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Abstract
Credential stuffing attacks use stolen passwords to log into

victim accounts. To defend against these attacks, recently
deployed compromised credential checking (C3) services pro-
vide APIs that help users and companies check whether a
username, password pair is exposed. These services however
only check if the exact password is leaked, and therefore
do not mitigate credential tweaking attacks — attempts to
compromise a user account with variants of a user’s leaked
passwords. Recent work has shown credential tweaking at-
tacks can compromise accounts quite effectively even when
the credential stuffing countermeasures are in place.

We initiate work on C3 services that protect users from
credential tweaking attacks. The core underlying challenge is
how to identify passwords that are similar to their leaked pass-
words while preserving honest clients’ privacy and also pre-
venting malicious clients from extracting breach data from the
service. We formalize the problem and explore ways to mea-
sure password similarity that balance efficacy, performance,
and security. Based on this study, we design “Might I Get
Pwned” (MIGP), a new kind of breach alerting service. Our
simulations show that MIGP reduces the efficacy of state-
of-the-art 1000-guess credential tweaking attacks by 94%.
MIGP preserves user privacy and limits potential exposure
of sensitive breach entries. We show that the protocol is fast,
with response time close to existing C3 services. We worked
with Cloudflare to deploy MIGP in practice.

1 Introduction
Users often pick the same or similar passwords across multi-
ple web services [22,42,54]. Attackers therefore compromise
user accounts using passwords leaked from other websites.
This is known as a credential stuffing attack [25]. In response,
practitioners have set up third-party services such as Have
I Been Pwned (HIBP) [37, 48], Google Password Checkup
(GPC) [44, 47], and Microsoft Password Monitor [33] that
provide APIs to check if a user’s password has been exposed
in known breaches. Such breach-alerting services, also called
compromised credential checking (C3) services [37], help

prevent credential stuffing attacks by alerting users to change
their passwords.

Existing C3 services, however, can leave users vulnerable
to credential tweaking attacks [22, 41, 51] in which attackers
guess variants (tweaks) of a user’s leaked password(s). Pal et
al. [41] estimate that such a credential tweaking attacker can
compromise 16% of user accounts that appear in a breach in
less than a thousand guesses, despite the use of a C3 service.

We therefore initiate exploration of C3 services that help
warn users about passwords similar to the ones that have
appeared in a breach. We design “Might I Get Pwned” (MIGP,
the name is a tribute to the first-ever C3 service, HIBP). In
MIGP, a server holds a breach dataset D containing a set of
username, password pairs (ui, w̃i). A client can query MIGP
with a username, password pair (u,w), and learns if there
exists (u, w̃) ∈ D such that w = w̃ or w is similar to w̃. To
realize such a service, we must (1) determine an effective way
of measuring password similarity, that (2) works well with a
privacy-preserving cryptographic protocol, and that (3) resists
malicious clients that try to extract entries from D.

Ideally, we want our similarity measure to help warn users
if their password w is vulnerable to online credential tweaking
attacks. These attacks [22, 41, 51] take as input a breached
password w̃ and generate an ordered list of guesses. There-
fore, a good starting point for defining similarity is to call w
similar to w̃ should w appear early in the guess list generated
by a state-of-the-art credential tweaking attack. Such a gen-
erative approach also works well with simple extensions to
existing cryptographic private membership test (PMT)-based
protocol [37,47]. A PMT allows a client to learn if (u, w̃) ∈D
without revealing it to the server. To extend, we can have
the server insert n variants of each breached password into
D and we can allow clients to generate m variants and repeat
the PMT for each of them. The PMT can be designed to re-
veal, upon a match, whether a password matches the original
password or a variant.

To concretize this approach requires understanding how
to efficiently generate effective variants. Existing credential
tweaking attack algorithms are computationally expensive to



run [41, 51], and it is unclear, apriori, what are good values
for m and n. We use empiricism to explore different tech-
niques for enumerating variants and show via simulations
how these techniques help protect against credential tweaking
attacks. We start with the deep learning [41] and mangling
rules techniques [22] pioneered in prior works on credential
tweaking. We also suggest a new, simple-to-implement gener-
ative approach that uses an empirically-derived weighted edit
distance to rank mangling rules. We show via simulation that
our new approach with m = 10 and n = 10 reduces credential
tweaking attack success rate by 94% compared to using only
exact-checking, where the attacker uses a thousand guesses
and adapts to the breach alerting service being used.

