Towards Finding the Missing Pieces to Teach Secure
Programming Skills to Students

Majed Almansoori
University of Wisconsin - Madison
malmansoori2@wisc.edu

Adalbert Gerald Soosai Raj
University of California, San Diego
gerald@eng.ucsd.edu

ABSTRACT

Research efforts tried to expose students to security topics early in
the undergraduate CS curriculum. However, such efforts are rarely
adopted in practice and remain less effective when it comes to
writing secure code. In our prior work [18], we identified key issues
with the how students code and grouped them into six themes: (a)
Knowledge of C, (b) Understanding compiler and OS messages, (c)
Utilization of resources, (d) Knowledge of memory, () Awareness
of unsafe functions, and (f) Understanding of security topics. In
this work, we aim to understand students’ knowledge about each
theme and how that knowledge affects their secure coding practices.
Thus, we propose a modified SOLO taxonomy for the latter five
themes. We apply the taxonomy to the coding interview data of 21
students from two US R1 universities. Our results suggest that most
students have limited knowledge of each theme. We also show that
scoring low in these themes correlates with why students fail to
write secure code and identify possible vulnerabilities.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; « Security and privacy — Vulnerability management.

KEYWORDS

SOLO taxonomy, Computer systems, Teaching security

ACM Reference Format:

Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj,
and Rahul Chatterjee. 2023. Towards Finding the Missing Pieces to Teach
Secure Programming Skills to Students. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023),
March 15-18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3545945.3569730

1 INTRODUCTION

Our society, its infrastructure, and the economy are increasingly
reliant on software. Therefore, it is important that developers who

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada.

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9431-4/23/03...$15.00
https://doi.org/10.1145/3545945.3569730

Jessica Lam
University of California, San Diego

jplam@ucsd.edu

Elias Fang
University of California, San Diego

efang@ucsd.edu
Rahul Chatterjee

University of Wisconsin - Madison
rahul.chatterjee@wisc.edu

write and maintain such software are at least aware of basic com-
puter security to ensure that these applications are secure and ro-
bust against malicious attacks. Unfortunately, developers lack basic
security skills [14], and they routinely write vulnerable code [23].

Computer science students in the US can graduate without tak-
ing any security course [2, 22]. To combat the lack of security
knowledge, prior studies have tried to introduce security topics in
students’ early computer science (CS) courses [15, 17, 21, 25], design
security clinics to assess students’ code [6-8], and develop tools
to teach secure programming feedback [24, 28, 29]. Unfortunately,
undergraduate CS students still lack basic security knowledge, such
as safely reading a string from the standard input. While several
prior works tried to propose a solution to this problem, we took a
step back and tried to better understand the problem itself.

In our prior work [18], we found various knowledge areas that
students lack but are prerequisites for writing secure code. We
grouped our observations into six themes: (a) Knowledge of the
programming language (C, in our case), (b) Understanding compiler
and OS messages, (c) Utilization of resources, (d) Knowledge of
memory, (e) Awareness of unsafe functions, and (f) Understanding
of security topics. Although prior work provided what students
lack, it did not delve into what level of knowledge of these skills is
essential for writing secure code. Understanding this would help
us prioritize the areas that we must teach to our students. Thus, we
ask: How could we categorize and evaluate students’ understanding
of prerequisite knowledge and skills needed to write secure code?

In this paper, we dive deeper into the themes proposed in prior
work. For this, we extend the SOLO taxonomy [12] to assess stu-
dents’ understanding of topics that we believe are necessary for
writing and maintaining secure code. We added four levels of un-
derstanding according to SOLO taxonomy, defined them in the
context of required skills to write secure code (the taxonomy can be
found in the supplementary materials [3]) and used the taxonomy
to explain students’ security mistakes in the code.

We found that most students had a low-level understanding of
the five themes, and that these students failed to write secure code,
showing a correlation between these themes and secure program-
ming. Only a few students showed high-level understanding of
these themes and wrote secure code successfully; these students
generally completed some security course in the past.

We believe that this work will help rethink the computer science
undergraduate course curriculum to focus on the problems we
highlight. Doing so will help students write secure and robust code.

https://doi.org/10.1145/3545945.3569730
https://doi.org/10.1145/3545945.3569730

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada.

Theme | Observation | #
Compiler/OS | - Ignores warnings 4
messages - Does not understand compiler’s message 8
- Skims page or documentation 15

Resources .
- Checks example uses of functions only 10

Memor - Mentions undefined behavior
y - Fails or struggles to fix overflow 11
Unsafe - Used at least one unsafe function 17
functions - Used safer alternatives for security reasons 5
Security - Writes insecure code 14
topics - Suggests wrong mitigation to buffer overflow 11

Figure 1: The number of students (#) per observation. Check
supplementary materials [3] for the full list of codes.

