability.

Some students had seen a Caesar cipher, a specific type of shift
cipher, tangentially in prior coursework (e.g., Harvard’s CS50X
course). In other cases, participants did not know the technical
term(s) for their approach, but it was a solution they reasoned out
using their current set of problem-solving skills. In their verbal
thinking, participants explained that the issue they were trying
to solve involved “hiding the values” so that no one could easily
interpret the passcode. P14 briefly also considered using SHA-256
(Secure Hash Algorithm 256) to “scramble” the item names in the
passcode before continuing to opt for a different approach. P8 used
Advanced Encryption Standard (AES). AES is a cryptographically
strong cipher; given that they were one of the participants to have
taken a cryptography class, it explains why they knew about it and
opted to use a more complex method of hiding the passcode infor-
mation. While P15 had cryptography experience, they opted not
to use it. Their reasoning was two-fold. First, the possible number
values that the passcode would contain, such as health upgrades,
weren’t all prime numbers and thus could not be used existing
cryptographic schemes.5 The other reason is that they said their
approach was a sufficient defense.

Seven participants (P1, P3, P4, P7, P12, P14, P15) used steno-
graphic techniques to encode the passcode. We observed three
different techniques from these participants: data compression,
change of base, or a custom dictionary. (Here, change of base is

5Stronger cryptographic schemes often use prime numbers and algebraic group theory
to make them impossible to crack in a reasonable amount of time.

Item Name Output String

Lucky Charm Q2$]
Ascendant Boots O9/{
Abyssal Rope A7;-
Temporal Compass U8&\

Figure 4: An example of a portion of the dictionary created
by P4 to encode the item names.

defined as any method to convert the text to a different numerical
base.)

After concatenating the game data into a string, P1 encoded that
string into Base64 and compressed it using Java’s Deflater class be-
fore outputting it to the terminal. P1 compressed the final passcode
to improve the usability of copying and typing the passcode.

P12 used a boolean array to denote which items have been col-
lected and obfuscating decimal number values, such as current
health, as hexadecimal values. (A snippet of P12’s code is given in
Fig. 3). P3, P4, P7, P14, and P15 created mappings between values
and manually selected strings; this is what we call use of custom
dictionary approach. Here the dictionary acts as the key for a substi-
tution cipher to obfuscate the content of the passcode. Some chose
words by association, others pick sets of “random looking” same
length strings, while another had a tool generate a set of words. An
example of one of these can be found in Fig. 4, which shows the key
pairs P4 created and then stored into a hash table. Almost all custom
dictionaries were static, meaning the values always mapped to the
same “random” string. An exception was P15, who had a different
mapping strategy for their current health values than items and
level to “make it trickier for the player to figure out the pattern.”
They opted to use the current number of health upgrades when
deciding which word from the table to use for the current health
value. For example, if the player’s current health was 5, and they
had 3 upgrades, the word in the passcode would be “empower,” but
having the same health and 4 upgrades would result in the word
“cockpit.” Having a current health of 4 and 4 upgrades would also
result in the word being “empower.”

Our participants employed various cryptographic and stegano-
graphic techniques — though insecure — to protect the passcode.
However, they struggled to articulate their approach in terms of
security properties. This suggests that BIBIFI activities could help
instill a security mindset by introducing fundamental concepts like
secrecy and integrity.

Four participants did not try to hide the passcode. P5 and P9 did
not engage with the passcode system during their sessions; rather,
they opted to spend it investigating and incorporating other de-
fenses, which we elaborate upon in the following section. While the
last two participants ignored the implicit suggestion about passcode
encoding, leaving the game state information in plaintext. They
did not discuss or attempt to hide information in their passcode
systems, with P10 simply concatenating the information together
with delimiters and P11 writing the information directly to a text
file that had no restrictions on file access.

Additional Defensive Tactics. Besides protecting the passcode,
a number of student participants used various techniques to secure
their code or the game logic, which we refer to as defensive tactics.
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Any defense that was not related to hiding the game data in the
passcode belonged to this category. Nine participants (P2, P3, P4,
P5, P7, P9, P12, P13, P14) demonstrated at least one defensive tactic.

The most frequent of these tactics was to enforce explicit and
implicit game rules. This was demonstrated by P3, P4, P7, P9, P12,
P13, and P14. Design decisions about the overall game, such as the
level progression requirements and number of health upgrades per
level, were given in the prompt to provide enough context of the
game to work with. The prompt never mentioned that they were
required to enforce them as rules, but we anticipated this as an
avenue to explore when designing defenses. P7, P9, P12, and P14
discussed or added a check to ensure that a user-inputted passcode
contained all the required items from the previous levels to prevent
them from skipping to levels without the correct items. For example,
if the player entered a passcode stating they were at Level 3 (The
Cliffs of Insanity), the passcode also needed to state they had the
“Lucky Charm” and “Ascendant Boots” items, requirements to reach
that level. Five participants (P3, P7, P9, P12, P14) enforced an implicit
rule that limited the number of health upgrades a player could have.
Each level only had 2 optional health upgrades, indicating that there
is a maximum to what the player’s max health is, assuming regular
play. P7 in particular picked up on enforcing this rule quickly,
stating the following almost immediately after reading the prompt
and being provided other instructions:

“So right off the bat, the first thing that kind of makes
me think about is that every level has two optional
health upgrades. They’re optional. So, for example, if
someone is on the third level, they should only have
4 max. They can have anything below that because if
they have six or maybe eight, then that is kind of a red
flag.” — P7

The most common rule enforcement was making sure the player’s
current health did not exceed the maximum. This was demonstrated
in six participants: P3, P5, P7, P12, P13, and P14.