Another challenge for MIGP services is breach extraction
attacks. C3 services could contain breach data that is not
publicly available. Most C3 services provide public APIs,
which malicious clients can abuse to learn a user’s breached
passwords by querying the service with a sequence of likely
passwords. MIGP services may make such extraction attacks
faster, because, intuitively, finding one of many variants of
the target password would also reduce the search space.

We formalize this new breach extraction attack setting and
show that optimal strategies for an attacker are NP-hard to
compute. Nevertheless, attackers can use heuristic approxi-
mations. We evaluate such heuristics empirically for various
values of n and m. Our simulation shows that an attacker can
compromise 2.8× more user accounts in 1,000 guesses for
server-only variant generation (n = 100) than the best attack
against a traditional exact-checking service. Allowing a hy-
brid of client-side (m > 0) and server-side variant generation
leads to even more effective attacks.

We therefore propose a blocklisting strategy to reduce
breach extraction success rates: remove (blocklist) most pop-
ular passwords and their variants. Users should be warned
to avoid such easy-to-guess passwords whether or not they
appear in a breach. Blocklisting the most common 104 pass-
words can reduce the success rate of the best-known breach
extraction attack against a MIGP service to below the success
rate possible against currently deployed C3 services.

We implement a prototype of MIGP with 1.14 billion
breached username, password pairs, and show that online
computation work for the server is small, client-side latency
is comparable to existing C3 services (500 ms), and certain
parameter regimes allow bandwidth required to be less than
1.43 MB. We further empirically explore different trade-offs
in performance and security for client-side, server-side vari-
ant and hybrid generations for MIGP to help practitioners
decide which approach to use. All this helped educate our de-
ployment of MIGP in collaboration with Cloudflare, a major
CDN and security service provider [9]. It is now in production
use in their web application firewall product to notify login
servers about potential attacks.

Contributions. The main contributions of this paper are:

• We initiate exploration of similarity-aware C3 services
and present the design of MIGP, which allows checking
if a password is vulnerable to credential tweaking attack
without revealing it to the MIGP server.

• We empirically evaluate the effectiveness of different simi-
larity measures to mitigate credential tweaking attacks.

• We analytically and empirically analyze the threat of
breach extraction attacks, in which malicious clients at-
tempt to extract credentials from a C3 service. We discuss
multiple approaches to mitigate this threat, including a new
popular-password blocklisting mechanism.

• We report on an initial prototype of MIGP and show its
practicality by deploying at Cloudflare.

2 Background and Prior Work

Credential stuffing attacks and defenses. Billions of pass-
words are available online as a result of compromises [25,48].
As users often choose the same or similar password for dif-
ferent web services [22, 42, 51], attackers use these leaked
data for credential stuffing attacks. As a prevention mea-
sure, C3 services have been adopted in client browsers [44],
in password managers [2], and by login server backends to
proactively check user credentials. Existing C3 services in-
clude Have I Been Pwned (HIBP) [48], Google Password
Checkup [44], Enzoic [4], and the recently introduced Mi-
crosoft Password Monitor [33]. HIBP [48] has publicly doc-
umented APIs to check if a username or password is in a
breach. Several password managers such as 1Password and
LastPass and browsers such as Firefox are using HIBP to warn
users about their leaked passwords. This may result in false
positives since common passwords will always be flagged.1

Google Password Checkup (GPC) [47], released as a
Chrome-extension in 2019 [44] and later integrated into
Chrome, checks if a username, password pair is present in
the leak, leading to fewer false positives compared to HIBP.
The Chrome password manager uses GPC to check all of a
user’s website credentials to determine if they are in a known
breach, but does not flag passwords that are similar to ones in
breaches. Li et al. [37] formalized the security requirements
of C3 systems in an honest-but-curious server setting and
proposed a protocol that we use to build MIGP in this paper.