2 RELATED WORK

Teaching students security. Research on teaching security is
growing, especially for students in their early careers. This is impor-
tant because prior work [2] has shown that students may graduate
from the top R1 universities in the US without completing any
security course. We assume that it is likely the same case for other
universities around the world. We believe that students must learn
about some security topics in their required courses to avoid writing
trivial insecure code. However, Taylor and Sakharkar [26] showed
that many textbooks used by database courses in the top 50 U.S.
universities do not discuss the security implications of SQL injec-
tion or ways to defend against the vulnerability. Almansoori et
al. [2] examined the mid-level computer systems course taught at
16 U.S. universities, and showed that unsafe C library functions
(e.g., gets, strcpy, etc.) were used in both student projects and
instructor-provided code snippets. These unsafe functions can lead
to many security vulnerabilities such as buffer overflow. It was also
shown that the textbooks used for these computer systems courses
often do not discuss security at all and sometimes even contained
unsafe functions without providing safer alternatives [4].

Security clinics and interventions. Prior work [19] showed
that it is possible to teach security topics to students as early as
CS1. As a result, several modules were created to teach students
secure coding habits in these introductory courses [16]. Bishop and
Orvis [8] created a security clinic to teach students secure coding
practices beyond their introductory courses, which was proven to be
successful in increasing students’ security awareness and reducing
the security issues found in their assignments. However, it was
noted that students often only employed these secure programming
practices when it was required of them in the assignment, seeing it
as a secondary rather than an essential practice.

Continued usage of unsafe functions. However, despite these
interventions, students continue to use unsafe functions [2, 18].
Lack of knowledge of these security implications can make it dif-
ficult for students to recognize similar issues in code should they
come across them in the future. This is important because it was
found in prior work by Fischer et al. [13] that the Stack Overflow
platform, which is relied on by many software developers, contains
an alarming amount of unsafe code snippets. If students are not
prepared or do not understand the security implications of the code
they read and write, it is possible that they will continue to employ

Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, & Rahul Chatterjee

SOLO Level Definition

Pre-structural Fails to understand or have wrong understanding

Uni-structural Has simple understanding or knows a single aspect of

the topic.

Multi-structural Understands many aspects of the topic, but not necessar-

ily the connection between these aspects.

Relational Has deep understanding of different aspects and the rela-

tion between them.

Extended Abstract ~ Has the ability to extend their deep knowledge to new
applications and concepts.

Figure 2: Definition of levels used in SOLO taxonomy [5].

unsafe coding practices in the future. Therefore, it is crucial to
understand why students still write insecure code despite all the
prior work trying to instill secure coding practices.

3 METHODS

We are using the data collected in our prior work [18], where we
conducted a study in two R1 universities, UCSD and UW-Madison,
and recruited 21 participants. We interviewed students who are
at least 18 years old, familiar with C, and have taken Computer
Systems or an equivalent course. Only 4 students completed se-
curity courses. Participants were interviewed over Zoom while
they work on a coding test (the coding survey can be found in the
supplementary materials [3]). Our work was approved by IRB as
discussed in our prior work [18]. We came up with six themes that
reoccurred during our interviews in our prior work [18]. These
themes are the 1) knowledge of C programming, 2) understanding
compiler and OS messages, 3) utilization of resources, 4) knowledge
of memory, 5) awareness of unsafe functions, and 6) understanding
of security topics. In this work, we are focusing only on the last five
themes as knowing C programming is a prerequisite for our study.
We coded our observations under each of the five themes for each
student. The finalized codes are listed in Figure 1. Looking ahead,
we will use these observations to develop a systematic taxonomy
of different mistakes that lead to insecure code writing.

Extending SOLO taxonomy. Biggs and Collis introduced the
structure of observed learning outcomes taxonomy, known as the
SOLO taxonomy [5], to assess the depth of students’ understand-
ing of different concepts and topics. Since its introduction, SOLO
taxonomy has been widely used by educators and researchers for
assessing learning outcomes [10-12]. To our knowledge, few prior
studies have tried to extend the SOLO taxonomy to assess students
understanding of security. Although studies tried to apply Bloom’s
taxonomy [9] (e.g. [27]) to assess computer security education pro-
grams created by security professionals in the lens of an education
theory, the only work that we could find that used SOLO taxonomy
in the context of security and cryptography was by Patterson et
al. [20]. The work, however, focuses on cryptography only, and
does not consider understanding secure coding skills.