The remaining evidence of defensive tactics was varied enough
that some of them were only seen in one participant and thus were
coalesced into a Miscellaneous Defensive Tactics category. P7 explic-
itly chose to make sure to only relay user-relevant feedback when
there was an error to prevent an attacker from gaining technical
information (i.e., displaying a stack trace from an exception). Two
participants, P4 and P14, discussed adding junk information to their
passcodes to sidetrack a cheating player’s attempt to figure out
the passcode system. P4 also communicated their desire to prevent
cheating players by locking them out of the passcode system after
a few failed attempts and keeping a record of previously gener-
ated passcodes to verify against. In a similar vein to the latter, P13
wanted to log a player’s game activity to verify entered passcodes
and reject any that did not match. Other defenses considered by
P14 include a verification check (at a high level) to detect forgeries,
explicitly punishing an attacker when caught cheating (i.e., caught
trying to give extra health will result in continuing the game with
low health) or other annoyances to dissuade them, and preventing
integer under/overflows by adding a check for inputted negative
numbers. Participant 3 discussed how encapsulation and Java’s
access modifiers can prevent outside code, from an attacker, from

accessing and manipulating data fields. Lastly, P2, P7, and P13 uti-
lized random number generation as a part of their encoding to
prevent an attacker from detecting a pattern.

5 Discussion
In this paper, we investigate how undergraduate computer science
students demonstrate traits of a securitymindset while completing a
security-focused BIBIFI task. Our analysis (in Section 4) shows that
students without formal security training can engage meaningfully
with security problems and exhibit elements of a security mindset.
However, their engagement is uneven and often unpredictable. We
do not claim that these students are experts, nor that they would
continue to exhibit these traits outside the structured environment
we provided.

Notably, students independently attempted to solve security-
related challenges, offering insights into how we might teach se-
curity thinking. We highlight instances where participants demon-
strated secure design and threat perception intentionally, as well
as cases where they implemented potentially security-relevant be-
haviors without explicitly stating security as a goal. For example,
participant P1 included the line System.out.println(“Cannot
read save”) to handle exceptions when decoding the passcode.
This may reflect an intent to avoid revealing information to a po-
tential attacker if a forged passcode is used—though P1 did not
state this explicitly. Regardless of intent, this design choice also
improved usability by clearly handling errors.

Across several examples, we observed participants unintention-
ally producing more secure designs, underscoring the potential for
students to engage with security concepts even without formal
training.

The intentional instances of secure design and threat modeling
by participants (i.e., using cryptography, ensuring proper game pro-
gression) were typically specific to the context of the prompt about
the game’s passcode system. However, their responses varied across
broader categories such as hiding information from an attacker, en-
suring valid user behavior, and detecting & deterring attacks. While
the prompt was considered to be cryptography-related, students
tended toward non-cryptography-related approaches. P8 and P15’s
cryptography experience likely narrowed their thinking in terms
of attacks and defenses due to their pre-existing experience with
cryptography and cryptography-adjacent concepts.

As mentioned in Section 4.1, despite explicit prompting, some
participants did not see the task as security-related, and, as a result,
they engaged only minimally with the security content. On average,
participants who did frame the task as being “security-related” had
more instances of demonstrating both secure design and threat per-
ception. This correlation aligns with the results of Schoenmakers
et. al. [34] that different facets of a security mindset are interrelated
and internally correlated. Several possible factors likely contributed
to some of the participants minimally engaging with the security
aspect of the activity, including the length of the session or its
existence outside of a classroom context. The scaffolding provided
was clearly inadequate for those participants, especially P10 and
P11, though we had considered it manifest. This is a possible limi-
tation of the study - if we are studying how students organically
consider security threats when minimally prompted, then we will
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find that some significant percentage of those participants will not
organically consider security threats. Further investigation and in-
tervention are needed to determine which features are more likely
to prompt organic security-focused responses (without explicitly
telling them something akin to “you are expected to address secu-
rity threats”) and thus could be utilized in the design of future tools.
That said, our data in aggregate show that, with some prompting,
many (if not most) students without prior formal computer security
experience can demonstrate some aspects of a security mindset.

Perhaps the biggest takeaway is that courses should take advan-
tage of the understandings that students are already showing. It
is not a matter of learning something entirely new and maintain-
ing that new understanding but instead of nurturing the seeds of
existing understanding. This is consistent with our constructivist
theoretical framework, which suggests that most learning is build-
ing on, reframing, and coming to use more standard language to
describe existing deeper understandings rather than "depositing"
entirely new knowledge in students.