The state-of-the-art C3 protocol proposed in [37, 47] now
deployed by GPC handles a large scale of breach datasets us-
ing bucketization. To check a username, password pair (u,w),
the client sends a bucket identifier j which is the first 16 bits
of the cryptographic hash of u (smaller hash prefix helps pre-
serve the privacy of the username). In parallel, the client and
server perform a private membership test (PMT) protocol to
securely determine if (u,w) is in the bucket containing the set

1We found flagging based on only passwords will raise 29% false alarms,
and based on only usernames will raise 36% false alarms to users whose
passwords might not be vulnerable to a credential tweaking attack.
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of all (ui, w̃i) with the same username hash prefix. The PMT
protocol is built using the efficient oblivious PRF (OPRF)
protocol, 2HashDH [32], though a recently proposed partially
oblivious PRF 3HashSDHI may be used to slightly improve
security [49]. A more recent service, Microsoft Password
Monitor [33], uses homomorphic encryption (HE) to compute
the PMT, but reveals the username completely to the server.

To prevent users from reusing their password across web
services, Wang and Reiter [52,53] proposed protocols to check
if a user is using the same password in multiple participat-
ing web services. The efficacy of this protocol relies on the
coordination of the web services, making it harder to deploy.
Moreover, as we show in Section 6, the PMT protocols used
in their work would not scale to billions of username, pass-
word pairs without sacrificing the privacy of the username.
Wang and Reiter also mention that their protocol can be ex-
tended to check for similar passwords across multiple web
services [53], but did not provide details on how to do so.

Credential tweaking attacks and defenses. Currently de-
ployed C3 services cannot warn users about a password unless
the exact password is present in the breach. For example, a
minor variation, such as adding “7” to the end of the com-
promised password “yhTgi456”, won’t be detected by the C3
service. Users often pick similar passwords while resetting
their passwords on a web service [54] or when picking pass-
words for different web services [22]. These passwords are
vulnerable to credential tweaking attacks [22, 41, 51], where
the attacker tries different variations of the leaked password.

Wang et al. [51] and Das et al. [22] used human-curated
rules to generate guesses for a credential tweaking attack. Sub-
sequently, Pal et al. [41] took a data-driven, machine-learning
approach to build similarity models for passwords from the
same user. They trained a sequence-to-sequence [46] style
neural network model (pass2path) that outputs similar pass-
words given an input password. This is now the best-known
attack, with simulation showing that a pass2path-based attack
can compromise 16% of accounts of users that appeared in
a breach using at most 1,000 guesses, despite the use of a
C3 service as a credential stuffing countermeasure. Pal et
al. also showed in a case study that over a thousand accounts
at Cornell University were at the time vulnerable to credential
tweaking attacks, showcasing their practical risk.

Pal et al. proposed a potential defense: a personalized pass-
word strength meter (PPSM) which considers the strength of
a selected password based on its similarity to the user’s other
passwords. But they do not offer a way to utilize PPSMs in the
context of a privacy-preserving C3 service, and left building
similarity-checking C3 services as an open question.

3 Overview of MIGP
In this paper, we build a similarity-aware C3 service, called
Might I Get Pwned (MIGP). MIGP generalizes existing C3
services to add new features that can warn users about pass-

words that may be vulnerable to credential tweaking attacks.

Service architecture and functionality. The MIGP server
will have a breach dataset D, containing a set of |D| username,
password pairs {(u1,w1), . . . ,(u|D|,w|D|)} where each ui ∈U
is a username and each wi ∈W is a password. The sets U
and W consist of all possible user-chosen usernames and
passwords. A MIGP client can query the MIGP server with
a username, password pair (u,w) to learn if there exists a
(u, w̃) ∈ D such that w = w̃ or w is similar to w̃. The MIGP
server, therefore, returns “match” if w = w̃, returns “similar”
if w is similar to w̃, and returns “none” otherwise.

A MIGP client can be, for example, a user’s browser, their
password manager, an authentication service, or, as in our
Cloudflare deployment, a web application firewall that wants
to use breach alerting to help secure user accounts. We will
use as a running example the user’s browser as client, and
discuss other deployment settings in Section 7.

Like existing C3 services, MIGP should scale to millions of
requests a day with billions of username, password pairs in its
database. We propose various techniques to make MIGP fast
and practical, like offline processing the breach data to speed
up online queries and rate-limiting clients using verifiable
delay functions rather than slow hashing (Appendix F).

Threat model. In our threat model, we consider two distinct
threats: (1) an honest-but-curious server trying to learn about
a user’s queried password, and (2) a malicious client querying
the MIGP server to retrieve other users’ breached passwords.

