Textbook Underflow

Insufficient Security Discussions in Textbooks Used for Computer Systems Courses

Majed Almansoori!,

! University of Wisconsin - Madison

ABSTRACT

Introductory computer science courses, such as Computer Systems,
could be used to provide the first exposure to computer security to
students. However, prior work has shown that, in the US’s top R1
universities, computer systems courses are not taught with security
in mind. It was also shown that students and instructors use unsafe
functions in their code, leading to security vulnerabilities. In this
paper, we focused on the textbooks used for computer systems
courses. We analyzed the discussion of security topics and the
use of unsafe functions in the thirteen textbooks used in the top
30 R1 universities in the US for teaching computer systems. We
show that many textbooks do not discuss security at all, while
some limit their discussion to “undefined behavior”, ignoring that
opportunity to discuss potential security issues associated with
the undefined behavior. Furthermore, textbooks that talk about
security continue using unsafe functions throughout (though not
necessarily in vulnerable ways but also without any warning or
explanation). We also show that many textbooks do not warn about
unsafe functions they use or teach how to use them safely.

CCS CONCEPTS

» General and reference — Evaluation; « Social and profes-
sional topics — Computer science education; « Security and
privacy — Vulnerability management.

KEYWORDS

Computer security education; Computer systems; Unsafe functions;
Textbooks; Buffer overflow; Security vulnerabilities; C and C++

ACM Reference Format:

Majed Almansoori, et al.. 2021. Textbook Underflow: Insufficient Security
Discussions in Textbooks Used for Computer Systems Courses. In Proceed-
ings of the 52nd ACM Technical Symposium on Computer Science Education
(SIGCSE °21), March 17-20, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3408877.3432416

1 INTRODUCTION

Increased reliance on digital technologies in our daily lives warrants
more security awareness for our software developer workforce.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 17-20, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432416

Jessica Lam?,
Adalbert Gerald Soosai Raj?,

Elias Fang?
Rahul Chatterjee!

2 University of California, San Diego

However, to date, in many universities in the United States, com-
puter security courses are optional, and a student can graduate with
a bachelors degree in computer science or related field without tak-
ing any computer security course [5]. Therefore, researchers have
proposed using core and introductory courses to educate students
on basic computer security [8, 18, 19]. Furthermore, introducing
students to computer security early on in their bachelor’s studies
in computer science can help build a security mindset [8].

Despite the dire need, our introductory computer science courses
are still far from being taught with security in mind [36]. As prior
work [5, 41] has shown, instructors, students, and even textbooks
pay little attention to security. Instructors regularly use unsafe
functions (such as strcpy, strcat, etc.) while teaching and students
use those unsafe functions in a vulnerable manner without realizing
their security implications [5].

Textbooks have a huge impact on the instruction materials and
students’ learning [11, 13, 39]. Taylor et al. [41] showed that major
database textbooks contain several SQL injection (SQLi) vulnerabil-
ities and have a minimal discussion about security. Thus, a natural
question arises, do textbooks in other introductory CS courses also
have such serious vulnerabilities? In this work, we consider the
textbooks used in computer systems courses in the top R1 universi-
ties in the US [30]. Computer systems is a mid-level required course
in almost all universities in the US. This course discusses how a
single process runs inside a computer and teaches about process
memory layout. It is also normally taught in C/C++ and an assembly
language. We believe this course is a great place to introduce stu-
dents to computer security. Furthermore, as textbooks have a huge
impact on instructors’ lecture content [13] and students’ learning,
it is important to understand whether or not computer systems
textbooks are written with security in mind.

Specifically, we aim to answer the following research questions:

RQ1: Do textbooks used in computer systems courses use unsafe
functions such as strcpy in their code snippets, and are
these code snippets vulnerable?

RQ2: Do textbooks warn students about the potential security risk
of these functions and introduce them to the safer alterna-
tives (such as strncpy)?

RQ3: How do these textbooks discuss topics on computer security?

We considered the top 30 R1 universities in the US that award a
bachelor’s degree in computer science. We exclude five universi-
ties that do not have a computer systems course taught in C/C++.
From the remaining 25 universities, we collected the names of 13
textbooks that are used for teaching the courses and obtained their
electronic copies. We then consider the set of level two (L2) unsafe
functions identified by Almansoori et al. in [5], which are strcpy,
strcat, (v)sprintf, gets, and systems. We searched for the use

https://doi.org/10.1145/3408877.3432416
https://doi.org/10.1145/3408877.3432416

of these L2 functions in the textbooks and manually checked those
usages for security vulnerabilities. Next, we looked at the security
discussions or warnings associated with those functions in these
textbooks. Finally, we looked at whether or not the textbooks dis-
cuss the safe ways to use these L2 functions and/or introduces stu-
dents to the safer alternatives to those functions, such as strncpy,
strncat, (v)snprintf, and fgets.