We extend the SOLO taxonomy in the context of writing secure
code. Based on the definitions of different levels in SOLO taxonomy
(Figure 2) and the observations we made from the interview data
(Figure 1), we design a novel assessment procedure for students.
We did not consider the extended abstract level because we are not
expecting students to be able to apply their security knowledge

Towards Finding the Missing Pieces to Teach Secure Programming Skills to Students

Compiler & OS I
Resources I
Memory I
Unsafe functions I
Security topics | I

0 7 14 21

I Pre-structural
I Relational

Uni-structural Multi-structural

I Not applicable
Figure 3: Distribution of students based on the SOLO levels.

and skills to new fields and concepts; we believe this is the job of
security experts. Moreover, our coding questions were designed to
only assess students’ basic understanding of security and applying
them while reading and writing codes. Thus, our data is insufficient
to evaluate whether students have extended abstract knowledge.
We iterated over the structure and the definitions of the taxon-
omy multiple times. We made the observations based on students’
thinking-out-loud and their approach to interacting with the code
editor, compiler, and their search behavior, to classify the students’
understanding of security topics based on our taxonomy. The final
version of the taxonomy can be found in the supplementary mate-
rials [3]. Using the taxonomy, two researchers coded the student
interviewees independently. Then, the coders met to resolve any
disagreement, and if a resolution could not be met, the research
team met and collectively decided on a code through discussions.

4 RESULTS

We assess students’ answers to the coding survey using our ex-
tended SOLO taxonomy (found in the supplementary materials [3]).

4.1 Understanding Compiler and OS Messages

Students were allowed to compile their code during the interview
study; 16 students used their preferred IDEs, and 15 students got
compiler (or OS) messages. Thus, they will be our focus in this
subsection. As shown in Figure 3, most students had low-level un-
derstanding of compiler and OS messages (11 pre-structural and 3
uni-structural). Only one student showed multi-structural knowl-
edge, but no student had relational understanding in this theme.

Ignoring Messages. Developers need to care about compilers
and OS messages since they can indicate the need for security
considerations. We observed that 11 students completely ignored
all messages prompted by the compiler and proceeded without
reading them. These students have written vulnerable code in our
interview as well. For example, students got a warning about gets
whenever they tried to use it. In one case, a student got the warning
stating that “The ‘gets’ function is dangerous and should not be
used.” for Q1. Despite the warning, the student executed the code
with input “Hello World” and got “stack smashing detected” along
with an incorrect output. Yet, the student did not pay attention to
the output nor the error. Unfortunately, the student chose gets
as one of their final answers and said that despite noticing the
warnings: ‘I think it works”.

We noticed that students ignore warnings in general, since warn-
ings do not mean the code is broken completely. However, students
also ignored error messages, such as “core dumped”, if they believed
the code works as intended. In fact, similar to the aforementioned
case, many other students got the “stack smashing detected” error

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada.

when testing their code. Only one student was curious about why
the error appears when they input a long string to scanf in Q4.

“I am not understanding messages.” Although some students
noticed compiler messages, many of them did not quite understand
how to address them. Students were allowed to search online dur-
ing the interview, but multiple students did not investigate these
messages further. In one case, a student tried to compile the code
we provided for Q3 using Visual Studio and got an error that says:
“strcpy: This function or variable may be unsafe. Consider using
strcpy_s instead.” Although the student noticed the error, they
thought that the library containing the function is not included,
which was not the case. The student believed the error could be
fixed by simply importing it; however, the student saw that the
issue persisted. As a result, they said: ‘T don’t know” and proceeded
without trying to understand the message.

Some students who were prompted with “stack smashing de-
tected” message noticed the error but did not look it up, nor showed
any understanding of it. For example, one student got the “stack
smashing detected” error once in Q4 and ignored it, then the student
got the same error again in Q5. This time, the student noticed it but
was not sure what it meant. The student was curious about the error,
and after experimenting with the code, they realized that the print
statement after the offending line is executed despite hitting the
“stack smashing detected” error, and wondered whether the code is
executed line by line: “Tt’s interesting how the stack smash detected
comes in if I comment out the print statement. When I uncomment
it, the print happens before the stack smashing detected. Does it just
print everything first and then give me all the list of the errors or is
it like line by line?” Although the student noticed the error, they
concluded that the correct answer is the one causing the error. The
student stated that they recall learning about stack smashing before
but do not remember anything about it.