We assume the MIGP server is honest-but-curious: it
doesn’t deviate from the protocol but observes the protocol in
an attempt to glean information from the user queries. Tech-
nically, we note that our MIGP protocol is in fact one-sided
simulatable [29], a model which allows the server to behave
maliciously. But for practical purposes, a malicious server
can misguide a user by returning a wrong bucket of pass-
words and falsely reporting the user’s vulnerable password
as safe (i.e., an input-switching attack). Regular audits and
other monitoring techniques may be useful mitigations. We
are not aware of any other active attacks and will focus on the
honest-but-curious server setting hereafter.

Ideally, we would like the MIGP server (or any C3 server)
to learn nothing about the queried usernames or passwords.
However, building a practical solution that achieves this re-
quirement is hard given the huge scale of D with billions of
credentials. The state-of-the-art protocols in existing C3 ser-
vices reveal some bits of information about the username to
allow partitioning D into smaller buckets on which a private
membership test (PMT) protocol can be efficiently executed.
Looking ahead, MIGP will extend this approach to perform a
private similarity test (PST) over the bucket.

Clients of MIGP can be malicious. In particular, they might
mount a guessing attack in an attempt to extract username,
password pairs from D. We call this a breach extraction attack.
These are a concern when the breach database D contains data
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from leaks that are not yet publicly available. In turn, learning
a user’s (leaked) password can help the attacker compromise
that user’s accounts on other web services through credential
stuffing and tweaking attacks. Prior work did not empirically
analyze this threat for exact-check C3 services, but they did
include anti-abuse countermeasures such as requiring com-
putationally intensive slow hashing to complete a query [47].
This threat is particularly concerning for MIGP as clever at-
tacks may exploit similarity.

Unsatisfactory approaches. The core of MIGP is a pass-
word similarity metric. While there are a number of ways to
compute password similarity, few can preserve the privacy
of the queried password. For example, Pal et al. [41] design
password embedding models that map passwords to a vec-
tor space; distance in the space captures similarity. Using
password embeddings directly (e.g., the client sending a pass-
word embedding to the server) is unsafe as it might reveal the
underlying passwords.

One can instead build a MIGP service by combining a pass-
word embedding with a secure two-party computation (2PC)
protocol that privately computes the dot product and threshold
comparison. However, even state-of-the-art 2PC protocols for
computing dot products [34] are not yet efficient enough to
be used in our setting (which will require computing thou-
sands of such dot products per query). We estimate, based
on a prototype implementation using a 2PC library named
Crypten [34], that a single client query would take 16 seconds
(without network latency) to complete private dot product
and comparison (Appendix A). Other approaches that rely
on existing secure two-party computation protocols, such as
computing a weighted edit distance between passwords, will
similarly fall short of our performance requirements.

Generative models for password similarity. We instead
use a generative approach to measure similarity, which will
enable more efficient privacy-preserving protocols. We con-
sider generative approaches that either start with a breached
password or with a client’s password. For the former, let
τn : W 7→W n be a function that generates n passwords that are
likely to be chosen by a user, given one of their other breached
passwords. Thus, a client password w and breached pass-
word w̃ are similar if w ∈ τn(w̃). Here, we assumed w /∈ τn(w)
for all w ∈W . For the second approach, an inverse generative
model, say τ̃m, generates m variants given a client’s password;
we declare a password similar to a variant if w̃ ∈ τ̃m(w). Be-
cause similarity is not necessarily symmetric, it can be that
τn 6= τ̃m. Looking ahead, we can use the model τn to generate
likely variants at the server given a breach dataset, while we
can use τ̃m to generate variants at the client. We will also
explore a hybrid approach that combines the two, in which
case we consider a client’s password w similar to a variant
w̃, if

(
{w}∪ τ̃m(w)

)
∩
(
{w̃}∪ τn(w̃)

)
6=∅ and w̃ 6= w. A big

question we will tackle is how to best instantiate τn and τ̃m.

…
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Figure 1: MIGP Protocol for checking if a queried password w
is similar to a password present in breach data. Cryptographic
details of the protocol are given in Fig. 2.

