
Camouflage: Utility-Aware Obfuscation for Accurate

Simulation of Sensitive Program Traces

ASMITA PAL, University of Wisconsin-Madison,, USA

KEERTHANA DESAI, Google, Mountain View, USA

RAHUL CHATTERJEE, University of Wisconsin-Madison, Madison, USA

JOSHUA SAN MIGUEL, University of Wisconsin-Madison, Madison, USA

Trace-based simulation is a widely used methodology for system design exploration. It relies on realistic

traces that represent a range of behaviors necessary to be evaluated, containing a lot of information about the

application, its inputs and the underlying system on which it was generated. Consequently, generating traces

from real-world executions risks leakage of sensitive information. To prevent this, traces can be obfuscated

before release. However, this can undermine their ideal utility, i.e., how realistically a program behavior was

captured. To address this, we propose Camouflage, a novel obfuscation framework, designed with awareness

of the necessary architectural properties required to preserve trace utility, while ensuring secrecy of the

inputs used to generate the trace. Focusing on memory access traces, our extensive evaluation on various

benchmarks shows that camouflaged traces preserve the performance measurements of the original execu-

tion, with an average τ correlation of 0.66. We model input secrecy as an input indistinguishability problem

and show that the average security loss is 7.8%, which is better than traces generated from the state-of-the-art.

CCS Concepts: • Computer systems organization→Architectures; • Security and privacy→ Security

in hardware; Information flow control;

Additional Key Words and Phrases: Synthetic trace generation, Privacy of traces, Performance characteriza-

tion

ACM Reference Format:

Asmita Pal, Keerthana Desai, Rahul Chatterjee, and Joshua San Miguel. 2024. Camouflage: Utility-Aware Ob-

fuscation for Accurate Simulation of Sensitive Program Traces. ACM Trans. Arch. Code Optim. 21, 2, Article 36

(May 2024), 23 pages. https://doi.org/10.1145/3650110

1 INTRODUCTION

The computer architecture community has invested significant effort in developing modeling and
simulation tools for running standard algorithms and benchmark suites. Although such bench-
mark suites span a wide expanse of architectural behaviors, with the increasing rate of application

K. Desai work was completed while at University of Wisconsin-Madison.

Authors’ addresses: A. Pal and J. San Miguel, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI,

USA, 53705; e-mails: asmita.pal@wisc.edu, jsanmiguel@wisc.edu; K. Desai, Google, 1600 Amphitheatre Parkway, Moun-

tain View, CA, USA, 94043; e-mail: keerthanadesai@google.com; R. Chatterjee, University of Wisconsin-Madison, 1210 W

Dayton St, Madison, WI, USA, 53705; e-mail: rchatterjee4@wisc.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1544-3973/2024/05-ART36

https://doi.org/10.1145/3650110

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

https://orcid.org/0000-0001-6949-5070
https://orcid.org/0009-0000-6836-8096
https://orcid.org/0000-0002-0308-8787
https://orcid.org/0000-0002-6886-7183
https://doi.org/10.1145/3650110
mailto:permissions@acm.org
https://doi.org/10.1145/3650110
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650110&domain=pdf&date_stamp=2024-05-21

36:2 A. Pal et al.

Fig. 1. Utility and secrecy risk of publishing traces. c attempts to preserve the utility, while protecting secrecy
of input.

development and algorithmic complexity, it becomes challenging for standard benchmarks to cap-
ture the diverse workloads emerging everyday [46]. Thus, there has been a growing trend towards
the release and dissemination of traces that are profiled from real-world executions of important
applications. Such traces allow the research community to conduct hardware design space explo-
ration with more realistic and timely application behavior. For example, Google recently released
a set of warehouse-scale computing workload traces [37] to provide a better connection between
the evaluation benchmarks used by academic researchers and the kinds of programs actually run
on Google servers on a regular basis. In fact, each year, competitions are held in computer archi-
tecture conferences using trace-based simulation to determine the best performing prefetchers [5],
branch predictors [1], and cache replacement policies [4].

The challenge is that, as we work towards optimizing for real-world applications, we often inad-
vertently capture sensitive information about program input data, while modelling program behav-
ior. For example, hyperparameters and training data used for training a machine learning model
to predict Gmail smart compose [17] may contain sensitive user inputs. An adversary can analyze
such a published trace and recover information about the secret input (γ , as shown in Figure 1(a).
On the contrary, real inputs are tied to an application’s memory footprint and workflow, which in
turn are important for characterizing system performance. Capturing these accurately is critical
to the utility of a trace (simulator performance measurements in Figure 1). Prior techniques for
synthetic trace generation have focused mainly on utility and minimizing simulation speed [7, 8,
10, 47, 58, 59]. They do not consider potential leakage of information about the input in the trace.
The challenges of figuring out an optimal trade-off for utility and security have been explored
in the context of program traces [18, 19]. Synthetic traces generated from these techniques limit
the amount of information being passed onto the trace. However, this information bound is user-
defined; a less conservative choice by the programmer could lead to privacy exploits, while a more
conservative choice will obfuscate necessary architectural behavior, thus jeopardizing the trace

utility. Another instance of trace security has been studied by prior works on memory trace obliv-
iousness, which leverage a similar problem of program input data being secret and the program
code not being secret [39]. In such a threat model, secret data influence the execution path, thus
changing the content and length of memory access, thus making it prone to adversarial exploits.

Motivation Generalizing utility and security measures across traces from all applications contin-
ues to be a hard problem. For security, traces such as those of AES encryption can easily be gen-

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:3

erated using a trivial secret key that is not related to the actual key. But such traces are small and
generally not adopted for performance characterization. Utility-oriented traces are more reliant on
input data, which are often large in size. First, it is hard to quantify the privacy of such inputs which
do not constitute a secret key. Second, generating synthetic inputs that can mimic the architectural
behavior of real inputs is a challenge in itself (as we describe in Section 5.4). Even the usage of ma-
chine learning models on such data requires several samples of the input, which are often not read-
ily available. Existing approaches impose either too great a burden on the party that wants to share
the trace or undermines the utility of the trace, since it is challenging to obtain both (1) utility — re-
tain features that are important for architectural optimization, and (2) security — hide the parts of
the trace that may be sensitive. We see that most techniques are only optimized for either utility or
security, not both, as our evaluations will show. To bridge this gap, we propose Camouflage, which
preserves secrecy (Section 6) of sensitive inputs while delivering optimum utility (Section 5).

Camouflage leverages inherent architectural properties of program semantics to guide behavior
of a trace under simulations. These can be inferred either via hints from the programmer or via
automated heuristics during trace generation [26, 27, 54]. Camouflage operates in a conservative
security-by-default manner, prioritizing obfuscation of the trace and making sure it is only com-
promised when the designer seeks a greater utility trade-off. Such obfuscation ensures immunity
against adversaries vying to extract information about application inputs. For example, an attacker
can recover the secret key [44] from the memory access trace of an encryption algorithm. How-
ever, if the trace is passed through Camouflage as shown in Figure 1, it can obfuscate the secret
input γ , making it nearly impossible for the adversary to recover it, for the same class of attacks.

For trace utility, we limit Camouflage’s focus on properties influencing cache behavior. This
can be attributed to the fact that caches capture complex memory access patterns and our use-
case for this study is memory traces. Prefetchers and replacement policies are two key architec-
tural optimizations that are well-studied today. They rely on accurate simulation of the cache and
memory hierarchy to capture regularities in memory access streams and leverage some form of
spatio-temporal locality. We show through our experimentation, Camouflage is able to preserve
the architectural properties of traces relevant for trace-based optimizations, while removing the
information about the input from the trace. Camouflage does this without requiring the practi-
tioners to regenerate traces on fake inputs which is cumbersome, or use statistical generators to
create traces that do not represent the actual execution of an application.

Contributions. We make the following contributions:

— We identify inherent architectural properties of some key data structures that influence the
performance of various cache-related optimization processes.

— We design and build a trace obfuscation system, called Camouflage, with a conservative
security-preserving mindset that uses tailored obfuscation techniques based on program
semantics. The data structure identification is guided by programmer-led hints or by the
structure learned from the trace using a machine learning model.

— Through comprehensive experimentation with various workloads and cache replacement
and prefetching policies proposed in prior works, we show that Camouflage-obfuscated
traces maintain performance similarity with a τ correlation of 0.66. Additionally, we show
that camouflaged trace preserves the security of inputs, with security loss of average 7.8%,
over all benchmarks.

2 SECURITY-UTILITY TRADEOFFS IN MEMORY TRACES

Memory access traces are very useful for analyzing a range of architectural behaviors. However,
they can also reveal information about the input, which can be sensitive in certain contexts. Pre-
serving the security of the input is paramount to allow free sharing of traces generated on sensitive

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:4 A. Pal et al.

inputs. We aim to obfuscate traces such that (1) traces are secure-by-default, prioritizing the mit-
igation of sensitive input information; and (2) architectural properties are preserved in the trace.
In this section, we explore challenges associated with this two-pronged problem of maintaining
security and utility, in the context of memory access traces.