In many cases, students cared only about the final result and
whether the code works. For example, one student was attempting
to find the issue with the code in Q4 and tried a long input. When
the student got the stack smashing error, they said: ‘Tt worked, but it
[compiler] says stack smashing detected. Maybe this compiler is more
advanced than the one people normally use, but it actually worked.”
The student was willing to proceed with their attempts to find out
how the code may break. However, the student decided to search
the error online after we asked about it and told them that they
may use online resources. After searching it online and reading,
the student learned about the issue, which helped them recognize
the error in the next question: “So I would think that it could be one
of the same errors that we had before”.

4.2 Utilization of Resources

We do not expect students to know all functions and compiler
messages; however, it is important to effectively utilize different
resources (e.g., library documentation) in order to write efficient
and secure code. Thus, students were allowed to use any resources.

Looking up Functions. Most students looked up at least one
function, regardless of whether they already knew it or not. Inter-
estingly, many students who checked documentation just skimmed
them and never attempted to read them carefully. These students
usually check the types of parameters passed to the function and

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada.

proceed with using it. Similarly, some students checked only exam-
ples provided and attempted using functions in a similar fashion as
these examples by simply changing the parameters, which might
work in some cases, but fail in other. Indeed, we observed some stu-
dents who failed to use some of the functions correctly because they
did not pay attention to the documentation. For example, one stu-
dent who stated that they know the difference between fgets and
gets, skimmed the documentation of both functions, then chose
them as correct answers for Q1, although gets is incorrect and does
not print the desired output. Similarly, when attempting to answer
Q2, a student found strcat in Stack Overflow after searching up
“c string concatenation” and tried to use the function immediately
without trying to learn how to use it correctly:

charx concatenated str = strcat(buf, argv[1]);

In another example, a student searched up strcat and checked
the examples in cplusplus.com. The student decided to use it and
then noticed strcpy in the same example, so they switched to it
without checking its documentation. Not only the student failed to
answer Q2, they thought that strcpy concatenates strings and did
not even pay attention to the example provided in the website.

When a student was attempting to explain the issue in the snip-
pet in Q3, they checked up the Linux manual page for strcpy
(man7.com). The manual has an emphasized warning in different
colors, stating “Beware of buffer overruns!”. The page also has an
entire section about bugs which discusses the issue with a small des-
tination buffer. Although the student checked the manual multiple
times, they were just skimming and ignored most of the text. The
student then stated that they did not know why the values stored
in the second array changed and proceeded to the next question.

Understanding Resources. In addition to library documentation,
there are other resources that students encounter during coding
such as Stack Overflow. We noticed that students often skimmed
these resources and did not pay attention to the information pre-
sented in these results. Students mostly visited Stack Overflow
when trying to find answers to their questions. When checking
Stack Overflow answers, students usually search for a short and
straightforward answer. We observed that if the answer seemed
long or contained many lines of code, the student is more likely to
skip it and leave the page. Moreover, when browsing answers, stu-
dents would look for any function that might seem relevant and try
to use it without reading the actual answer and try to understand it.
Unfortunately, many of these students do not only skim search re-
sults but also copy answers and code without understanding them.
One student searched up “concatenate c string” and copied the
answer directly from Stack Overflow and modified it slightly. The
answer contained many lines of code and a long explanation, but
the student skimmed the top of the answer then copied a line of
code without trying to understand the context. The student’s final
answer was:

char buffer[1024];
strcat(strcat(buffer,buf), argv[1]);

Although the answer works, if the input is not large, the student
unnecessarily used strcat twice and created a new destination
buffer other than the one provided in the code snippet. Both lines
were copied from Stack Overflow. Prior work [13] has shown that

Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, & Rahul Chatterjee

Stack Overflow answers often contain vulnerable code snippet, and
in this case, out of context copy-paste of code made it vulnerable.

4.3 Knowledge of Memory

Students are expected to learn and understand how memory works
after taking a computer systems course. However, only three stu-
dents showed substantial knowledge regarding memory (Figure 3).

Limitations of “Undefined Behavior” Many students limit their
understanding of memory-related issues by thinking of them as
“undefined/unexpected behavior”. Prior work showed that lectures
and textbooks for computer systems usually refer to buffer overflow
and other memory-related issues as undefined behavior [4], and this
could be one reason that students use this term frequently. Students
who used this term showed limited understanding of buffer overflow
and memory in general. For example, when attempting Q3, some
students answered that we are copying 30 characters into a 15
character long buffer, which causes undefined behavior. A student
said: “The [buffer] size needs to be large enough when using strcpy.
Otherwise, it results in undefined behavior” Many of these students
did not know the consequences of this undefined behavior.