3.1 MIGP protocol
MIGP builds off first-generation C3 designs, specifically, the
identity-based bucketization (IDB) protocols due to Li et
al. [37] and Thomas et al. [47]. At a high level, the IDB
protocol splits the leaked credential database into several
buckets based on truncated hashes of usernames. The client
reveals the bucket identifier to the service, and then performs
an OPRF-based private membership test (PMT) protocol over
that bucket to check for equality.

In Fig. 1, we provide an overview on how to extend IDB to
allow the client to check for similar passwords. We augment
the server’s breach data with variants of each breached pass-
word using τn. The client queries the server using the IDB
protocol with the user password and checks if it succeeds. The
client can also generate variants, via τ̃m. There are nuanced
security and computation trade-offs for this approach, which
we will discuss at the end of this section. For now, we assume
the client and the server both generate m and n variants using
τ̃m and τn functions. Setting m = 0 and n = 0, reduces MIGP
functionality to existing exact-checking C3 services, such as
IDB. The cryptographic details of MIGP protocol, which fits
our security requirements, is given in Fig. 2.

Pre-processing. The underlying IDB protocol uses a special-
ized oblivious PRF construction. Briefly, the PRF takes as
input a username u, a password w, and a secret key κ and is
defined as Fκ(u‖w) = H2(u‖w,H1(u‖w)κ). This is the same
as the 2HashDH construction due to Jarecki et al. [32]. Here
H1 maps onto an elliptic curve group G (with group operation
written multiplicatively) where the decisional Diffie-Hellman
(DDH) problem is hard; and H2 : {0,1}∗×G 7→ {0,1}` maps
a binary string and a group element to an `-bit string. At least
one of the two hash functions used should be computationally
expensive (for the client) to ensure rate limiting and abuse
prevention on the client side. We explore trade-offs on how
to choose the hash functions in Section 7 and Appendix F.
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Pre-processing at MIGP server:
Server’s secret key: κ; D= {(u1, w̃1), . . . ,(u|D|, w̃|D|)}
for (u, w̃) ∈D do:

j←H(l)(u); z j ← z j ∪{Fκ(u‖w̃)}
z j ← z j ∪

{
Fκ(u‖w′)⊕1

∣∣w′ ∈ τn(w̃)
}

Online phase:
Client MIGP server
Input: (u,w) Input: κ,z
j←H(l)(u)
r0←$Zq; x0←H1(u‖w)r0

(w′1, . . . ,w
′
m)← τ̃m(w)

for i ∈ [1,m] do :
ri←$Zq; xi←H1(u‖w′i)ri

j,x
−−−−−−→ for i ∈ [1,m] do :

yi← xκ
i

z̃0←H2(u‖w,y
1
r0
0 )

y,z j←−−−−−−
z̃1←{z̃0⊕1}
for i ∈ [1,m] do :

h←H2(u‖w′i,y
1
ri
i )

z̃1← z̃1 ∪{h,h⊕1}
if z̃0 ∈ z j return match
else if z̃1 ∩ z j 6=∅ return similar
else return none

Figure 2: Protocol for checking if a password similar to the
user’s password (w) is present in the leaked data (D).

The server chooses κ and applies Fκ to all the username,
password pairs in the breach. These are stored separate “buck-
ets”, identified by the l-bit prefix of a cryptographic hash of
the username, denoted H(l)(u). As we want the client to find
out if the queried password is similar to one stored by the
server, we use two PRF functions: The server stores Fκ(u‖w)
(shown in thick blue border boxes in Fig. 1) corresponding
to the leaked credential (u,w), and F ′κ(u‖w′) = Fκ(u‖w′)⊕1
for w′ ∈ τn(w) corresponding to the password variants, which
is represented by the dashed blue boxes in Fig. 1. The last bit
of the PRF of similar passwords is flipped to differentiate it
from the original leaked password.

Online computation. MIGP client, on input a user id u
and password w, calculates the ID of the bucket to query
based on the username, j = H(l)(u). Then the user gener-
ates m variants of their password w based on τ̃m. The client
“blinds” the passwords and their variants, sending to the server
H1(u‖w)r0 ,H1(u‖w′1)r1 , . . . ,H1(u‖w′m)rm for random values
r0, . . . ,rm ∈ Zq. Blinding ensures that the MIGP server does
not learn anything about the query (beyond j).