Through our analysis, we found the rather unsatisfying status
of currently used textbooks in computer systems courses. Many
textbooks do not discuss security at all, and the ones that do discuss,
often do so only at a cursory level. Only four textbooks provide
some level of warning that using unsafe functions might cause a
security vulnerability, and even fewer books introduce safer alterna-
tives to unsafe functions (e.g., strncpy instead of strcpy). Moreover,
none of the textbooks explicitly explained how unsafe functions
could be used safely while continuing to use them (albeit in a mix of
secure and insecure ways). Another pattern that emerged from our
analysis is that often the issues with unsafe functions are presented
as “undefined behavior”, ignoring the opportunity to introduce the
relevant security concepts. In the end, we found only one textbook
that puts considerable effort into explaining unsafe functions’ se-
curity implications. Thus, we finish with some recommendations
about how these textbooks could be improved so that students who
use them get sufficient exposure to security and secure coding.

The key contribution of our work is that it adds to the small but
growing body of literature that analyzes security considerations in
computer science textbooks and raises awareness about the need for
immediate changes in the way we as a community write computer
science books. More specifically,

e We do a security analysis of the code snippets given in text-
books used in computer systems courses and show that many
textbooks contain vulnerable code or insecure invocation of
unsafe functions.

e We also show that textbooks rarely talk about security implica-
tions of unsafe functions, and only a few introduce students to
safer alternatives to these unsafe functions.

2 BACKGROUND ON UNSAFE FUNCTIONS

Almansoori et al. [5] first looked into the use of unsafe functions
in code written by students or instructors in computer systems
courses in the US. They divide unsafe functions into categories L1
and L2, based on their severity, possibility of being misused, and
the availability of safer alternatives. Level two unsafe functions are
the ones that can easily lead to security vulnerabilities. Consider
the following code snippet:
int main(int argc, char xargv[]) {

char buf[20];

strcpy(buf, argv[1]);

}

Typically, this program will crash due to the segmentation fault
exception if the first command-line argument is longer than 20.
(We focus on this since students are typically concerned about
program crashing in their introductory computer science courses
while learning C/C++). However, this code is also vulnerable to
buffer overflow attack [1, 2]: An attacker can pass a specially crafted

string (longer than 20 characters) in their first command-line ar-
gument and change the program execution flow to execute any
arbitrary command of their choice. Buffer overflow has been the
reason behind several security vulnerabilities, including some high-
profile ones, such as [29, 31]. Most of the iOS jailbreaks are done
by exploiting buffer overflow vulnerabilities [10].

It is well known that some C standard library functions, such as
gets, strcpy, strcat, and (v)sprintf, are prone to be misused,
resulting in buffer overflow vulnerabilities. These are referred to
as the L2 unsafe functions in [5]. All these functions write to a
destination buffer without checking its bounds.

Almansoori et al. [5] also considered system as an L2 unsafe
function. The function system spawns a new shell to execute the
command provided in the input string. The problem is that if that
string is a user input, then an attacker can perform a command
injection attack (CWE 78 [3]).
int main(int argc, char *argv[]) {

char buf[1000];

sprintf(buf, "wc -1 %s", argv[1]);

int ret = system(buf);
}
In addition to a buffer overflow vulnerability in the third line, the
code also has a command injection vulnerability. For example, the
attacker can provide a command-line argument such as "dummy;
cp /etc/shadow /public/", that will copy the sensitive password
file /etc/shadow into a public folder.

How to avoid unsafe functions. Not every invocation of unsafe
functions is always vulnerable. In certain instances, their use is
unavoidable. For example, for strcpy if the source string is constant,
then the use of strcpy is safe, for example, strcpy (buf, "Hello
World!"). This is typically true for all the L2 functions that cause
a buffer overflow. It is also true for system: if the input string is
constant, it cannot cause command injection vulnerability. The
intuitive argument is that if an attacker cannot influence the source
string — as it is constant and set by the developer — that particular
invocation of the unsafe function will not lead to a vulnerability. Of
course, this in no way ensures that the whole code is safe. In this
paper, we will consider an invocation of an unsafe function safe if
the input source string is constant.

Of course, in certain cases we have to use non-constant source
string, and for that there safer alternative to most of the functions,
such as fgets, strncpy, strncat, snprintf. All these functions
ensure that the number of bytes written on to the destination is
upper bounded by a value given by the developer — not by the
user of the program. We can easily fix the aforementioned snippets’
security vulnerabilities by replacing the invocation of unsafe func-
tions with their safer alternatives: strncpy(buf, argv[1], 20);
and snprintf(buf, 1000, "wc -1 %s", argv[1]); For system
function, there is no such simple safer alternative available. It is
advisable that developers try to use a library function to achieve
the same functionalities, if possible, and otherwise use precaution
when using this function.