A few students showed a better understanding of memory and
buffer overflow despite mentioning undefined behavior. One stu-
dent, while answering Q5, stated that the longest option would
cause unexpected behavior because the input would overwrite
values and mess up with other memory addresses. However, the
student stated that long inputs would not crash the program and
selected the wrong answer. Generally, some students do not know
whether undefined behaviors could break the program or not. In
an extreme case, a student believed that undefined behavior is not
necessarily bad and stated: “Like it [undefined behavior] is not al-
ways bad; it is just we don’t know what is going to happen.” Referring
to memory-related errors as undefined behaviors limits the un-
derstanding of their consequences. We argue that students should
understand the actual effects of these errors on memory since they
might introduce security vulnerabilities in programs.

Fixing and Avoiding Buffer Overflow. Many students thought
that buffer overflow would be completely avoided by just increasing
the size of the destination array. They usually suggested making
the buffer large enough (e.g., 1KB) to handle all possible inputs.
Nonetheless, students failed to realize that a malicious user can
input strings longer than the expected input length. A student
stated when answering Q4: “There’s going to be some point where
there’s an upper bound to someone’s name, so you could probably
conclude that there’s a certain size that you can do and you’ll be fine.
You could just use some really big numbers or google whoever has the
longest name and make it [destination buffer] slightly bigger. I don’t
know about any other ways.”

Many of the students who suggested increasing the buffer size
also suggested dynamically allocating the array instead of static
allocation. While this solution might seem plausible, it actually
does not solve buffer overflow in most cases. If the user input is
passed as a command-line argument, then it is possible to dynam-
ically allocate an array with the size of len(argv[1]), avoiding
an overflow in this case. However, if user input is passed to stdin,
then a buffer should be already allocated before reading the input,
meaning that the allocated buffer might be smaller.

https://cplusplus.com

Towards Finding the Missing Pieces to Teach Secure Programming Skills to Students

A few students were categorized as having a multi-structural
or relational knowledge of memory because they successfully pre-
vented buffer overflow. These students paid attention to the buffer
size and stopped reading the user input before overflowing the
array. We asked these students whether increasing the buffer size
was sufficient for solving the issue or not; they stated that you could
never know the length of user input.

4.4 Awareness of Unsafe Functions

Most students showed no concern when using unsafe functions.
15 students had pre-structural knowledge about unsafe functions,
and 1 student had uni-structural knowledge. Only a few students
showed a better understanding of these functions: 2 students pos-
sessed multi-structural knowledge and 3 had relational knowledge.

Unfamiliarity with Unsafe Functions. When choosing a func-
tion that could accomplish a certain task, such as string concate-
nation or reading a standard input, students often chose the first
function that came up in their Google search, as discussed earlier.
This, combined with limited knowledge of unsafe functions, caused
students to use unsafe functions in their code.

Unfortunately, students have shown very limited, or in many
cases, no knowledge about unsafe functions. We hoped that students
would know about gets at least and avoid using it, since prior
work has shown that it is warned against in some textbooks and
lectures [2, 4]. However, many students used gets. For example, a
student suggested in their answer replacing scanf with gets to fix
the issue in Q4: “Using a different buffer-reading function (e.g., gets)
would fix it.” — (Written answer for Q4). The student did not just
suggest using gets, but also did not figure out that scanf could be
overflown in the context of Q4, which is concerning. In general,
students did not just use gets, but also used strcat, strcpy, and
scanf, suggesting that most students have no prior knowledge
about unsafe functions and their flaws.

What is more concerning is that some students also used safer al-
ternatives in their code incorrectly and without checking for buffer
bounds. For example, some students used fgets instead of gets.
However, their choice was not based on security considerations.
Rather, they found the function online and decided to use it. In one
instance, a student wrote the following code for Q1:

if (NULL == fgets (name, 1024, stdin)) { return 1; }

The student imitated the example provided in the documentation
of fgets but failed to notice that the documentation limited the
number of characters read to 60, which is the size of the buffer.
Instead, the student changed 60 to 1024 without any considerations
of the actual buffer size which was 12. Such a mistake when using
safer alternatives would make them as bad as unsafe functions.

Ignoring Flaws of Function. While we encourage teaching about
unsafe functions, learning about them is not enough to avoid writ-
ing insecure code. Surprisingly, some students still used some unsafe
functions despite knowing about them. For example, one student,
who has taken a security course, used gets(name) for Q1 at first.
Then the student remembered that the survey was about secure
coding habits, so they changed their answer to fgets(name, 12,
stdin). When using fgets, the student paid attention to the buffer

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada.

size and avoided buffer overflow. In Q2, the student, however, used
strcpy —which is vulnerable- along with strncat as follows:

strcpy(buf, strncat(buf, argv[1]1, 14));

Although this code snippet is safe in the given context, it uses
strcpy in an unsafe way. The student paid attention only to the
security implications of strcat versus strncat, and not to strcpy.
While some unsafe functions can be used safely by ensuring that the
source string is constant, we believe that avoiding these functions
is a better practice for early stage programmers.