2.1 Trace Structure Notation

Memory traces are often used to characterize program behavior for studying prefetching and re-
placement policies [1, 4, 5]. In this work, we adopt the trace structure as a sequence of read (load)
and write (store) operations along with memory address values. We formally define a memory
trace T , as a set of memory accesses by program η on an input γ (Figure 1). We denote the trace
generation process f as, T ← f (η,γ ,E), where E denotes the environment where the program is
executed and captures the sources of non-determinism due to scheduling, concurrency, and the
like. T is an ordered list of tuples, T = {(a1,v1, s1), . . . , (an ,vn , sn)}, where ai ∈ {load, store} is
the load or store operation, vi is a virtual memory address, and si represent the size of the (load
or store) access, which is typically between 1-8 bytes depending on the data type. Our goal is to
ensure that no information of the input γ can be inferred from the trace T .

2.2 Threat Model

Publicly available traces are used for performance optimization. We therefore assume the attacker
has access to the trace (T) generated on a secret input (γ) by the company. We also conservatively
assume that the attacker has access to the code of the program (η) used to generate the trace.
Although secrecy of the program is important in certain context, such as intellectual property of
companies, for this paper, we focus on the secrecy of the inputs, which can take various forms
like hyper-parameters of an ML model, structure of a user interaction graph, or keys used for
an encryption mechanism. Assuming the adversary can obtain the memory access trace and the
program, their goal is then to extract some non-trivial information about the input (which they
cannot obtain otherwise). It is tricky to define "some non-trivial information". In cryptography
research, therefore, it is captured using a (in)distinguishability framework [24], where, the attacker
gets to pick two inputs of their choice, and defender (which is the trace generator in our case)
returns (obfuscated) trace of one of the inputs chosen at random; the attacker needs to tell which
input was chosen by the defender. Now, if the attacker cannot tell which input it was, just by
looking at the trace, we can safely assume that it will be hard to learn any non-trivial information
about any of the inputs. We will use this stronger notion of security in the paper, instead of entropy-
based metrics used in some previous work [18] — indeed even a single bit of security loss can leak
sensitive information about the input. Instead, we compute the probability of an adversary to
distinguish the inputs, and thereby bound their ability to learn any sensitive information from
a given trace. Looking ahead, in Section 6 we establish a classification task that upper bounds
attacker’s ability to learn any non-trivial information from a trace.

2.3 Exploitable Information in Traces

Given our trace structure, it is important to understand what information about the underlying
input can be given out by memory access traces alone. Often memory patterns and usage are a
function of application inputs. For example, in Advanced Encryption Standard (AES) encryption,
accesses to the s-box table in memory is determined by the Exclusive OR operation (XOR) of the
secret key and plaintext [44]. Here, we consider some broad scenarios of potential information
leakage from such traces: (a) absolute address values, (b) temporal memory access patterns, and
(c) spatial memory access patterns.

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:5

Absolute address values. Traces record memory addresses accessed for reading (load) and writ-
ing (store) by a program. Such addresses might reveal a secret key or certain information about
the system where the trace was generated. Thus, the absolute values must be masked.

Temporal patterns. Temporal patterns arise if a particular memory location (or a group of mem-
ory locations) is accessed frequently in a fixed interval. Such patterns occur naturally due to loops
or recursion calls. The periodic access can inadvertently act as a signpost to help attackers identify
the locations of interest in the trace. More importantly, it may also reveal loop constants, which
can be security-critical if they are dependent on the sensitive inputs. For example, if a program
compares two strings (such as passwords), looping over the two strings can reveal the length of
the strings and how many characters match. Timing side channels (c.f., [15]) extensively exploit
such vulnerabilities to extract sensitive information.

Spatial patterns. Relative spatial positions of memory addresses in the trace can reveal the under-
lying data structure. If the memory accesses are dependent on the sensitive input, relative positions
could reveal the sensitive input, as we discuss in Section 6.2 how AES secret key is recovered from
a trace. The S-box array is accessed based on the XOR of the secret key and the plaintext, and the
relative memory accesses then reveal the output of that XOR. Thus, if the adversary knows some
part of the plaintext (e.g., HTML header), they could learn the secret key. Similarly, arrays that
record items, based on their hash values, could reveal information about the values that are stored
in it. Especially if the values inserted are from a small domain, such as SSN numbers, Zipcodes, or
names of medicines. Consequently, an attacker can brute-force to recover the inputs by observing
the relative memory accesses of an data-dependent array in a trace. For data-independent arrays,
spatial patterns can reveal the size of the array, the ordering of the elements in the array, and even
the elements. Prior work in attacking encrypted databases has shown it is possible to recover the
elements from just the order of the elements [25].

Known security threats in traces. Research exploiting hardware side channels such as power
consumption traces [22] and cache timing information [44], shows that its possible to retrieve
secret keys, after identifying memory accesses of interest. Unlike traces, in case of cache side-
channels, the adversary needs to control what goes into the cache. In other words, the trace-based
attacks are a superset of class of attacks targeting cache side-channels. Prior work establishing met-
rics of information leakage such as side-channel vulnerability factor (SVF) and cache side-channel
vulnerability (CSV) study the similarity between oracle and adversary traces [20, 64]. In our trace
scenario, an un-obfuscated trace can be assumed as the original trace. Access to this by an adver-
sary would make it easy to recover secret keys. However, there are application traces which do
not embed secret keys and are still susceptible to information leakage, such as model stealing us-
ing synthetic queries [32, 36]. Other techniques such as code mutation provide security by hiding
implementation details of proprietary programs [57]. Security of traces from these applications
needs to be scrutinised using more generalized metrics, such as those based on entropy or distin-
guishability [23]. Memory trace obliviousness also explores this notion of indistinguishability, by
ensuring sensitive program input does not influence the content and length of the memory access
trace [39]. In such threat models, the authors observe that although the mitigation is similar to
timing channels, their problems are orthogonal.

2.4 Limitation of Prior Approaches

Generating traces from synthetic inputs. To prevent passing on sensitive information, one
could generate traces using synthetic inputs. However, for accurate representation of architec-
tural behavior in the trace, such inputs must mimic the distribution of typical inputs used in real
workloads, which itself is a hard problem. Consider an application that takes a social media graph,
such as the one held by Facebook, as an input. Creating a synthetic version of such a graph requires

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:6 A. Pal et al.

an in-depth knowledge of the input and its impact on performance, which is not only difficult for
the application developers but also burdensome to update frequently, as algorithms and user be-
haviors change [46, 52]. Our experiments (Section 5.4) show that such an approach struggles to
preserve utility.

Synthetic trace generation. Myriad techniques have been proposed under the umbrella of syn-
thetic trace generation using statistical profiles as well as trace approximation techniques. These
works are more utility-centric, owing to their use-case of performance optimization. One such ex-
ample is the use of microarchitecture independent and dependent features to profile a trace [21, 30]
and then use these profiles to generate synthetic ones which can be run on simulators or even real
hardware [30]. Other profiling techniques have statistical models of structural simulation data,
with the goal of improving simulation speed and accuracy [43]. There is also a large body of work
which model spatial and temporal locality by generating clones [7, 10, 58–61], sometimes for spe-
cific embedded applications [29] or heterogeneous system-on-chips such as mobile devices [8].
ECS, built on WEST [10], goes further by infusing environment-specific information in these mod-
els [60]. For larger parallel machines and applications, Gao et al. [63] proposed trace approximation
to compress larger memory streams. Other trace compression techniques, like PSnAP employ loop
profiling for HPC applications [42]. The attributes captured in these techniques cover important
program properties such as instruction mix, control flow behaviour, data locality and instruction
level parallelism, which in turn influence memory footprint of an application.

Program behavior has also been characterized using other diverse approaches in prior works.
Chen et al. collected samples of hardware event profiles for feedback-directed optimization [16].
Thiebaut et al. [56] modeled hyperbolic characteristics to generate synthetic memory references.
SynFull focused on NoC traffic for capturing cache-coherence as well as application behavior [9].
SLAB adopted code-based correlation to identify memory access patterns [48]. PerfProx developed
proxy big data benchmarks, by using hardware performance counters [46]. μsuite develops bench-
marks to quantify the impact of operating system and network on microservice performance, in
a data-center setting [55]. Figure 2 compares Camouflage with prior approaches based on two
key attributes: (1) Utility validates whether an approach is verified by architectural metrics such
as miss rates, speedup, (2) Secrecy which characterizes a framework’s quantitative or qualitative
justification of information present in traces. Trace-wringing [18] was one of the first approaches
targeting security. It operates on the principles of signal processing to get structurally correct
traces with a specified information transfer budget. They verify trace security by performing key
recovery attacks on traces generated through executing AES encryptions.

Summary. Thus, traces with realistic inputs are necessary for analyzing architectural simula-
tions; blind obfuscation diminishes their utility to actually reflect architectural behavior. On the
other hand, security concerns thwart efficient trace sharing. Hence, we propose an obfuscation
framework that is capable of preserving certain architectural utility, based on semantics (Section 3),
without jeopardizing secrecy of input.