3 RELATED WORK

Prior work [5] looked into the security of the code snippets written
by the students or the ones used by instructors in computer systems

Textbook Title #Uni. Focus
(CSPP) Comp. Systems: A Programmer’s Perspective 14

(2nd Ed. [6], 3rd Ed. [7])

(COD) Comp. Org. and Design: The Hardware/Software 6 Computer
Interface (x86 [35], ARM [34])

(DIS) Dive Into Systems [27] g Systems
(ICS) Introduction to Computing Systems: From Bits & 1

Gates to C/(C++) & Beyond (2nd Ed. [32], 3rd Ed. [33])
(ISP) Intro. to Systems Prog.: A Hands-on Approach [38]

-

(CPL) The C Programming Language [20]
(CRM) C: A Reference Manual [15]

[N)

(CPMA) C Programming: A Modern Approach [22] C language
(PIC) Programming in C (3rd Ed. [23], 4th Ed. [24])

(HFC) Head First C [12]

(DDCA) Digital Design and Computer Architecture 2 Architecture
(x86 [16], ARM [17])

(APUE) Adv. Prog. in the UNIX Environment [40] 1 Unix

(LPI) The Linux Programming Interface [21] 1 Linux/Unix

Figure 1: Titles of computer systems textbooks and the num-
ber of universities using them. Textbooks are grouped into
three categories based on their focus area: systems, C lan-
guage, and other (e.g., architecture, Linux/Unix, etc.)

courses. They also briefly mentioned that the textbooks and other
course materials in computer systems courses either do not discuss
security at all or discuss it at a very cursory level. They did not go
into the details of how textbooks used in computer systems courses
discuss security-related topics, if at all. Given that textbooks have
a profound impact on students’ learning outcomes [37], in this
work, we aim at answering one crucial open question: Do textbooks
provide guidance on how to write secure code and avoid particular
obvious security vulnerabilities.

Taylor and Sakharkar [41] were the first to analyze security
considerations in computer science textbooks. They looked at major
database textbooks and found that most do not talk about SQL
injection (SQLi) vulnerability at all, despite SQLi being in the top
ten most prevalent vulnerability for decades [4]. Even shockingly,
they found code snippets in some textbooks that are vulnerable to
SQLi attacks. One sad take away from their work is that despite
decades of research [14, 18, 19, 25, 43] advocating for including
security topics in required computer science courses remain very
far from reality. The textbooks, at the very minimum, must ensure
that they follow good security hygiene [18, 42].

We, therefore, extend the work by considering textbooks used
in the computer systems courses. Computer systems is a mid-level
course that teaches students about the process layout and how a
program runs inside a memory. This provides an ample opportu-
nity for textbooks to introduce security, or at the very least, teach
students how not to use certain unsafe functions. However, as we
show in this work, most textbooks give little attention to security
and even have insecure usage of L2 unsafe functions.

4 COLLECTING SECURITY DISCUSSIONS
AND CODE SNIPPETS FROM TEXTBOOKS
We aim to understand the perspective towards computer security in

the textbooks used in the computer systems courses in the top 30 R1
universities in the US. Specifically, we analyze the usage of unsafe

functions in the textbooks and how they introduce security-related
topics if any.

We consider top 30 R1 universities according to the US News
report [30] (which is a superset of universities considered in [5]).
We discarded five universities from our study; some don’t have
an equivalent course to computer systems. Others teach the class
with languages other than C/C++, such as Java. We first collected
the titles of thirteen textbooks used by these universities from the
corresponding course web pages of most recent offerings. Then
we collected the electronic copies of the textbooks. If two univer-
sities used different editions of the same book, both editions were
collected. We also collected the last published edition of these text-
books if available. This will ensure we get a better understanding of
the textbook resources that students are exposed to in the computer
systems courses. The list of books we consider is given in Figure 1.
Some textbooks such as COD [34, 35] and DDCA [17] have two
editions for teaching with Intel x86 and with ARM. Finally, we
analyze these textbooks to find the usage and discussion of unsafe
functions and related security concepts.

For most of the books, we found PDFs where text search is
possible. For two books, we only found a scanned copy where
text search was not possible. We did not utilize optical character
recognition (OCR) because, given the low image quality of the
scanned books, the OCR would be erroneous. We, therefore, decided
to go over these two books manually.

After collecting the textbooks, we first used the search function-
alities provided by PDF readers to narrow down the pages and code
snippets for manual analysis. We first looked for any chapters that
seemed to discuss software security, particularly buffer overflow.
(We focused only on software security for this project, ignoring
other security discussions like network security in these books.)
For CSPP [6, 7] and DIS [27] books, we found a dedicated section or
chapter on computer security, and for LPI [21], we found a chapter
on how to write ’secure privileged programs’. For all books where
text search was possible, we searched for the following words using
a PDF reader: str*cpy, str*cat, “gets, *s*printf, system, buffer over-
flow, overflow, attack, injection, adversary, exploit, security, smash.
For each of the search results, we captured the context where it is
being used, and if the text or code snippet seems relevant to answer
our security questions, we recorded the whole text and the code
snippets with the relevant contexts in a separate spreadsheet.