The server raises each of the blinded values to the secret
key κ, and sends these back to the client, along with the
bucket z j. The client can deblind the values to finish comput-
ing the PRF on all m+1 values. Then it checks if Fκ(u‖w) is
present in the bucket, and if so, it learns that (u,w) is in the
leaked data, outputting match. If not, the client checks if any
other computed PRF values Fκ(u‖w′i), or those values with
last bit flipped Fκ(u‖w′i)⊕1, or Fκ(u‖w)⊕1 is in the bucket.
If any are found, then the client learns that (u,w) is similar
to a (u,w′) found in the password breach, outputting similar.
Otherwise, it outputs none.

3.2 Server- vs. client-side variant generation
Based on the values of the parameters n and m, MIGP protocol
can allow generating variants only on the client-side (n = 0),
only on the server-side (m = 0), or a mix of both. By allowing
variants only on the server side, the existing IDB protocol can
be easily adopted, making it simpler to implement. However,
the server database expands by n times, requiring more disk
space and more bandwidth due to larger buckets.

In the case of client-side generation of variants, no change
on the server is required. The variants can be batched together
in a single API query to the server, saving network round
trips and bandwidth. (Note, the client only needs to download
the matching bucket from the server once per username.)
Moreover, in this approach, the client will have more control
over the variations. It can use inputs from the user, such as
their other passwords, to generate personalized variants that
are likely to be used as passwords by that particular user.
Such personalization was shown to be useful for correcting
password typos [21] and could be also useful for MIGP.

Although the client-side generation of password variants
has some benefits, it also suffers from some key limitations.
First, existing C3 services have rate-limiting measures, like
slow hashing, to prevent malicious clients from extracting the
breach data by repeatedly calling the APIs with different pass-
word guesses [44]. This would make checking multiple vari-
ations of a password too expensive to be practical. To make
things faster, the server could allow batching all queries into
one request and reduce the client-side computation. But there
is a key security issue with this approach: as the OPRF proto-
col blinds queried values, the server cannot differentiate if a
query contains a set of variants of a password or completely
different passwords. This can be exploited by a malicious
client to obtain a factor of n improvement in breach extrac-
tion attack efficacy (Section 5.1). Zero-knowledge proofs [28]
could be used, in theory, to prevent a malicious client from
checking arbitrary passwords, but it remains an open question
whether they can be made practical in this setting. We leave
finding an efficient solution to this problem for future work.

In the hybrid approach, the client generates m personal-
ized variations, possibly based on their other passwords or
personal information, and the server also stores n variations
of each breached password. Such a protocol with appropriate
client and server-side generation functions can increase the
protection against credential tweaking attacks to the equiva-
lent of generating n×m variants on the server or the client
side (as we show in Section 4). The hybrid approach can also
reduce the storage cost on the MIGP server, reduce bandwidth
cost due to smaller buckets, and lower the advantage gained
in breach extraction attack by allowing a smaller number of
guesses per malicious query.

In subsequent sections, we explore the performance, se-
curity, and efficacy implications of different choices of m, n,
along with how to build practical generative models τ̃m, τn.
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4 Efficacy of Different Similarity Measures
We explore different measures of password similarity using
generative models that enumerate the most likely variants
of a given password. Though the client-side and server-side
models can be different, we cannot learn two different models
due to the limitation of our dataset (as we explain below).
Thus we will focus on building a single generative model τ

that will be used both on the client and server side; we will
show even this simple approach already performs well.

In particular, we compare different similarity measures τ

based on efficacy at protecting from credential tweaking at-
tacks, computational performance, and security against breach
extraction attacks. We focus on the first two in this section,
and discuss the third in Section 5.

4.1 Similarity measures
As we focus on generative similarity metrics, any credential
tweaking attack can be repurposed to be a similarity metric.
We, therefore, start with the attack algorithms proposed in
Das et al. [22] and Pal et al. [41]. We denote these by Das and
P2P, respectively. We also created more efficient and effective
variants of these methods, named Das-R and wEdit, as we
discussed below. Each method takes as input a password w
and outputs an ordered list of similar passwords.

We also compare the generative methods to the embedding-
based similarity measure, PPSM, proposed in [41]. Although
existing PST protocols suitable for use with PPSM are not
fast enough for use in practice (as discussed in Section 2), we
still discuss them here should PST protocols become more
suitable for deployment in the future.