3 UTILITY-AWARE TRACE OBFUSCATION

Trace obfuscation, without underlying semantic knowledge, risks loss of crucial architectural be-
havior [18, 57]. We propose Camouflage, a program semantics-aware trace modification approach
that preserves key architectural properties necessary for useful architectural simulations. The
stream of memory accesses is a manifestation of the data structures used in the program. Con-
sider, for example, two code segments: one that inserts a new element into an array and another
into a linkedlist. It is assumed both the array and linkedlist are sorted in ascending order. Any in-
sertion in the linked list would access all the nodes preceding it, followed by remapping the node

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:7

Fig. 2. Contemporary approaches in trace generation and their role in the utility-secrecy spectrum (*more
details in Section 2.4).

pointers where the insertion has to occur. The rest of the list nodes occurring after the inserted
node can remain as it is, hence there are no accesses streaming from that part. However, in the
array-based implementation, for inserting a new entry, the elements greater than the entry have to
be shifted to accommodate it. Hence, the memory access stream would reflect this semantic shift.
Though this is a simple example, it illustrates how the choice and organization of data structures
have a profound impact on an observed stream of accesses.

� How does the use case extend to other traces?

Although we consider properties necessary for caches, extending to other traces such as those of
branch prediction is possible. This is not trivial, since the semantics governing a different architec-
tural behavior will vary. However, the framework shown in Figure 4 and the concept of security-
utility trade-off can be adopted. Note that there could be additional properties which would further
improve the utility of the trace. But, these properties would have to be scrutinized for security vi-
olations as well. Given the high correlation exhibited by performance numbers between original
and camouflaged traces (Section 5), we understand that the existing properties are sufficient to
preserve utility.

3.1 Preserving Trace Utility

Cache behavior is reliant on inherent characteristics of an application’s semantics. In this section,
we define these attributes as architectural properties, for fundamental sequential and linked data
structures. Although real programs may have more complex data organizations, these are generally
derived from fundamental data structures.

Data structures with contiguous memory layout. Arrays are mapped to contiguous memory
blocks. However, the memory accesses to such arrays are not always contiguous in time. Some-
times, they are dictated by input to the application, such as the S-box table in AES encryption [44].

Data-independent Array. An array has a base address for the first element and, in accordance
with its predefined size and data type, a sequential chunk of memory is allocated for that array. To
predict subsequent memory addresses, a prefetcher only requires the stride between two elements
of the array assuming that all elements are accessed sequentially. For an array of size n with base
address b and stride s , if every i th element is accessed, the memory address would be the b + i · s .
Figure 3(a) depicts an array of n = 5 and s = 4 for consecutive memory accesses. Thus, we define
the only architectural property as stride of the array; 4 in this example.

Data-dependent Array. Data-dependent arrays refer to those contiguous data structures where
order of accesses to the array depend on the input. Alternately, they can be viewed as one-to-one
hashmaps, which are frequently used in applications with large databases, owing to their storage
efficiency and low search time complexity. A key is searched by hashing it with a predefined

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:8 A. Pal et al.

Fig. 3. Architectural properties of popular data structures.

function and using this result to locate the index of the value corresponding to the key. Given
no alteration in the hash function, memory behavior is largely dependent on the input or the
key. Figure 3(b) shows pixel values as keys and their corresponding frequency of occurrence in
an image, as value in the buckets. When an image is stored in this structure, the frequency of
accessing a bucket entirely depends on the pixel values. The memory sequence seen by the cache
is then a function of the distribution of accesses across different buckets, which we define to be
an architectural property of data-dependent arrays. If we were to mimic this distribution (shown
on the right), we expect the caches to see a similar memory access pattern and exhibit similar
performance. In other words, trace utility would be preserved if the modified trace has a similar
mix of spatial and temporal distributions.

Compressed Sparse Row. CSR format of representation is extensively used in high-performance
scientific computing applications to store sparse matrices, where rows are mostly populated with
zeros. CSR captures column indices of non-zero elements and packs them into a dense array. This
format is highly efficient for storing large matrices or graphs. It is more prefetcher-friendly, since
reading vertices incur adjacent memory accesses. Figure 3(c) depicts a CSR representation of a
graph. It consists of two arrays O and V : (1) O stores the out-degree of a vertex, (2) V stores the
outward vertices indexed via O . In our example, when neighboring vertices are accessed, three
adjacent memory accesses from the array (from b to b+4) are observed. To issue useful prefetches,
this contiguity of accesses should be maintained in the obfuscated trace. One might argue that
it can be treated equivalent to a data-independent array. However, CSR may not always incur all
sequential accesses and depends on the average out-degree or average number of elements in the
row of the sparse matrix. As such, we preserve the average number of temporally adjacent accesses
based on this property.

Data structures with randomized memory layout. Linked data structures such as lists, trees,
and graphs can be inherently allocated in non-contiguous memory locations. Thus, stride-based
address prediction techniques are not always suited to such structures.

Linked list. Linked lists, unlike arrays, allow for dynamic representation in the memory, and
adjacent elements need not enforce a linear memory layout. Though such a layout can be a

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:9

manifestation of the memory allocation strategy, as lists grow in size, their elements may not be
spatially adjacent. The internal points are what identify the adjacent elements in this data structure.
Thus, future memory accesses are dependent on what the current node is pointing to, which we de-
fine as the key architectural property for linked lists. This means that the adjacent accesses belong
to elements in the same node; whereas different nodes need not necessarily be adjacent in memory.
In Figure 3(d) X , Y and Z can occur anywhere in memory. However, assuming that the size of the
first element is s , X , and X + s has to be adjacent in the resultant trace for similar cache behavior.

Tree. Trees are often used to model applications such as file systems. We define the architectural
properties of tree data structures to be (a) the average number of child nodes per node, and (b)
the depth of the tree. In a tree traversal, near-future memory accesses depend on the number of
child nodes and their distance from the root. For example, node 21 in Figure 3(e) points to two
child nodes. The number of entries in a hypothetical prefetch table would only depend on the
number of child nodes, and not the specific nodes. On the contrary, the prefetch table would look
very different for a tree with an average fan-out of 10. Hence, prefetcher performance is clearly
a function of average fan-out. Now, consider two trees with varying depth of 50 and 5,000. If the
cache size is small, the smaller tree does not need a very efficient replacement policy, as opposed
to the larger one. This observation further establishes the impact of generating traces with real-
time input to obtain accurate numbers from architectural simulations. Arguably, the type of tree
traversal also affects the application performance. However, dependence-based prefetchers have
shown that they can adapt to different traversal orders [51].

Graph. Large graphs such as those used in web search, routing or social media analysis, have very
long processing times. This can be attributed to high-latency memory accesses, which are also ir-
regular in nature and hence harder to optimize for caches. Owing to the non-sequential nature of
such workloads, stride- or stream-based caching techniques fail to improve performance of these
memory intensive workloads. Even table-based prefetchers suffer from large storage cost and are
unable to support beyond a certain work set size. However, prior work [6] has shown that it is
possible to improve performance by considering the underlying data structure and the traversal
of memory requests. In particular, we define two architectural properties that caches can leverage:
(a) average in- and out-degree of the nodes, and (b) average pairwise shortest distance. Figure 3(f)
shows a graph in which a search traversal node 10 will be followed by 21 and 45. From a cache’s
point of view, this means the stream of accesses would beM → P → Z . Thus, the number of outgo-
ing edges determine the memory access pattern. For example, a prefetcher trained on the accesses
from a graph of average degree 10, may not function the same for a graph with average degree
100. Thus, the average degree of a graph is a key architectural property affecting cache behavior.

Second, maintaining the average shortest distance between nodes ensures that memory access
sequences from a depth-first traversal yield a similar context for the cache. Consider the nodes
10 and 3 in Figure 3(f), where the shortest distance between them is 2 and the memory access
sequence is M → P → B. Now, a graph with a similar average shortest distance will exhibit the
same memory access sequence. For an ideal prefetcher these sequences should be indistinguishable
and it should be able to prefetch both of them perfectly. On the other hand, a graph with a higher
average shortest distance between nodes will exhibit a longer memory access sequence. Similarly,
a replacement policy will also benefit from preserving the length of an observed memory sequence.

4 CAMOUFLAGE OBFUSCATION FRAMEWORK

Camouflage operates on a security-by-default mechanism, such that all memory accesses are ob-
fuscated, as if there are no known program structures in the trace. To improve utility of the trace
for effective simulations, one needs to first identify data structures existent in the trace. This can

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:10 A. Pal et al.

Fig. 4. Overview of Camouflage framework which takes as input an application source code and outputs an
obfuscated (camouflaged) trace.

be done by adding annotations in the code such that they (a) immediately precede the memory al-
location call of the data structure to be considered, and (b) convey the data structure type1. To ease
the overhead associated with manually traversing the code, our framework provides an automated
mechanism for data structure identification. Figure 4 shows the workflow where Camouflage re-
lies on some form on data structure identification to obfuscate the trace. It is important to note
that this metadata is optional for security concerns; in their absence, Camouflage would obfuscate
the trace oblivious to program semantics.