For the books with scanned copies, we manually went over
the entire textbook and took screenshots of security discussions,
mentions of unsafe functions, and code examples containing these
unsafe functions.

5 RESULTS

We answer our three research questions by analyzing the 13 text-
books we collected. In short, we found that most of the textbooks
give little attention to computer security. In the next three subsec-
tions, we describe the findings from our research questions.

5.1 Use of Unsafe Functions

Textbooks often use unsafe functions to introduce certain concepts
that otherwise will increase cognitive load and will distract from
the learning objectives. Nevertheless, using unsafe functions such

Unsafe functions

Textbook

strcpy strcat gets (v)sprintf system
CSPP *! ™! *v ! -
COD w - - - -
DIS *«! v * v -
ICS w - - - -
ISP we - - - -
CPL ! ve! w w! w
CRM WV w * w w
CPMA *«! *! ! we we
PIC w v w WY WY
HFC w w * w! *x!
DDCA *«! g - w -
APUE ! pagve * *! *!
LPI % % * * *!

mentions the function in a code snippet or in the text

warns about the function but does not explain how to use it correctly
warns about the function and explain how to use it correctly if possible
contains code snippet(s) with unsafe invocations of the function

used safely in code snippet(s) or only used to warn about its security issue
the function was never mentioned in the book

< = %5

—
'

Figure 2: The figure shows textbooks that discuss the secu-
rity issue with unsafe functions. Also, invocations of the un-
safe functions in these textbooks are marked as safe or not.

Safer alternative functions

Textbook
strncpy strncat fgets (v)snprintf

CSPP % % v x
COD x - - -
DIS v v v v
ICS x - - -
ISP x - - -
CPL x x x x
CRM x x v x
CPMA v v v x
PIC x x x x
HFC X % v x
DDCA x x x x
APUE x x v v
LPI v v x v

' introduces the function as a safer alternative to the unsafe version
% does not suggest using the safer alternative instead of the unsafe function
(-) the function and its unsafe version were never mentioned in the book

Figure 3: The figure shows how safer alternatives to unsafe
functions are mentioned in the textbooks.

as strcpy incorrectly can easily lead to severe vulnerabilities [1, 2],
and therefore prior research [5] suggests educators should warn
students about using them.

Invocation of unsafe functions. Notably, all books mention at
least one unsafe functions (except DDCA [16, 17], which does not
have any significant C/C++ code). As shown in Figure 2, The func-
tion strepy is used overwhelmingly in all textbooks. The functions
strcat, gets, (v)sprintf are equally used by these textbooks. It
is remarkable that the function system is the least mentioned func-
tion by these textbooks, possibly because the function is advanced
and more related to operating systems textbooks.

Warning about unsafe function. While the function strcpy is
the most used function in these textbooks, only four labeled it
as unsafe. Among all textbooks, seven warned about at least one

unsafe function, and unsurprisingly, the function gets was warned
the most. However, some books such as CPL [20] and PIC [23, 24]
uses gets without alerting the reader about its security flaw.

CSPP [6, 7], DIS [27], and LPI [21] are the only textbooks that
warned about all unsafe functions that they use — LPI uses and
warns about all the five functions including system. While a few
textbooks warned about unsafe functions, none of them explained
how to use them safely. Three textbooks, HFC [12], APUE [40], and
LPI [21], explained that allowing the user to pass an argument to
the function systemis dangerous, and thus, the argument should be
constant. There is no safe usage of the function gets, and therefore
it is enough to illustrate that gets is not safe and should not be
used at all. For the functions strcpy, strcat, and (v)sprintf, no
textbook explicitly mentioned that the source string supplied to
these functions should be constant. Textbooks only explained that
these functions do not check whether the source string fits into the
destination buffer. While it can be implied that using constants is
safe, textbooks should explicitly mention it when warning about
these unsafe functions. LPI [21] briefly suggested using if-statements
with these functions to prevent overflowing the buffer.

Using unsafe functions even after warning about them. We
observe that some textbooks continue using unsafe functions, even
after stating them as unsafe. For example, CSPP [6, 7] and APUE [40]
used these functions to explain other topics such as child processes
and networks. Moreover, several textbooks kept using strcpy and
strcat to explain other topics such as pointers and preprocessors
even after stating that they can lead to buffer overflow and crash
the program. While most of these usages are safe, some are indeed
unsafe, as shown in Figure 2. Even if textbooks used these functions
safely, since no textbook explained how to use them correctly,
students might copy these invocations to their projects and modify
them slightly, making these invocations vulnerable.