Another student who has also taken a security course showed
a similar behavior: they used gets(name) for Q1. Then, while an-
swering Q2, the student remembered about buffer overflow and
said: ‘T forgot to check for buffer overflow [in Q1]. I realized I didn’t
check the length of the input.” The student did not mention explicitly
that gets is unsafe; however, they stated that they would use getc
instead and read 10 characters only. In both cases, despite having a
security background about unsafe functions and buffer overflow,
both students were not coding with a security mindset.

4.5 Understanding of Security Topics

Many topics in the computer systems course, such as the ones
related to memory, are closely related to security. As shown in
Figure 3, most students have either pre-structural or uni-structural
knowledge of security topics (a total of 12 and 4, respectively).

“I can just write code from scratch.” Writing secure code requires
following best practices. One of the best coding practices is to use
safe and standard library functions. We however found students
sometime try to write their own code instead of using standard
library functions, and in the process inadvertantly introduce bugs
and vulnerabilities (that could have been avoided by using the
library functions). For example, in Q2, some students implemented
string concatenation from scratch instead of using library functions.
While the code might work correctly, the possibility of writing
buggy code is higher than when using existing library functions.
One example code from a student:

char buf[28] = "Hello ";
int offset = 6;
for (int i = 0; i < 22; i++) {
buf[i + offset] = argv[1][i];
if (i == sizeof(argv[1])) { break; }
3

The student tested this code snippet to ensure it works; however,
the code breaks out of the loop whenever i == sizeof (argv[1]),
and since sizeof (argv[1]) is always 4, the code will break out of
the loop before filling up the buffer.

In another example, a student also attempted to implement a
string concatenation algorithm from scratch. However, in this case,
the student made a small mistake:

char buf[28] = "Hello ";

int len = strlen(argv[1]);

for (int i = 0; i < len & i < 23; i++) {
buffi + 6] = argv[11[il;

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada.

When investigating the code closely, one can notice that the loop
continues until i < 23 or in other words, i = 22. Once the loop
reaches the end, the program will be executing the following line:

buf[28] = argv[11[22];

Thus, this will allow writing one byte to the array out of bound,
which can lead to buffer overflow vulnerabilities [1].

User Inputs Might be Long. When handling buffers, students
mostly suggested increasing the buffer size or allocating the buffer
dynamically. However, some students exhibited behavior that should
be avoided at all costs. In one example, a student proposed asking
the user to input a string shorter than the size of the buffer: “This
[buffer overflow] can be fixed by either asking [the user] for shorter
input or reallocating space in name [destination buffer] to support
the length of the input.” The student, in this example, assumed that
the user is honest. Mistrusting the user is a desirable habit that we
want to instill in students. In fact, we observed this behavior in a
few students. One student suggested using fgets instead of scanf
for Q4 to avoid buffer overflow. We asked the student whether
increasing the size of the buffer would solve the issue; the student
replied: “We never know since the user might be a mischievous user.”
The student also added that long inputs can be used for hacking.

5 DISCUSSION

We show there is a correlation between students’ knowledge of
the five essential skills and their secure C coding practices. To
inculcate a security mindset, we may need to redesign some of our
beginner-level CS courses.

Need to Focus on Improving Overall Coding Practices and
Skills of Students. Prior work mainly focused on evaluating and
improving students’ secure programming knowledge and skills.
However, as observed in Section 4, the real problem lies in students’
lack of more fundamental knowledge and skills, such as paying
attention to compiler and OS messages and carefully reading doc-
umentation. Students lacking knowledge about the five essential
coding practices are prone to write insecure code.

Therefore, introductory CS courses (CS1 and CS2) should focus
on instilling students to pay attention to compiler and OS mes-
sages and learn to utilize online and offline resources. Having a
relational level of understanding of these two themes would help
students improve their other required skills. Moreover, utilizing
resources and paying attention to messages are among the most
critical skills students would use after graduating and joining the
industry. Moreover, courses that teach C or C++ languages should
spend more time discussing unsafe functions and their security
alternatives. Finally, computer systems courses should emphasize
basic security mistakes and memory-related issues. We cannot ex-
pect students to acquire excellent secure programming skills and
knowledge without understanding the basic details of process mem-
ory layout; students must grasp topics related to memory before
learning about security. Ideally, students should be formally intro-
duced to computer security through a dedicated course; however,
given the lack of such required courses [2], students should be
exposed to safe and unsafe functions in computer systems courses.