4.1 Known Data Structure Accesses

Common Modifications. There are several side-channels that an attacker can exploit to recover
information from traces, as discussed in Section 2.3. Camouflage prioritizes obfuscation of all such
vulnerabilities from the original trace. Absolute address values are remapped using a random hash
function2. Although it is imperative to remove privacy-encroaching spatial and temporal patterns,
random naive obfuscation would significantly hamper the utility of the trace. Architectural ar-
tifacts such as prefetchers or replacement policies are dependent on the spatial distribution of
accesses within a page. Camouflage leverages this spatial spread to redistribute accesses, such
that some form of spatial adjacency is preserved at a block-level granularity In addition to this,
there are some structure-specific modifications based on the properties in Section 3.1.

Data Structure-Specific Modifications

Data-independent Array. Data-independent arrays are obfuscated by remapping the array to
a different contiguous memory location. Stacks and queues can also be altered using similar in-
sights, as they have contiguous memory layout configurations. This is obviously on the higher
end of the trace utility spectrum, but any other alteration destroys the inherent properties of an
array Figure 5(a)).

Data-dependent Array. The Camouflage framework emulates the spatial and temporal distribu-
tion of memory access sequences for this structure. To achieve this, we first permute accesses in
the spatial distribution at a 64B cache block granularity. We then generate a temporal distributions
of accesses. Following which, we use statistical modelling and draw a finite set of samples from
both the distributions.

Compressed Sparse Row. Apart from re-mapping like a data-independent array, we obfuscate
the exact number of accesses in an interval to prevent giving out information about the input. To
do this, we obtain the distribution of accesses based on out-degrees. Then, we re-sample from this
distribution such that the average out-degree stays the same. Figure 5(c) shows that the average

1For some structures, memory access sequences are also impacted by the traversal order in the data structure, such as BFS

or DFS in graphs. We provide more details of this in Section 4.1.
2The function is kept secret. This can be done by using a popular hash function, such as SHA-256 and using a secret salt

which is deleted after the trace generation. Or using linear-feedback shift register (LFSR) with a secret initial state.

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:11

Fig. 5. Data structures as seen in a camouflaged trace. Certain architectural properties such as stride in
array and in-/out-degree distribution in graphs are preserved by Camouflage.

out-degree is 2, which is the same as in Figure 3(f), however the distribution has changed, which
in turn reflects the ordering of memory accesses for array O and V . A similar notion applies to
sparse matrices represented in this format as well.

Linked Structures (such as Linkedlist, Tree, Graph). Due to lack of contiguity, linked structures
can be obfuscated as long as links between elements of sequences are maintained in a manner
similar to the original trace. For Tree, memory sequences indicating average fan-out and depth,
should be preserved in the camouflaged trace. Graphs have an additional attribute: traversal type.
The camouflaging process preserves this for retaining program behavior. The synthetic sequence
of memory accesses for a graph can be visualized as a restructured graph, of accesses, such that
average degree is preserved. For example, in Figure 3(f) the sequence M follows P → Z which
follow B → S in a BFS traversal. However, in the average case scenario, camouflaged trace can
have two accesses followed by three. This is showcased in Figure 5(f) where H is followed by
C → A, followed by X → F , thus the overall graph does look like a different one than Figure 3(f).
Note that, this example is only for demonstration and must not be mistaken as an exchange of
access sequence lengths. The averaging process is applied to very large social media graphs and
encompasses the entire trace.

4.2 Auxiliary Accesses

Each data structure has a unique set of architectural properties. Camouflage processes each of
them every time it hits a programmer hint. However, there are other memory accesses, which
can leak subsidiary information. This de-prioritization in trace security must be prevented. For
maximum trace security, this obfuscation would mean re-mapping every access such that all un-
necessary spatial and temporal patterns are obviated. However, this diminishes trace utility as

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:12 A. Pal et al.

prefetcher performance depends on number of pages seen by it. To trade off utility and secrecy,
Camouflage remaps memory addresses such that (1) number of pages stay constant across orig-
inal and camouflaged traces, (2) accesses are uniformly distributed across all pages, ensuring all
camouflaged traces for different inputs look indistinguishable.

�Why does page remapping not mislead hardware design?

Unannotated accesses constitute < 30% of the trace, which being a much smaller fraction, does not
impact the average performance, as it is not identified as a bottleneck. Additionally, most cache
and memory techniques often operate at higher levels in the cache hierarchy and thus deal with
physical addresses where contiguity is limited. As such applying a page-aware absolute address
randomization does not mislead cache utility.

�What about missed data structures?

Identifying all structures which contribute to performance is a key feature in preserving utility in
Camouflage. Hence, missed annotations would impact the performance measurements. However,
they do not lower trace security as Camouflage is security-by-default and obfuscates all accesses,
in the absence of annotations. This motivates us to design an easier average-case obfuscation, in
the next section.

4.3 Camouflage-auto Framework

Manual annotation can be tedious, especially for large code bases. Although, programmers need to
do this annotation only once, before generating the camouflaged traces, we realize automating the
process will make Camouflage more adaptable. We are motivated by prior approaches for reverse
engineering data structures from binaries [26, 54]. In the context of memory access traces, several
machine learning techniques have been explored, especially for studies around prefetching and
replacement [40, 50, 53]. Itai and Slavkin applied machine learning to identify data structures in an
address trace, however, their approach assumes singular data structure and very simple operations
on it, as opposed to traces from benchmarking applications [27]. We design Camouflage-auto as
a combination of partitioning and classification techniques to determine data structures in the
trace. It then proceeds with trace obfuscation according to Camouflage framework, based on the
detected data structures.

Automatic Data Structure Identification

Partitioning. To identify data structures, we first segment the trace into different process sections,
such as code, heap, and stack accesses. Next, we group memory addresses based on 32 MSBs of the
addresses, which we call memory partitions. We found based on our workloads that a single par-
tition typically has one type of data structure. Although this might not be true for all applications,
we do observe our set of workloads complying to this heuristic. For each partition we compute the
distribution of the differences in consecutive memory accesses. We then create a feature vector x

of size 17 for a partition such that xi denote the fraction of consecutive memory accesses inside a
partition that differ by less than 2i but no less than 2i−1, where 0 ≤ i ≤ 16.

Classification. We train a multi-class multi-layer perceptron (MLP) classifier to predict the
data structure, given a feature vector of a partition. The MLP has two hidden layers with ReLU
activation and an output layer with softmax activation. We created a dataset of feature vectors of
the partitions, with our hand-labeled data structures. We segregate our benchmarks into train and
test sets, such that both encompass all known data structures, as shown in Table 1. We achieve
an average of 95% and 82% accuracy on the training and test set, respectively. We observe that
the mis-classified test cases primarily belong to graph or CSR, predicted as a data-independent
array. Given the predominance of samples from arrays in the training set, this observation is
justified.

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:13

Clustering. Although classification assigns labels to a partition, misclassification might yield
adjacent partitions to have different labels. If a spatial region is dominated by a certain label, it
is more likely, the intermediate partitions belong to the label with the majority and were mis-
classified. Hence, we apply an agglomerative clustering approach, with distance-based metric, to
identify unique clusters among feature vectors, to assess a majority label. Following which, we
apply a filtering technique to weed out inconsistent predictions for partitions belonging to the
same cluster.

Although, Camouflage-auto does a good job for our set of applications and its ease of use makes
it a viable option for trace obfuscation. However, for the most accurate performance characteriza-
tion, we recommend usage of Camouflage, especially in cases where the programmer is aware of
the bottleneck areas of the code.

5 EVALUATING UTILITY OF CAMOUFLAGED TRACES

This section details our choice of metrics that reflect trace utility as well as the experimental setup
used for adjudging these metrics. We evaluate how well trace generators can preserve architectural
behaviors seen in original traces. For comparison to prior work, we use traces modified using the
Mocktails [8] and Trace-wringing [18].

5.1 Measuring Trace Utility

We measure the utility of a trace by comparing the speedup across different prefetchers and re-
placement policies. For prefetcher variation, we also report percentage of useful prefetches. For
replacement policy variation, we look at last level cache miss rates. The numbers seen by the
original trace will henceforth be referred as “original utility”.

Prefetcher Variation

Speedup. Prefetchers analyze memory access patterns to reduce memory latency. As such, ad-
judging accurate memory behavior representation in a synthetic trace can be done by comparing
prefetcher speedup of the original trace. Prefetcher speedup is calculated by normalizing IPC

(Instructions per Cycle) to a baseline system with no prefetcher enabled. To maintain trace

utility we look at this speedup trend before and after obfuscation. For example, if a prefetcher
(fA) performs better than another prefetcher (fB) on the original trace, a good trace modifica-
tion technique would preserve the similar trend. Given the degree of obfuscation introduced
in the synthetic trace, absolute prefetcher speedup numbers may not always be preserved. We
adopt a ranking metric based on correlation between two lists to represent this speedup compar-
ison (Section 5.3). For our evaluation, we use the following prefetchers: IP-Stride [45], Kill the

program counter (KPCP) [35], Next-line [31], Pangloss [49] and Signature path prefetcher

(SPP) [34]. The prefetchers are selected based on their occurrence in actual systems and good
performance numbers exhibited in prefetching championships [5]. For this study, the replacement
policy adopted across all cache levels was LRU.