Vulnerable code snippets. Though most of the usages of unsafe
functions in the textbooks were safe, most textbooks had at least
one code snippet with insecure usages of unsafe functions, as shown
in Figure 2. Some of the insecure usage are vulnerable. For example,
in CPMA [22], page 328, a code snippet uses gets while teaching
#define preprocessor directive in C.

#define ECHO(s) (gets(s); puts(s);

if (echo_flag) { ECHO(str) }

else { gets(str); }

The code uses gets, and clearly the resulting code will be vulnerable.
Although the learning focus of the code snippet is not gets, if a
student uses this code snippet in any of their projects, that code
will also likely be vulnerable. Textbooks should avoid such usage
of unsafe functions.

A similar vulnerable usage we found on page 407 in APUE [40],
also illustrated in the left code snippet in Figure 4, which uses
system function in a vulnerable manner — passes user’s input to the
system without any filtering. This code is vulnerable to command
injection attacks (CWE-78 [3]) where a user can pass any string
that will be passed on to a shell for execution. While the goal of
the snippet is to introduce students to timing processes; this could
have been done using a constant string in the code.

/* Src: APUE [40], page 407 */

int main(int argc, char xargv[]) {

/* Src: CSPP page 734 [6], and
page 749 [7] */

void eval(char *cmdline) {

do_cmd(argv[il); char buf[MAXLINE];

3 strcpy (buf, cmdline);
}

int main() {
char cmdline[MAXLINE];

static void do_cmd(char *cmd) {

if ((status = system(cmd)) < @)

err_sys("system() error"); é&él(cmdline);

Figure 4: Code snippets showing vulnerable use of unsafe
functions in the textbooks. The left code uses gets in an un-
safe manner, and the right one uses system with user pro-
vided parameters.

On both occasions, the textbooks did not warn the students of
the potential security vulnerabilities of these code snippets. More-
over, we also found several code snippets in other textbooks that
are not vulnerable as written in the textbook. Still, if any of the
functions that invoke unsafe library functions are changed or used
in other code snippets, they could easily lead to security vulner-
abilities. Therefore, it is not enough to ensure that only the code
snippet is safe as a whole, but the textbooks should ensure the usage
of functions in the snippets adhere to the high coding standards.
We give one such code snippet from CSPP [6, 7] in the right box
in Figure 4. While this snippet is safe, any increase in the size of
cmdline in the function main will make the code vulnerable.

5.2 Introduction of safe alternatives

Unsafe functions have safer alternatives that can prevent buffer
overflow. These safer functions are: strncpy, strncat, fgets, and
(v)snprintf. The function system does not have an actual alterna-
tive, but the exec family can usually provide similar functionality
more safely. Despite the availability of safe versions of unsafe func-
tions, not all textbooks introduce them as a better version that
should be used instead.

As Figure 3 shows, only a few textbooks explicitly advised the
reader to use these alternatives. Remarkably, many textbooks sug-
gested using fgets instead of gets. Moreover, only DIS [27] in-
troduced all four functions as safer counterparts. While some text-
books explained these safer functions, none of them explained that
these functions could also be vulnerable if misused, and none of
them explained how to use them correctly. Only CPMA [22] book
illustrated how to use strncpy and strncat safely.

5.3 Discussion of Security

The analysis shows that most textbooks do not discuss security at all,
as textbooks tend to focus on code performance and functionality
rather than security. Only five textbooks discussed security, and
only two explained it in detail. Among security discussions, buffer
overflow was the most discussed issue in these textbooks. CSPP [6,
7] textbook explained buffer overflow by showing that the function
gets can corrupt registers and return addresses saved on the stack

if the string copied is larger than the buffer. The textbook further
explained how to protect against this vulnerability using techniques
such as stack randomization and also warned about more unsafe
functions such as strcpy, strcat, and sprintf.

Similarly, DIS [27] explained buffer overflow using scanf, a
function that can also lead to this vulnerability if misused. In this
textbook, an example is given on exploiting this vulnerability to
change the program’s flow. In addition to warning about unsafe
functions and explaining protection techniques, the textbook sug-
gested using secure alternatives for some unsafe functions. Other
textbooks, such as COD [34, 35] and APUE [40], mentioned buffer
overflow briefly; a demonstration of how it exactly works was not
included.

HFC [12], APUE [40], and LPI [21] introduced another vulner-
abilities related to systems such as command injection. All three
textbooks warned about system and the potential risk behind it if
the user controlled the input. Surprisingly, integer overflow vulner-
ability was only explained in terms of code performance and was
never introduced as a potential security issue. CSPP [6, 7] had a side
note about a function with a security vulnerability due to integer
overflow. While integer overflow might not be directly a security
issue, it can become a security vulnerability in many cases, so it is
necessary to warn the reader about it. Other vulnerabilities were
mentioned by APUE [40] and LPI [21], but they were not related
to systems, rather, mostly related to other topics such as UNIX
security. These vulnerabilities were excluded since our primary
focus is on security issues related to systems security.