Ecological validity. We interviewed only 21 students across two
R1 universities in the US. Although this is small, we believe that our

Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, & Rahul Chatterjee

results can be generalized to students (and developers) in real-life
scenarios. First, we prepared an interviewing environment that
would reduce and possibly eliminate any stress caused by actual
interviews or exams. Students were allowed to spend as much as 90
minutes solving the survey questionnaire; we believe this provided
students with more time than actually needed to finish the interview.
Second, students could access all necessary resources to solve the
questions on hand, unlike typical coding exams at universities.
Third, we did not explicitly ask students to use compilers or online
resources to evaluate their knowledge of each of the five themes.
Finally, we interviewed students from two different universities,
yet, we observed similar behaviors at both locations, suggesting
that students at other universities might have similar coding skills.

Limitations. Our survey questionnaire was originally designed to
evaluate the understanding of buffer overflow, which made it easy
for some students to predict some of the questions. Redesigning the
survey to avoid predicting questions might help find additional ob-
servations. Also, it is possible that students did not take the survey
seriously because it was not graded nor was part of coursework.
Finally, while we tried to reduce sources of stress as much as possi-
ble, we cannot say for sure that students were not stressed at all,
especially since interviews were conducted during the beginning
of the pandemic. Conducting the same study in a lab setting might
yield different observations or results.

Future work. Our analysis shows that students lack some essen-
tial skills and knowledge necessary for writing secure C code. In
order to teach students secure coding practices, it is important to
identify and understand all the pieces that contribute to secure
programming. Therefore, research should focus on finding the root
cause for why students write insecure codes before trying to solve
the issue. Moreover, our extended SOLO taxonomy [3] can be used
to design surveys and further understand how each of the five
themes contributes to secure programming skills.

6 CONCLUSION

We conducted coding interviews with 21 students from two R1
universities in the US to evaluate students’ secure programming
practices. Our prior work [18] showed that students lack skills and
knowledge in five key themes contributing to security skills. To bet-
ter understand how each theme contributes to secure coding skills,
we designed a modified SOLO taxonomy for each of the five themes
and used it to evaluate students. Our assessment showed that most
students have a rudimentary knowledge and understanding of the
essential skills (themes) needed for secure programming. We also
found that students who had pre-structural or uni-structural knowl-
edge of these themes generally failed to write secure code and avoid
vulnerabilities, implying that there is a strong correlation between
secure programming and these essential skills.

ACKNOWLEDGMENTS

We thank all the students who participated in our study. We also
thank the anonymous reviewers for their feedback on our work.
This work was supported in part by NSF Award 2044473. Any
opinions, findings, and conclusions, or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

Towards Finding the Missing Pieces to Teach Secure Programming Skills to Students

REFERENCES

(1]
(2]

o
&

=

[10]

[11

[12

[13]

[14]

CWE-193: Off-by-one error. https://cwe.mitre.org/data/definitions/193.html.
Majed Almansoori, Jessica Lam, Elias Fang, Kieran Mulligan, Adalbert Gerald Soo-
sai Raj, and Rahul Chatterjee. How Secure are our Computer Systems Courses?
In Proceedings of the 2020 ACM Conference on International Computing Education
Research, pages 271-281, 2020.

Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, and
Rahul Chatterjee. Supplementary Materials for Towards Finding the Missing
Pieces to Teach Secure Programming Skills to Students (Published in SIGCSE TS
2023). https://www.majedalmansoori.com/papers/SIGCSE23_Supplementary
Materials.pdf.

Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, and Rahul
Chatterjee. Textbook Underflow: Insufficient Security Discussions in Textbooks
Used for Computer Systems Courses. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, pages 1212-1218, 2021.

John B Biggs and Kevin F Collis. Evaluating the quality of learning: The SOLO
taxonomy (Structure of the Observed Learning Outcome). Academic Press, 1982.
Matt Bishop. A Clinic for “Secure” Programming. IEEE Security and Privacy,
8(2):54-56, 2010.

Matt Bishop, Melissa Dark, Lynn Futcher, Johan Van Niekerk, Ida Ngambeki,
Somdutta Bose, and Minghua Zhu. Learning Principles and The Secure Program-
ming Clinic. In IFIP World Conference on Information Security Education, pages
16-29. Springer, 2019.

Matt Bishop and BJ Orvis. A Clinic to Teach Good Programming Practices. In
Proceedings of the 10th Colloquium for Information Systems Security Education,
pages 168—1174, 2006.

Benjamin S Bloom et al. Taxonomy of Educational Objectives. Vol. 1: Cognitive
Domain. New York: McKay, 20(24):1, 1956.