Percentage of useful prefetches. In addition to speedup, we look at the variation in this metric,
which is calculated if a prefetched data is actually consumed. Since our prefetchers are enabled at
L2, we report the ratio of useful prefetches at this cache level. We report the difference in percent-
age of useful prefetches of an obfuscation technique w.r.t. the original.

Replacement Policy Variation

Speedup. Replacement policies aim to better manage the last-level caches [2] (LLCs), such that
data is not evicted too early or too late. For our study, we consider Random Replacement (RR)

as the baseline replacement policy. With no prefetchers enabled, we evaluate the speedup over
this baseline for four other replacement policies — LRU, SHIP [62], SRRIP, and DRRIP [28]. If one

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:14 A. Pal et al.

Table 1. Known Data Structures in Each Application with
Train-Test Split for Camouflage-auto

Applications Data structures

Train

deepsjeng Data-dependent Array, Linked list
gcc Graph, Data-independent Array
lbm Data-independent Array
x264 Data-dependent Array
xalancbmk Graph
bc, bfs, cc, tc Compressed Sparse Row

Test
mcf Data-independent Array, Graph
histeq Data-independent & Data-dependent Array
xz Data-independent Array
pr, sssp Compressed Sparse Row

replacement policy (say LRU) performs better than another (say SHIP) for the original trace, we
study how closely our obfuscated traces follow this “original utility”. To quantify this, we use a
correlation coefficient (Section 5.3).

LLC Miss Rate. We look at LLC miss rates, normalized to the baseline policy. To better understand
this, we project a heatmap with each cell representing the difference pre and post obfuscation. A
lower difference indicates a closer number to the “original utility”.

5.2 Experimental Setup

We capture program behavior for seven memory intensive applications from the SPEC2017 bench-
mark suite [14], histogram equalization from the PERFECT suite [11] and six graph algorithms
from the GAPBS suite [12]. The traces used in our evaluation are profiled using a dynamic instru-
mentation tool, PIN [41]. Each application is instrumented to capture the trace structure discussed
in Section 2.1, to be compatible with ChampSim [3]. It is a microarchitectural trace-based simula-
tor used in 3rd Data Prefetching Championship [5] and 2nd Cache Replacement Championship [2].
We use a 512KB 8-way associative cache for our simulations. Traces tend to grow very large, which
is why we used pre-defined simulation points, used by traces in [5]. We trace about 100 million
instructions at these simulation points and then use Camouflage to modify the trace, based on pro-
grammer annotations. For example, if the programmer flags an array, then modification techniques
as per Section 4 are applied. The rest of the trace is remapped in a page-aware manner Section 4.2.
For each application, we identified the most memory intensive data structures and manually an-
notated them. The key data structures for our workloads are shown in Table 1. Camouflage is
equipped to handle multiple data structure types and well as multiple structures of same type, in
any application. For processing synthetic addresses, we use a pseudo-random number generator
implemented by a linear feedback shift register (LFSR).

5.3 Performance Analysis

We devise a ranking system for prefetcher performance using the Kendall rank correlation coef-
ficient (τ) [33] between the original and camouflaged traces. τ captures pairwise disagreement
between two ranked lists. We compute the speedup for traces, before and after parsing through
an obfuscation, across prefetchers and replacement policies stated before. Then we rank the dif-
ferent policies based on the their speedups for both the traces. Finally, we compute the τ between
these two ranked speedup lists. A τ closer to 1 indicates a greater similarity between two ranked

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:15

Fig. 6. Performance comparison of prefetching and replacement policies for different traces: Original (OG),
Mocktails (MT), Trace Wringing (TW), Camouflage (C) and Camouflage-Auto (C-A). The speedup is normal-
ized to a baseline with prefetching disabled and LRU replacement, for prefetcher trends and, with random
replacement baseline and no prefetching for cache replacement.

lists, which translates to lower variation in speedup trends across pre and post-camouflaged traces.
Hence, for better trace utility τ should be closer to 1.

For reporting speedup numbers, we categorize the applications in three broad groups, based on
their degree of memory intensive nature, according to misses per kilo instruction (MPKI): (a)
low intensity (MPKI ≤ 1): histeq, bc; (b) medium intensity (1 < MPKI < 10): gcc, lbm, x264,
xalancbmk; and (c) high intensity (MPKI ≥ 10): deepsjeng, mcf, xz, bfs, cc, pr, sssp, tc. Figure 6
depicts the average speedup in each intensity group. In both prefetcher and replacement studies,
the workloads follow the speedup trends very closely for Camouflage, Camouflage-auto and
Mocktails. The effect is less pronounced in a high intensity workload group. Figure 8(a) plots
the absolute difference in percentage of useful prefetches of obfuscated traces using Camouflage,
Camouflage-auto, Mocktails and Trace Wringing, w.r.t. original traces. A darker area indicates a
larger difference in this metric, i.e., worse utility. Both traces from Camouflage and Camouflage-
auto do not exhibit any notable difference, apart from deepsjeng. In deepsjeng, we find that
different prefetchers yield similar speedups and thus the number of useful prefetches sees little
variation across different trace generators. A similar utility study is performed for varying
replacement policies, shown in Figure 8(b), where camouflaged traces maintain very similar LLC
miss rates compared to the other approaches, indicating good utility. xz exhibits a slightly higher
delta of miss rate for Camouflage-Auto. Since this is a data compression application, it is possible
that the array data structure was mis-classified as multiple arrays instead of one large array, due
to the automated access pattern detection nature of Camouflage-auto. When the camouflaged

trace was generated with this notion, the arrays were allocated in different memory regions,
thus altering the miss rate. Camouflage-Auto is an automated process and to get more accurate
obfuscation, usage of Camouflage is recommended.

Comparison with Prior Works. We compare both versions of Camouflage with Mocktails [8]
and Trace Wringing [18]. For Mocktails, we adopt the two level hierarchy with temporal followed
by dynamic spatial partitioning. Mocktails dynamically identifies spatial regions to generate mem-
ory models which is then used to replay the original workload behavior. For Trace Wringing, we try
to tune the progressive probabilistic Hough transform parameters to the best of our ability. On ob-
serving the τ coefficient numbers in Figure 7, Mocktails exhibits a relatively lower correlation with
the original trace, as opposed to Camouflage. Figure 8(a) also shows Mocktails-generated traces
from histeq and xz exhibit larger variation for useful prefetches. Trace Wringing exhibits nega-
tive correlation in speedup for some workloads and relatively lower correlation numbers when
compared to Mocktails, Camouflage and Camouflage-auto (Figure 7). This happens because most
prefetchers don’t exhibit significant relative speedup over the baseline, as seen in Figure 6. The τ
numbers seen in Figure 6(b) align with the trends observed in LLC miss rate in Figure 8(b).

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:16 A. Pal et al.

Fig. 7. The Kendall Tau coefficient (τ) [33] of IPC speedup of synthetic traces generated by Camouflage,
Camouflage-Auto, Mocktails and Trace Wringing with respect to the “original” trace for different applica-
tions. τ ∈ [−1, 1], where τ = −1 means least correlation. The top row indicates the obfuscation technique
with the highest correlation.

Fig. 8. Heatmaps showing two different utility metrics, under different trace obfuscation schemes. A darker
cell means a higher difference and thus worse utility of the obfuscated trace.

5.4 Additional Utility Comparison using Synthetic Inputs

Creating synthetic input for real programs seem to be a contrastive but plausible approach for
secrecy problems, provided the inputs are easily generated and do not demand in-depth knowledge
of the application. For this study, we use a graph generator provided with GAPBS [12] to create
uniform random graphs with a number of vertices equal to that of actual graphs of social networks,
roadmaps and web graphs from SNAP [38]. Following which we generate traces for 10 synthetic
graphs and compare the speedup relative to the original trace, in terms of τ . We observe −0.19 <
τ < 0.39 across all GAPBS applications. This is significantly lower than Camouflage, which ranges
between 0.39-0.99 across GAPBS applications, as shown in Figure 7.

6 EVALUATING SECURITY OF CAMOUFLAGED TRACES

Camouflage carefully obfuscates traces to remove information about the private input in the trace,
while preserving their architectural properties. By default, Camouflage obfuscates all memory
accesses using a page-aware remapping of all memory addresses, unless the access is part of a data
structure that is annotated by the developer — in that case it uses tailored obfuscation techniques
that preserve the architectural properties in the trace (as shown in Section 3). Although such

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:17

tailored obfuscation is good for utility of the trace, it can still compromise the private input. In
this section, we measure how well Camouflage protects the inputs used for generating a trace.