An interesting finding was the term “undefined behavior” used
by CPMA [22] and COD [34, 35] to explain specific topics and code
behaviors. Code that can crush the program, such as buffer overflow
and writing to uninitialized pointers, are described as cases that lead
to undefined behavior. In many cases, undefined behavior can lead
to security issues, and in other cases, they will break the program.
However, the textbook does not explicitly differentiate between
these cases and never mentioned that an undefined behavior could
be a security hole.

6 DISCUSSION

The repercussions of teaching students with unsafe programming
practices in textbooks can be dangerous. We discuss the effect that
textbooks can have on students due to using unsafe functions and
give recommendations that textbook writers could use to fix the
security-related issues.

Textbooks have huge impact on students’ learning. Books are
considered an important resource in a course, and students’ learn-
ing experience depends on them [26, 37]. Students learn concepts
and code snippets accompanying those concepts from textbooks.
Currently, students are learning about unsafe functions from the
textbooks and the code snippets in them. They might copy those
snippets in their programming assignments. Without proper warn-
ing of using unsafe functions, students might use unsafe functions
in a vulnerable way. The (insecure) programming practices in the
textbooks might also influence students’ coding habits that might
continue in their professional careers. Therefore, textbooks, espe-
cially used in the introductory courses, must use proper security
practices.

Additionally, many instructors select specific portions of the
textbooks to base their course curriculum (see e.g., [9, 28]). In the
case that a textbook includes unsafe functions toward the beginning
and does not discuss the security issues of these functions until
later in the book, students might miss the portions that cover the
unsafe functions and completely miss the security flaws in them. In
the worst-case scenario, instructors might not warn students about
these unsafe functions as well.

Based on previous works on computer security education, we
know that it is crucial for computer science students to gain a
basic understanding of computer security (see for example [18, 19]).
Therefore, textbooks must follow best security practices and teach
about basic security topics. Without secure textbooks, we cannot
expect the courses to be taught with sufficient coverage of security.

Recommendations for updating textbooks. A challenge in in-
cluding security topics in introductory courses is increased cogni-
tive load, which might distract students (and instructors) from the
course curriculum’s core content. Computer systems courses are
organized in a way that ensures students gain a basic understanding
of computer organization and systems programming. This course
is already heavy in content, and introducing more discussions of se-
curity into courses may disrupt the flow of the classes and possibly
overwhelm students. Furthermore, adding material on security may
affect other course outcomes if the material covered is redundant in
future security-related electives. However, we believe augmenting
computer systems courses with security contents could be a natural
fit given the contents covered.

Based on our observations, it is clear that there are three main
issues with textbooks that need to be addressed: (1) security is
rarely discussed in most textbooks, (2) there is insufficient warning
against using unsafe functions, (3) textbooks sometimes use unsafe
functions within their own code snippets (that could be vulnerable
if copied incorrectly). To tackle these issues, textbook writers can
take some obvious next steps.

1. Use safer alternatives. As shown in our results, most of the text-
books used by computer systems courses describe the behavior of
specific unsafe functions but do not explain the dangers of using
them or provide safer alternatives. In addition to avoiding using
unsafe functions as much as possible, we decided that the best way
to combat this security issue in textbooks is to warn students from
using unsafe functions and immediately advise them to use safer
alternatives instead. By explaining the dangers of unsafe functions
and providing ways around them with safer alternatives, students
will be able to gain a stronger foundation in secure programming.

2. Warn about unsafe functions as much as possible. Although not
all of the textbooks we analyzed had flawed code snippets, most
still discussed the use of unsafe functions without any warning or
further discussion on how they should be safely used. Some text-
books also warned about the unsafe functions when they were first
introduced but continued to use these unsafe functions throughout
the book (although in a mix of both safe and unsafe invocations)
without an accompanying warning. This poses a problem because,
if students are not aware of the possible security flaws in the text-
books they are using, they may use the code snippets or the unsafe
functions and cause their code to be vulnerable to security attacks.

In addition, textbooks sometimes use unsafe functions to further
teach other topics, which can also cause problems down the road.

3. Discuss security often and early. Finally, in our results, we saw
that most textbooks did not discuss security at all. And, those that
did only addressed it sparsely. Also, it is established that because
textbooks are passively teaching security and not explicitly ad-
dressing common security issues in computer systems, students
are not advised against producing code that is vulnerable to secu-
rity attacks, like buffer overflow [5]. Thus, discussing security in
textbooks early on will ultimately help students be more conscious
of possible security issues in their code and how to prevent these
security vulnerabilities. It also allows them to practice secure pro-
gramming principles early on, which will benefit them later in the
industry. Finally, referring to security sections often will make it
so that students and teachers do not overlook them.

Limitations and future directions. Our analysis sheds light on
the security considerations in the textbooks used in computer sys-
tems courses. We do not look in-depth at how that actually shapes
the security mindset, or the lack thereof, in students who learn
from these textbooks.