Gillian M Boulton-Lewis. The SOLO Taxonomy as a Means of Shaping and Assess-
ing Learning in Higher Education. Higher Education Research and Development,
14(2):143-154, 1995.

Claus Brabrand and Bettina Dahl. Using the SOLO Taxonomy to Analyze Com-
petence Progression of University Science Curricula. Higher Education, 58(4):531—
549, 2009.

Charles C Chan, MS Tsui, Mandy YC Chan, and Joe H Hong. Applying the
Structure of The Observed Learning Outcomes (SOLO) Taxonomy on Student’s
Learning Outcomes: An Empirical Study. Assessment & Evaluation in Higher
Education, 27(6):511-527, 2002.

Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stranksy, Yasemin
Acar, Michael Backes, and Sascha Fahl. Stack Overflow Considered Harmful? The
Impact of Copy&Paste on Android Application Security. In 2017 IEEE Symposium
on Security and Privacy, pages 121-136, 2017.

Dave Gruber. Modern Application Development Security, 2020.

[15

[16

(17

[18

[19

[20

[21

[22

(23]

S
=}

[25

[26

[27]

[28

[29]

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada.

Sara Hooshangi, Richard Weiss, and Justin Cappos. Can the Security Mind-
set Make Students Better Testers? In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, pages 404-409, 2015.

Cynthia E Irvine and Shiu-Kai Chin. Integrating Security into the Curriculum.
Computer, 31(12):25-30, 1998.

Siddharth Kaza and Blair Taylor. Introducing Secure Coding in Undergraduate
(CS0, CS1, and CS2) and High School (AP Computer Science A) Programming
Courses. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, pages 1050-1050, 2018.

Jessica Lam, Elias Fang, Majed Almansoori, Rahul Chatterjee, and Adalbert Gerald
Soosai Raj. Identifying Gaps in the Secure Programming Knowledge and Skills
of Students. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1, pages 703-709, 2022.

Kara Nance. Teach Them When They Aren’t Looking: Introducing Security in
CS1. IEEE Security and Privacy, 7(5):53-55, 2009.

Blain Patterson. Analyzing Student Understanding of Cryptography Using the
SOLO Taxonomy. Cryptologia, pages 1-11, 2020.

Ambareen Siraj, Nigamanth Sridhar, John A Drew Hamilton Jr, Latifur Khan,
Siddharth Kaza, Maanak Gupta, and Sudip Mittal. Is there a Security Mindset
and Can it be Taught? In Proceedings of the Eleventh ACM Conference on Data
and Application Security and Privacy, pages 335-336, 2021.

Ludwig Slusky and Parviz Partow-Navid. Students Information Security Practices
and Awareness. Journal of Information Privacy and Security, 8(4):3-26, 2012.

C Symantec. Internet security threat report: Volume 24. Symantee Enterprise
Security, 2019.

Madiha Tabassum, Stacey Watson, Bill Chu, and Heather Richter Lipford. Evaluat-
ing Two Methods for Integrating Secure Programming Education. In Proceedings
of the 49th ACM Technical Symposium on Computer Science Education, pages
390-395, 2018.

Blair Taylor and Siddharth Kaza. Security Injections@Towson: Integrating Secure
Coding into Introductory Computer Science Courses. ACM Transactions on
Computing Education (TOCE), 16(4):1-20, 2016.

Cynthia Taylor and Saheel Sakharkar. *); DROP TABLE textbooks;— An Argument

for SQL Injection Coverage in Database Textbooks. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, pages 191-197, 2019.

Johan Van Niekerk and Rossouw Von Solms. Using Bloom’s Taxonomy for
Information Security Education. In Information Assurance and Security Education
and Training, pages 280-287. Springer, 2013.

Michael Whitney, Heather Richter Lipford, Bill Chu, and Jun Zhu. Embedding Se-
cure Coding Instruction into the IDE: A Field Study in an Advanced CS Course. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
pages 60-65, 2015.

Jun Zhu, Heather Richter Lipford, and Bill Chu. Interactive Support for Secure
Programming Education. In Proceeding of the 44th ACM technical symposium on
Computer science education, pages 687-692, 2013.

https://cwe.mitre.org/data/definitions/193.html
https://www.majedalmansoori.com/papers/SIGCSE23_Supplementary_Materials.pdf
https://www.majedalmansoori.com/papers/SIGCSE23_Supplementary_Materials.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	4 Results
	4.1 Understanding Compiler and OS Messages
	4.2 Utilization of Resources
	4.3 Knowledge of Memory
	4.4 Awareness of Unsafe Functions
	4.5 Understanding of Security Topics

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