Measuring secrecy of the inputs is not trivial, because even few bits of information about the
input can be damaging. Therefore, instead of information leakage or entropy-loss based metrics
used in prior works, we follow the definition used in the cryptography community to analyze the
security of message encryption schemes, namely message indistinguishability [24] and message re-
covery [13] security. We analyze input secrecy in two different ways: (a) input indistinguishability,
and (b) resilience to input recovery.

6.1 Measure Input Secrecy via Input Indistinguishability

The input indistinguishability of a trace generation technique is defined as follows: Given a trace
generated from a randomly sampled input γ ∈ I from a finite set of inputs I, an attacker is
tasked with identifying the input that was used to generate the trace. For a secure trace genera-
tion procedure the attacker should not be able to succeed in this task (with probability better than
random guessing). The set of inputs I is chosen to match the realistic distribution of inputs (to
avoid degenerate inputs, such as all zeros, that produce obviously distinct traces). In our threat
model, the attacker knows the set of inputs I and has access to the trace generation and obfusca-
tion frameworks, thus the attacker can generate as many traces of those inputs as computationally
feasible. The only information the attacker does not know is the randomness used during the gen-
eration process of the challenge trace. Input (in)distinguishability property captures any leakage
of sensitive information via the trace. For example, an attacker who can extract any non-trivial in-
formation about the input from a given trace must be able to at least identify which input was used
to generate the trace, and therefore will be able to break the input indistinguishability property.

Following this definition, the attacker’s strategy can be modelled as a multi-class classification
task, where the attacker trains a classifier to classify traces into one of the input classes I. The
adversary thus takes a trace as input and outputs the identifier of the input used to generate the
trace. We quantify this indistinguishability in terms of security loss, measured as the difference
between the achieved classification accuracy and the accuracy of random guessing (which is 1/|I|).
Hence, a system is deemed ideally secure if its security loss is 0, where the adversary’s classification
accuracy is close to the probability of a random guess.

Selecting Features and Training Classifiers to Distinguish Inputs.

Given a trace, we therefore first extract a set of features based on the spatial distribution of
access patterns in the trace; such access pattern has shown to reveal information about the input.
Specifically, we start by normalizing the memory addresses in a trace by dropping the least signifi-
cant 6 bits — assuming 64-byte cache blocks — and computing the relative distance with respect to
the lowest memory block address present in the trace. Most systems operate on a cache block size
of 32 – 128 bytes. During the process of judging indistinguishability and feature vector extraction,
an adversary can experiment with multiple block sizes to select the best one. In our study, 64 bytes
is the empirical optimum. We only consider the smallest n normalized memory locations that are
accessed at least once in the trace. Then, for each of the n normalized block addresses, we compute
the fraction of memory accesses that involve that block. This spatial distribution of accesses to n
memory locations is used as the feature vector for our classifier. We do not know the optimality
of these features; there might exist a different set of features that can distinguish camouflaged

traces better using trace distinguishability. However, to the best of our knowledge this is the first
exploration of how we can analyze security of obfuscated traces, and this combination of features
provided a good overall performance on distinguishing traces.

It is unclear what strategy an attacker could take to maximize their accuracy this classification
task, especially given the large size and complexity of the trace datasets. Therefore, to learn the

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:18 A. Pal et al.

Fig. 9. Security loss observed across different classifiers to identify inputs from a given trace of different
types of workloads. The dotted line shows minimum security loss, where the classifiers’ success is equal to
that of a random guess.

accuracy of multi-class classification problem of identifying the input (class) given a trace, we
considered six popularly used classification algorithms: decision tree (DT), k-nearest neighbor

(KNN), logistic regression (LR), multi-level perceptron (MLP), Naive Bayes (NB) and ran-

dom forest (RF). Although this approach does not provide an absolute theoretical upper bound
on the attack’s success, it provides an empirical understanding of the accuracy that an attacker
could achieve in practice. Each classifier takes the feature vector explained above, and outputs
a value between {1, 2, . . . , |I |}, denoting the class label of the input. As the feature dimension
is quite large, we reduced the dimension to 100, using principal component analysis (PCA),
prior to feeding the training data into the classifier. For the security analysis, we consider six ap-
plications from GAPBS workloads and histeq. We do not consider SPEC17 workloads as they take
specific scientific inputs which are hard to obtain. On the contrary, GAPBS takes graphs as inputs,
which we obtained from SNAP datasets [38]. We also consider histeq. Input images for histeq were
obtained by processing 16-bit pixel images of 3840 × 2160 resolution from the web.

For each workload, we choose |I | = 16 different inputs and generate 10 traces for each input
for each workload. For each input we use eight randomly chosen traces for training, and keep
two traces for testing. We train the classifiers using these 8 × 16 = 128 traces, and test with the
remaining 32 traces.

In our case, minimum security is 6.25%, assuming equal probability across 16 labels. We com-
pare the security loss of Camouflage and Camouflage-auto with that of Mocktails [8] and Trace
Wringing [18] and report the numbers in Figure 9. For the baseline comparison, we also compute
the classifier’s performance on the original trace (without any obfuscation).

�Why do we restrict our evaluation to 16 classes and 10 traces per input?

In real-world situations the input can be from a large space (much bigger than 16), adding more
complexity to the attacker’s task. Thus, our results provide a conservative upper estimate of the
attacker’s success. We chose 16 to balance between computational overhead while also gaining
reasonable insight into the attacker’s success probability. We limit our analysis to 10 traces per
input, because generating traces from SPEC benchmarks and large graph workloads is computa-
tionally expensive. Additionally, in order to train classifiers on them, these traces need to be stored

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:19

and processed. In our research machine (with 16 core, 12th-gen Intel Core i9 processor), generating
160 traces for a workload takes on average 50 hours.

Results. As shown in Figure 9, original traces (without any obfuscation) are easy to distinguish;
all classifiers achieve near perfect security loss (93.8%) for most of the benchmarks. Traces gener-
ated using Mocktails are also easy to identify. Our classifiers achieve an average of 97.2% accuracy
(which amounts to 91% security loss) across all benchmarks. This is expected, as Mocktails [8] fo-
cus on preserving trace utility as opposed to the security. Traces modified by Trace Wringing [18]
exhibit significantly lower security loss, with average classification accuracy of 17%. Again, this is
due to their custom construction that limit the information passed onto the resultant trace. (How-
ever, this also hampers their utility as we show in Section 5.)

For almost all classifiers and across all benchmarks, Camouflage and Camouflage-auto traces
exhibit similar performance, and much lower average security loss than all, 6%. Overall, Logistic
regression perform the best. For some workloads such as bc, both Camouflage and Camouflage-
auto performs poorly; the classifier can identify the correct input with 37% accuracy. We are not
exactly sure about the reason for this; future works can investigate the effect of workloads on trace
obfuscation and input secrecy.

6.2 Resilience to Input Recovery

In Section 6.1, we show that Camouflage traces resist identifying the input from a small set of in-
puts. Here, we investigate the input recovery security through a set of known attacks against traces.
We show that traces generated using prior work can be analyzed to extract keys, while it is not pos-
sible to do so for camouflaged traces. We did not investigate new attacks that could be possible on
camouflaged traces nor do we claim that Camouflage traces are secure against more sophisticated
attacks. Indeed future work should investigate developing new attacks against trace obfuscation
techniques like Camouflage. We will therefore open source all code and data we used in this paper
to encourage follow up work on trace security. Here we demonstrate one piece of evidence that
Camouflage is able to prevent known input recovery attacks against memory access traces.

AES key recovery.

It is possible to retrieve keys from a trace of AES encryption if the adversary knows the
corresponding plaintext and the ciphertext. We adopt this simple attack from [18, 44]. The
AES encryption includes a non-linear transformation step performed by accessing the Rijndael
substitution function (S-box), which is stored in the memory as a table. In the first round, offsets
used to index the table are determined by XOR-ing each key byte with the plaintext. Hence,
discovery of offsets reveals the key used for encryption, given the adversary knows the plaintext.
The memory access sequence can be easily pruned to extract addresses of interest to the attacker.
Following which, the attacker tries to determine the base address of the S-box table and get the
offset. This offset when XOR-ed with the plaintext reveals the key. However, if these offsets were
obfuscated, it would be difficult to recover correct key bytes from the first round of encryption.
Additionally, it would be nearly impossible to get the key, unless the first round succeeds, as
subsequent rounds depend on the state of the first round. Camouflage takes advantage of such
semantic insights to obfuscate accesses.

We verify if Camouflage can prevent such attacks on encryption applications. We perform the
first-round-attack on each of these applications. We assume that they store the tables in memory,
similar to the strategy adopted in [18, 44]. We applied the attack on the traces generated by Cam-
ouflage for AES, DES, and Blowfish. We also measure trace utility, for all the three encryption
applications, using the metrics in Section 5.1. There is no significant change in speedup numbers,
because none of these applications are memory intensive. The tables in memory are 512B in size,

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

36:20 A. Pal et al.