The textbooks we analyzed are used by the top computer science
universities in the US and represent a small sample of textbooks
used overall for teaching computer systems or equivalent courses
in the world. To solidify our data, we would need to evaluate even
more textbooks from other related courses (e.g., networks). The
evaluation can also aid in deciding the appropriate fix to the issue.

We should work with authors of textbooks used by computer sci-
ence courses to provide supplemental resources that cover security
and safe programming practices more in-depth for students. We
can then study the impact these new textbooks have on students in
their programming habits and industry readiness.

7 CONCLUSION

We analyze the discussion of unsafe functions and their usages in
code snippets given in the textbooks used in computer systems
courses in the top 30 research-intensive universities in the US.
We found that textbooks use unsafe functions such as strcpy fre-
quently and sometimes in an unsafe manner, without warning
students about their security implications or ever explaining how
to use them safely. A few textbooks introduce students to safer
alternatives to unsafe functions, and only one textbook explained
how to use some of these alternatives correctly. We also evaluate
the discussion of systems security in these textbooks and found
that most textbooks that warn students about potential memory
corruption issues with unsafe functions do not present them as
security issues, but rather issues of “undefined behavior”. Even for
textbooks that explicitly discuss some security vulnerabilities, most
of these discussions are brief and general. The main goal of this
work is to bring awareness to computer science education com-
munity to focus on updating textbooks to include more security
discussions and avoid teaching students with vulnerable code.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feedback
and suggestions for improvement.

REFERENCES

[1

=

[10]
[11]

[12]
[13]

[14]

[15

[16]

(17]

(18]

[19

[20]

[21
[22]

CWE-121: Stack-based buffer overflow. https://cwe.mitre.org/data/definitions/
121.html/.

CWE-122: Heap-based buffer overflow. https://cwe.mitre.org/data/definitions/
122.html/.

CWE-78: Improper neutralization of special elements used in an OS command
(’OS command injection’). https://cwe.mitre.org/data/definitions/78.html.
Owasp top ten. https://owasp.org/www-project-top-ten/.

Majed Almansoori, Jessica Lam, Elias Fang, Kieran Mulligan, Adalbert Gerald
Soosai Raj, and Rahul Chatterjee. How secure are our computer systems courses?
In Proceedings of the 2020 ACM Conference on International Computing Education
Research, pages 271-281, 2020.

Randal E Bryant, O’Hallaron David Richard, and O’Hallaron David Richard.
Computer Systems: A Programmer’s Perspective. Prentice Hall Upper Saddle River,
2nd edition, 2003.

Randal E Bryant, O’Hallaron David Richard, and O’Hallaron David Richard.
Computer Systems: A Programmer’s Perspective. Pearson India Education Services
Pvt. Itd, 3rd edition, 2016.

Justin Cappos and Richard Weiss. Teaching the security mindset with reference
monitors. In Proceedings of the 45th ACM technical symposium on Computer
science education, pages 523-528, 2014.

Beth Davey. How do classroom teachers use their textbooks? Journal of Reading,
31(4):340-345, 1988.

Stefan Esser. Exploiting the ios kernel. Black Hat USA, 2011.

Donald J Freeman and Andrew C Porter. Do textbooks dictate the content of
mathematics instruction in elementary schools? American educational research
Jjournal, 26(3):403-421, 1989.

David Griffiths and Dawn Griffiths. Head First C. O’Reilly Media, Inc., 2012.
Pam Grossman and Clarissa Thompson. Learning from curriculum materials:
Scaffolds for new teachers? Teaching and teacher education, 24(8):2014-2026,
2008.

Mario Guimaraes, Meg Murray, and Richard Austin. Incorporating database
security courseware into a database security class. In Proceedings of the 4th
annual conference on Information security curriculum development, pages 1-5,
2007.

Samuel P. Harbison and Guy L. Steele. C, a Reference Manual. Pearson, USA, 5th
edition, 2002.

David Harris and Sarah Harris. Digital Design and Computer Architecture, Second
Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition,
2012.

Sarah Harris and David Harris. Digital Design and Computer Architecture: ARM
Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,
2015.

Cynthia E Irvine. What might we mean by "secure code” and how might we
teach what we mean? In 19th Conference on Software Engineering Education and
Training Workshops (CSEETW’06), pages 22-22. IEEE, 2006.

Cynthia E Irvine and Shiu-Kai Chin. Integrating security into the curriculum.
Computer, 31(12):25-30, 1998.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall Professional Technical Reference, 2nd edition, 1988.

Michael Kerrisk. The Linux Programming Interface. No Starch Press, 2010.

K. N. King. C Programming: A Modern Approach, Second Edition. WW. Norton &
Company, 2008.

&
=

o
=

[36

(37]

[38

[43

Stephen G. Kochan. Programming in C, Third Edition. Sams, 2004.