We propose incorporating assignments (or additions to them)
that provide an open-ended threat model to consider when com-
pleting the assignment. The threat model should be reasonable for
the course content and level. Rather than giving a simple list of
TODOs, students can engage more deeply with security thinking
to inform their decisions. One such example of an assignment in
action could be a programming class assignment that focuses on
exception and error handling. Ideally, these kinds of assignments
should be done consistently and frequently throughout the course
and/or program and can be done so with minimal to no additional
lecturing about security.

Future work can investigate good areas of curriculum and/or
kinds of assignments to utilize this. Additionally, futurework should
investigate iterative processes (such as the Break-It, and Fix-It parts
of BIBIFI), in which students can go back and consider new attacks
and refine their approach. This could allow students’ current think-
ing to mature. Furthermore, despite us seeing evidence of security
thinking, it is unknown if certain types of security thinking are
more prevalent in students naturally. For example, hypothetically,
students might consider only security threats that have malicious
intent or are motivated by financial gain. As a result, they largely
neglect to consider threats with other motivations such as activism
(hacktivists) or accidental damage. Ascertaining this could help in-
form where to focus interventions to help develop a well-rounded
security mindset.

6 Conclusion
To understand if and how undergraduate CS students without prior
security education could reason about security threats, we con-
ducted an exploratory study that had students work on a security-
focused task with minimal scaffolding. Our purpose in doing so
is to enable further studies on a security mindset in all CS under-
graduates. Analyzing the data from the think-aloud sessions, we
saw that participants showed traits of a security mindset through
secure design and threat perception. Some students did not engage
in thinking about threats or did so minimally even with our scaf-
folding. Further investigation is needed to determine what factors
have a greater chance of prompting security-focused responses.

Despite this, most students can show signs of a security mindset,
even if incomplete, provided minimal prompting.

Computer security is a subfield that many undergraduates per-
ceive as “intimidating” and “difficult” [25] and therefore are reluc-
tant to interact with. CS educators will hopefully be able to use the
finding that, with the help of only minimal prompting, students
will typically show a security mindset without prior formal experi-
ence. This finding can also, hopefully, empower students to explore
computer security.

A Additional Context About Game Passcode (or
Password) Systems

Due to limitations and restrictions revolving non-volatile mem-
ory (and subsequently internal and external memory) early video
games, particularly on consoles, were unable to maintain save files.
Games that wanted to allow players to be able to resume play from
their current state at a later time implemented a password (also
sometimes known as a passcode) system in which the idea was to
“encode” information about the game’s progress and then have the
player input it at a later time. They were designed with the intent
that you needed to have been given a passcode before and not skip
past a part of the game the player didn’t complete. Often on top of
converting the bits into an alphabet for the player to enter the code,
other measures were used to avoid players from cheating such as
bit shifting, checksums, or a secret unique to each cartridge.

B Prompt
Before the use of game saves, often due to technical restrictions,
video games used passcodes to allow players to pick up from where
they left off in a game. The game provided a String of seemingly
random characters that the player would need to write down and
then they could enter it later and resume play. In actuality, this
String encoded necessary game information.

One such example comes from the originalMetroid game for the
Nintendo Entertainment System. The passcode “—— –m C3 –y000
00y03” puts a player in the final area before the final boss with all
possible items and upgrades.

Your task is to implement/edit the code for the passcode sys-
tem to encode the data for a game called “Epic Escapades: A Tex-
tual Odyssey”. You might want to start out by playing the game
for a few minutes to get a feel for how the game works! Players
should only be able to use a code if it was generated by the game
itself. Note that players will try to “cheat” the game and should be
prevented from doing so. You will want to focus (mainly) on the
GameProgress.java file. Feel free to make any changes you feel
necessary, EXCEPT for changing the existing method signatures.
You can use any resources (e.g. documentation, tutorials) you would
like as well except for LLMs such as ChatGPT, Copilot, or Claude.

Here are some details about the rules of the game that should be
taken into account:

(1) Each level has 2 optional health upgrades. Each health up-
grade adds 1 to the player’s max health.

(2) Every level has 1 mandatory item in it that is required to
beat it. Here is the list of levels and their mandatory item:
• Level 1 - Beginner’s Luck (Lucky Charm)
• Level 2 - Onwards & Upwards (Ascendant Boots)
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• Level 3 - The Cliffs of Insanity (Abyssal Rope)
• Level 4 - Lost in Time (Temporal Compass)
• Level 5 - Welcome to the Future (Holographic Projector)
• Level 6 - City of Lights (Electric Pulse Gloves)
• Level 7 - The Labyrinth (Enigma Key)
• Level 8 - Ruins of the Ancients (Ancient Scroll)
• Level 9 - The Final Frontier (Nova Core Crystal)

(3) When the player resumes the game using a passcode, they
will always start at the beginning of the level.
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