Fig. 10. Summary of secrecy-utility results, shown as tuples of average security loss and average τ .

which fits easily in the L1 cache. We found the attack cannot retrieve the key for all three applica-
tions. For comparison, we tested the same attack on the traces generated by Mocktails and Trace
Wringing and the key was not recoverable.

7 SECRECY-UTILITY TRADEOFF IN CAMOUFLAGE

Camouflage provides a tunable balance between secrecy of user inputs and the utility of the trace.
We show the utility (measured as average τ) and secrecy (measured as average attack failure rate) of
different trace generation techniques in Figure 10. Mocktails performs better for utility but tends
towards maximum security loss. Whereas Trace Wringing provides better secrecy, but fails to
preserve utility. Camouflage outperforms these trace generation techniques when we consider
both the utility and secrecy of the trace. Even Camouflage-auto fares very well on secrecy, with
an average security loss of 7.75%, as it leverages the conservative crux of our obfuscation strategy.
It suffers slightly on the performance side as seen in Figure 7. However, we do believe that is
acceptable. Thus, Camouflage provides a novel way of generating useful traces for performance
optimization whilst assuring minimal information leakage.

8 CONCLUSION

Trace utility and secrecy are rarely explored in the same context as they operate on either end of
the spectrum. Camouflage navigates through the challenges involved in synthetic trace genera-
tion for traces of workloads which are never released, owing to risks associated with user privacy.
Although we focus on specific architectural behaviors, the framework could be extended to other
traces, where the utility-governing properties would depend on the behavior in the study. Since
we design Camouflage to be security-by-default, no structure would be able to unknowingly reveal
information. Our experiments on trace security show low success rates of an attack by an adver-
sary, thus proving mitigation of latent information. We believe such an obfuscation framework
can facilitate a more inclusive set of applications, for representative and timely hardware design
space exploration.

REFERENCES

[1] 2016. Championship branch prediction (CBP-5). (2016). https://jilp.org/cbp2016/

[2] 2017. Cache replacement championship (CRC-2). (2017). https://crc2.ece.tamu.edu/

[3] 2017. ChampSim. (2017). https://github.com/ChampSim/

[4] 2018. Championship value prediction (CVP-1). (2018). https://www.microarch.org/cvp1/cvp1online/program.html

[5] 2019. 3rd Data Prefetching Championship. (2019). https://dpc3.compas.cs.stonybrook.edu/?final_programs

[6] Sam Ainsworth and Timothy M. Jones. 2016. Graph prefetching using data structure knowledge. In Proceedings of the

2016 International Conference on Supercomputing (ICS ’16). Article 39.

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

https://jilp.org/cbp2016/
https://crc2.ece.tamu.edu/
https://github.com/ChampSim/
https://www.microarch.org/cvp1/cvp1online/program.html
https://dpc3.compas.cs.stonybrook.edu/?final_programs

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:21

[7] Amro Awad and Yan Solihin. 2014. STM: Cloning the spatial and temporal memory access behavior. In 2014 IEEE 20th

International Symposium on High Performance Computer Architecture (HPCA). 237–247.

[8] M. Badr, C. Delconte, I. Edo, R. Jagtap, M. Andreozzi, and N. E. Jerger. 2020. Mocktails: Capturing the memory be-

haviour of proprietary mobile architectures. In 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA). 460–472.

[9] M. Badr and N. E. Jerger. 2014. SynFull: Synthetic traffic models capturing cache coherent behaviour. In 2014 ACM/IEEE

41st International Symposium on Computer Architecture (ISCA). 109–120.

[10] G. Balakrishnan and Y. Solihin. 2012. WEST: Cloning data cache behavior using Stochastic Traces. In IEEE International

Symposium on High-Performance Comp Architecture. 1–12.

[11] Kevin Barker, Thomas H.Benson, Dan Campbell, David Ediger, Roberto Gioiosa, Adolfy Hoisie, Darren Kerbyson,

Joseph Manzano, Andres Marquez, Leon Song, Nathan Tallent, and Antonino Tumeo. 2013. PERFECT (Power Efficiency

Revolution For Embedded Computing Technologies) Benchmark Suite Manual. Pacific Northwest National Laboratory

and Georgia Tech Research Institute. http://hpc.pnnl.gov/projects/PERFECT/

[12] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP Benchmark Suite. https://doi.org/10.48550/ARXIV.

1508.03619

[13] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. 2013. Message-locked encryption and secure deduplication.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 296–312.

[14] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017: Next-generation compute bench-

mark. In Companion of the 2018 ACM/SPEC International Conference on Performance Engineering (ICPE ’18). 41–42.

[15] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. 2021. SoK: Design tools for side-channel-aware

implementions. arXiv preprint arXiv:2104.08593 (2021).

[16] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha Ramasamy, Paul Yuan, Wenguang Chen, and

Weimin Zheng. 2010. Taming hardware event samples for FDO compilation. In Proceedings of the 8th Annual IEEE/ACM

International Symposium on Code Generation and Optimization (Toronto, Ontario, Canada) (CGO ’10). 42–52.

[17] Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan Wang,

Andrew M. Dai, Zhifeng Chen, Timothy Sohn, and Yonghui Wu. 2019. Gmail smart compose: Real-time assisted

writing. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

(Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery, New York, NY, USA, 2287–2295. https:

//doi.org/10.1145/3292500.3330723

[18] Deeksha Dangwal, Weilong Cui, Joseph McMahan, and Timothy Sherwood. 2019. Safer program behavior sharing

through trace wringing. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-

ery, New York, NY, USA, 1059–1072. https://doi.org/10.1145/3297858.3304074

[19] Deeksha Dangwal, Zhizhou Zhang, Jedidiah R. Crandall, and Timothy Sherwood. 2021. Context-aware privacy-

optimizing address tracing. In 2021 International Symposium on Secure and Private Execution Environment Design

(SEED). 150–162. https://doi.org/10.1109/SEED51797.2021.00027

[20] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012. Side-channel vulnerability factor:

A metric for measuring information leakage. In 2012 39th Annual International Symposium on Computer Architecture

(ISCA). 106–117. https://doi.org/10.1109/ISCA.2012.6237010

[21] L. Eeckhout, K. de Bosschere, and H. Neefs. 2000. Performance analysis through synthetic trace generation. In 2000

IEEE International Symposium on Performance Analysis of Systems and Software. ISPASS (Cat. No.00EX422). 1–6.

[22] Jean-François Gallais, Ilya Kizhvatov, and Michael Tunstall. 2010. Improved trace-driven cache-collision attacks

against embedded AES implementations. In International Workshop on Information Security Applications. Springer,

243–257.

[23] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation on oblivious RAMs. J. ACM 43, 3 (may

1996), 431–473. https://doi.org/10.1145/233551.233553

[24] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. Journal of Computer and System Sciences 28, 2

(1984), 270–299.

[25] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ristenpart. 2017. Leakage-abuse

attacks against order-revealing encryption. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 655–672.

[26] I. Haller, A. Slowinska, and H. Bos. 2013. MemPick: High-level data structure detection in C/C++ binaries. In 2013

20th Working Conference on Reverse Engineering (WCRE). 32–41. https://doi.org/10.1109/WCRE.2013.6671278

[27] Alon Itai and Michael Slavkin. 2007. Detecting data structures from traces. In Proceedings of the Workshop on Ap-

proaches and Applications of Inductive Programming, AAIP’07, September 17, 2007, Warsaw, Poland, Emanuel Kitzel-

mann and Ute Schmid (Eds.). 39–50. https://cogsys.uni-bamberg.de/events/aaip07/aaip_print.pdf#page=47

[28] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. 2010. High performance cache replacement us-

ing re-reference interval prediction (RRIP). In Proceedings of the 37th Annual International Symposium on Computer

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

http://hpc.pnnl.gov/projects/PERFECT/
https://doi.org/10.48550/ARXIV.1508.03619
https://doi.org/10.1145/3292500.3330723
https://doi.org/10.1145/3297858.3304074
https://doi.org/10.1109/SEED51797.2021.00027
https://doi.org/10.1109/ISCA.2012.6237010
https://doi.org/10.1145/233551.233553
https://doi.org/10.1109/WCRE.2013.6671278
https://cogsys.uni-bamberg.de/events/aaip07/aaip_print.pdf#page=47

36:22 A. Pal et al.

Architecture (Saint-Malo, France) (ISCA ’10). Association for Computing Machinery, New York, NY, USA, 60–71.

https://doi.org/10.1145/1815961.1815971

[29] A. Joshi, L. Eeckhout, R. H. Bell, and L. John. 2006. Performance cloning: A technique for disseminating proprietary

applications as benchmarks. In 2006 IEEE International Symposium on Workload Characterization. 105–115.

[30] A. Joshi, L. Eeckhout, and L. John. 2008. The return of synthetic benchmarks. Presented at the SPEC Benchmark

Workshop, San Francisco, CA, USA, (2008), pp. 1–11.