Stephen G. Kochan. Programming in C, Fourth Edition. Addison-Wesley Profes-
sional, 2014.

Lei Li, Kai Qian, Qian Chen, Ragib Hasan, and Guifeng Shao. Developing hands-
on labware for emerging database security. In Proceedings of the 17th Annual
Conference on Information Technology Education, pages 60-64, 2016.

Marlaine E Lockheed, Stephen C Vail, and Bruce Fuller. How textbooks af-
fect achievement in developing countries: Evidence from thailand. Educational
Evaluation and Policy Analysis, 8(4):379-392, 1986.

Suzanne J. Mathews, Tia Newhall, and Kevin C. Webb. Dive into systems. https:
//diveintosystems.cs.swarthmore.edu/.

Jeanne Moulton. How do teachers use textbooks and other print materials: A
review of the literature. The Improving Educational Quality Project, South Africa,
1994.

Satnam Narang. Buffer overflow vulnerability in apple ios and macos devices dis-
closed. https://www.tenable.com/blog/buffer-overflow-vulnerability-in-apple-
ios-and-macos-devices-disclosed, 2018.

US. News. Best computer science schools. https://www.usnews.com/best-
graduate-schools/top-science-schools/computer-science-rankings, 2018.
Hilarie Orman. The morris worm: A fifteen-year perspective. IEEE Security &
Privacy, 1(5):35-43, 2003.

Yale N. Patt and Sanjay J. Patel. Introduction to Computing Systems: From Bits &

Gates to C & Beyond. McGraw-Hill, Inc., USA, 2nd edition, 2003.
Yale N. Patt and Sanjay J. Patel. Introduction to Computing Systems: From Bits &

Gates to C/C++ & Beyond. McGraw-Hill, Inc., USA, 3 edition, 2019.

David A. Patterson and John L. Hennessy. Computer Organization and Design,
Fifth Edition: The Hardware/Software Interface. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 5th edition, 2013.

David A. Patterson and John L. Hennessy. Computer Organization and Design:
The Hardware Software Interface ARM Edition. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2016.

Svetlana Peltsverger and Orlando Karam. Is teaching with security in mind
working? In 2010 Information Security Curriculum Development Conference, pages
15-20, 2010.

Sukma Prasetya. The effect of textbooks on learning outcome viewed from differ-
ent learning motivation. In Ist International Conference on Education Innovation
(ICEI 2017). Atlantis Press, 2018.

Gustavo A. Junipero Rodriguez-Rivera and Justin Ennen. Introduction to systems
programming: a hands-on approach. https://www.cs.purdue.edu/homes/grr/
SystemsProgrammingBook/, 2014.

Mary Kay Stein, Janine Remillard, and Margaret S Smith. How curriculum
influences student learning. Second handbook of research on mathematics teaching
and learning, 1(1):319-370, 2007.

W. Richard Stevens and Stephen A. Rago. Advanced Programming in the UNIX
Environment. Addison-Wesley Professional, 3rd edition, 2013.

Cynthia Taylor and Saheel Sakharkar. ’); DROP TABLE textbooks;— An argument
for SQL injection coverage in database textbooks. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, pages 191-197, 2019.
Michael Whitney, Heather Richter Lipford, Bill Chu, and Jun Zhu. Embedding
secure coding instruction into the ide: A field study in an advanced cs course. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
pages 60-65, 2015.

Li Yang. Teaching database security and auditing. In Proceedings of the 40th ACM
technical symposium on Computer science education, pages 241-245, 2009.

https://cwe.mitre.org/data/definitions/121.html/
https://cwe.mitre.org/data/definitions/121.html/
https://cwe.mitre.org/data/definitions/122.html/
https://cwe.mitre.org/data/definitions/122.html/
https://cwe.mitre.org/data/definitions/78.html
https://owasp.org/www-project-top-ten/
https://diveintosystems.cs.swarthmore.edu/
https://diveintosystems.cs.swarthmore.edu/
https://www.tenable.com/blog/buffer-overflow-vulnerability-in-apple-ios-and-macos-devices-disclosed
https://www.tenable.com/blog/buffer-overflow-vulnerability-in-apple-ios-and-macos-devices-disclosed
https://www.usnews.com/best-graduate-schools/top-science-schools/computer-science-rankings
https://www.usnews.com/best-graduate-schools/top-science-schools/computer-science-rankings
https://www.cs.purdue.edu/homes/grr/SystemsProgrammingBook/
https://www.cs.purdue.edu/homes/grr/SystemsProgrammingBook/

	Abstract
	1 Introduction
	2 Background on Unsafe Functions
	3 Related Work
	4 Collecting Security Discussions and Code Snippets from Textbooks
	5 Results
	5.1 Use of Unsafe Functions
	5.2 Introduction of safe alternatives
	5.3 Discussion of Security

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