[31] Norman P. Jouppi. 1990. Improving direct-mapped cache performance by the addition of a small fully-associative cache

and prefetch buffers. In Proceedings of the 17th Annual International Symposium on Computer Architecture (Seattle,

Washington, USA) (ISCA ’90). 364–373.

[32] M. Juuti, S. Szyller, S. Marchal, and N. Asokan. 2019. PRADA: Protecting against DNN model stealing attacks. In 2019

IEEE European Symposium on Security and Privacy (EuroS P). 512–527. https://doi.org/10.1109/EuroSP.2019.00044

[33] M. G. Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1-2 (06 1938), 81–93. https://doi.org/10.1093/

biomet/30.1-2.81 arXiv:https://academic.oup.com/biomet/article-pdf/30/1-2/81/423380/30-1-2-81.pdf

[34] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and Z. Chishti. 2016. Path confidence based lookahead

prefetching. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.

[35] Jinchun Kim, Elvira Teran, Paul V. Gratz, Daniel A. Jiménez, Seth H. Pugsley, and Chris Wilkerson. 2017. Kill the

program counter: Reconstructing program behavior in the processor cache hierarchy. In Proceedings of the Twenty-

Second International Conference on Architectural Support for Programming Languages and Operating Systems (Xi’an,

China) (ASPLOS ’17). 737–749.

[36] Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su. 2018. Defending against model stealing attacks using

deceptive perturbations. CoRR abs/1806.00054 (2018). arXiv:1806.00054 http://arxiv.org/abs/1806.00054

[37] Victor Lee, Derek Bruening, and Parthasarathy Ranganathan. 2022. Google Workload Traces 2022. https://research.

google/resources/datasets/google-workload-traces-2022/

[38] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.

stanford.edu/data

[39] Chang Liu, Michael Hicks, and Elaine Shi. 2013. Memory trace oblivious program execution. In 2013 IEEE 26th Com-

puter Security Foundations Symposium. 51–65. https://doi.org/10.1109/CSF.2013.11

[40] Evan Zheran Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Junwhan Ahn. 2020. An imitation

learning approach for cache replacement. In Proceedings of the 37th International Conference on Machine Learning

(ICML’20). JMLR.org, Article 579, 11 pages.

[41] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa

Reddi, and Kim Hazelwood. 2005. Pin: Building customized program analysis tools with dynamic instrumentation. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (Chicago, IL,

USA) (PLDI ’05). ACM, New York, NY, USA, 190–200. https://doi.org/10.1145/1065010.1065034

[42] Catherine Mills Olschanowsky, Mustafa M. Tikir, Laura Carrington, and Allan Snavely. 2010. PSnAP: Accurate syn-

thetic address streams through memory profiles. In Languages and Compilers for Parallel Computing, Guang R. Gao,

Lori L. Pollock, John Cavazos, and Xiaoming Li (Eds.). Springer Berlin, Berlin, 353–367.

[43] M. Oskin, F. T. Chong, and M. Farrens. 2000. HLS: Combining statistical and symbolic simulation to guide micro-

processor designs. In Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).

71–82.

[44] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and countermeasures: The case of AES. In Cryp-

tographers’ track at the RSA Conference. Springer, 1–20.

[45] S. Pakalapati and B. Panda. 2020. Bouquet of instruction pointers: Instruction pointer classifier-based spatial hardware

prefetching. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). 118–131.

[46] Reena Panda and Lizy Kurian John. 2017. Proxy benchmarks for emerging big-data workloads. In 2017 26th Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT). 105–116. https://doi.org/10.1109/PACT.

2017.44

[47] Reena Panda and Lizy K. John. 2018. HALO: A hierarchical memory access locality modeling technique for memory

system explorations. In Proceedings of the 2018 International Conference on Supercomputing (Beijing, China) (ICS ’18).

Association for Computing Machinery, New York, NY, USA, 118–128. https://doi.org/10.1145/3205289.3205323

[48] R. Panda, X. Zheng, and L. K. John. 2017. Accurate address streams for LLC and beyond (SLAB): A methodology to

enable system exploration. In 2017 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS). 87–96.

[49] Philippos Papaphilippou, Paul H. J. Kelly, and Wayne Luk. 2019. Pangloss: A novel Markov chain prefetcher. CoRR

abs/1906.00877 (2019). arXiv:1906.00877 http://arxiv.org/abs/1906.00877

[50] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. 2015. Semantic locality and context-based prefetching us-

ing reinforcement learning. In Proceedings of the 42nd Annual International Symposium on Computer Architecture

(ISCA ’15). 285–297.

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1109/EuroSP.2019.00044
https://doi.org/10.1093/biomet/30.1-2.81
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/30/1-2/81/423380/30-1-2-81.pdf
https://arxiv.org/abs/1806.00054
http://arxiv.org/abs/1806.00054
https://research.google/resources/datasets/google-workload-traces-2022/
http://snap.stanford.edu/data
https://doi.org/10.1109/CSF.2013.11
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/PACT.2017.44
https://doi.org/10.1145/3205289.3205323
https://arxiv.org/abs/1906.00877
http://arxiv.org/abs/1906.00877

Camouflage: Utility-Aware Obfuscation for Accurate Simulation 36:23

[51] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. 1998. Dependence based prefetching for linked data structures.

In Proceedings of the Eighth International Conference on Architectural Support for Programming Languages and Operat-

ing Systems (San Jose, California, USA). 115–126.

[52] Anupam Sanghi, Raghav Sood, Dharmendra Singh, Jayant R. Haritsa, and Srikanta Tirthapura. 2018. HYDRA: A dy-

namic big data regenerator. Proc. VLDB Endow. 11, 12 (Aug. 2018), 1974–1977. https://doi.org/10.14778/3229863.3236238

[53] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Applying deep learning to the cache replacement prob-

lem. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)

(MICRO ’52). Association for Computing Machinery, New York, NY, USA, 413–425. https://doi.org/10.1145/3352460.

3358319

[54] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2011. Howard: A dynamic excavator for reverse engineering data

structures. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2011, San Diego, California,

USA, 6th February - 9th February 2011. The Internet Society. https://www.ndss-symposium.org/ndss2011/howard-a-

dynamic-excavator-for-reverse-engineering-data-structures

[55] A. Sriraman and T. F. Wenisch. 2018. μSuite: A benchmark suite for microservices. In 2018 IEEE International Sympo-

sium on Workload Characterization (IISWC). 1–12.

[56] D. Thiebaut, J. L. Wolf, and H. S. Stone. 1992. Synthetic traces for trace-driven simulation of cache memories. IEEE

Trans. Comput. 41, 4 (1992), 388–410.

[57] Luk Van Ertvelde and Lieven Eeckhout. 2008. Dispersing proprietary applications as benchmarks through code mu-

tation. In Proceedings of the 13th International Conference on Architectural Support for Programming Languages and

Operating Systems (Seattle, WA, USA) (ASPLOS XIII). 201–210.

[58] Y. Wang, A. Awad, and Y. Solihin. 2017. Clone morphing: Creating new workload behavior from existing applications.

In 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 97–108.

[59] Y. Wang, G. Balakrishnan, and Y. Solihin. 2015. MeToo: Stochastic modeling of memory traffic timing behavior. In

2015 International Conference on Parallel Architecture and Compilation (PACT). 457–467.

[60] Y. Wang and Y. Solihin. 2015. Emulating cache organizations on real hardware using performance cloning. In 2015

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 298–307.

[61] Jonathan Weinberg and Allan Edward Snavely. 2008. Accurate memory signatures and synthetic address traces for

HPC applications. In Proceedings of the 22nd Annual International Conference on Supercomputing (Island of Kos, Greece)

(ICS ’08). Association for Computing Machinery, New York, NY, USA, 36–45. https://doi.org/10.1145/1375527.1375536

[62] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C. Steely, and Joel Emer. 2011. SHiP:

Signature-based hit predictor for high performance caching. In 2011 44th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). 430–441.

[63] Xiaofeng Gao, A. Snavely, and L. Carter. 2006. Path grammar guided trace compression and trace approximation. In

2006 15th IEEE International Conference on High Performance Distributed Computing. 57–68.

[64] Tianwei Zhang, Fangfei Liu, Si Chen, and Ruby B. Lee. 2013. Side channel vulnerability metrics: The promise and

the pitfalls. In Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and

Privacy (Tel-Aviv, Israel) (HASP ’13). Association for Computing Machinery, New York, NY, USA, Article 2, 8 pages.

https://doi.org/10.1145/2487726.2487728

Received 20 October 2023; revised 1 February 2024; accepted 6 February 2024

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 36. Publication date: May 2024.

https://doi.org/10.14778/3229863.3236238
https://doi.org/10.1145/3352460.3358319
https://www.ndss-symposium.org/ndss2011/howard-a-dynamic-excavator-for-reverse-engineering-data-structures
https://doi.org/10.1145/1375527.1375536
https://doi.org/10.1145/2487726.2487728