Das. Das et al. [22] were the first to show that users select
similar passwords across multiple websites, and that it is easy
to guess a user’s password given one of their other passwords.
They, given a password w, use a set of hand-crafted tweaks
to generate similar passwords. We refer to this approach of
generating similar passwords as Das.

Das-R. We observed that ordering of the tweaks used in Das
is not effective for smaller n. So we reorder the set of tweaks
based on the frequency with which these tweaks are used by
users in our dataset (Section 4.2). We show the reordering sig-
nificantly improves the efficacy of the rules when considering
smaller numbers of variants (≤ 10). We call this similarity
measure Das-R. The reordered rules are given in Appendix B.
Not all tweaks apply to all passwords, in which case we con-
tinue applying further tweaks until we obtain n variants.

P2P. While Das et al. used hand-crafted tweaks for generat-
ing variations, Pal et al. [41] used a neural network model,
called pass2path (P2P), to learn the tweaks a user is likely to
make to their passwords. This resulted in the most damaging
credential tweaking attack to date, outperforming prior works,
such as [22] and [51]. We refer to this approach as P2P. While
P2P is quite effective at capturing password similarity, it is
slow and expensive (even with GPUs) to compute.

wEdit. Finally, we explore automatically deriving a ranked
list of tweaks that can be applied to a password to obtain
variants. Although tweaks have long been used in password
cracking systems (e.g., [13]), here the goal is different —
finding variants likely to be chosen by a user and that are
vulnerable to credential tweaking attacks.

Following the definitions in [41], we define a unit transfor-
mation as a specific edit to be applied to the input password w.
A unit transformation is defined by a tuple (e,c, l) where e
specifies the edit type as one of insert, delete, or substitute; c
denotes the character to be inserted or substituted (c = ⊥
for deletion); and l is the location for the edit. The location
is length-invariant, representing the distance from the first
character by positive numbers and from the last character by
negative numbers; we use the smaller of the two distances and
break ties using the distance from the start of a password. For
example, (insert, ‘0’,−1) specifies adding the character ‘0’
to the end of a password, and (substitute, ‘a’,2) specifies re-
placing the second character with a lowercase letter ‘a’.

Given a pair of passwords (w,w′), we can calculate the
shortest sequence of unit transformations to generate w′

from w. We refer to this as the transformation path. The
computation can be done using standard edit distance algo-
rithms. We use the keypress representation of the passwords
w,w′ as defined in [20], which includes special characters
such as shift and caps lock.

Given a breach dataset containing multiple passwords asso-
ciated with the same user accounts, we compute transforma-
tion paths for every pair of passwords belonging to the same
user. Then we create a ranked list of transformation paths
based on how many pairs of passwords it explains. To gener-
ate variants of a password w, apply the transformation paths
one at a time, in decreasing frequency order, skipping if it is
not applicable. We stop if we have generated n variants. Note
that wEdit contains a much more exhaustive list of tweaks
(transformation paths) compared to Das-R. However, wEdit
is not sensitive to the input unlike the handcrafted rules in
Das-R, which include rules like insert ‘3’ if the last character
of the word is ‘2’. (The rules for wEdit and Das-R are given
in Appendix B.) Nevertheless, we will see below that they
have similar efficacy in our context.

4.2 Breach dataset
To drive empirical evaluation of the five similarity approaches,
we use a dataset containing a compilation of publicly available
breaches on the Internet [17]. This dataset was also used in
prior academic research work and industry reports, e.g., [25,
37, 41], and has been confirmed to contain real user accounts.
The breach compilation dataset contains nearly 1.4 billion
unique email, password pairs. We clean the dataset based on
the procedure described in [41], such as removing passwords
containing non-ASCII characters or longer than 30 characters
(which affects only 0.3% of users). We merged usernames
based on the mixed-method from [41] and removed users
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# D S T S1 S2

Users 908 760 230 380 380
Passwords 438 373 119 210 210
Unique user-pw pairs 1,147 918 229 459 459
Total user-pw pairs 1,317 1,069 248 535 535

Figure 3: Number of unique users, passwords, and username,
password pairs (in millions) in the entire dataset D, breach
dataset S, and test dataset T. S1 and S2 are two equal par-
tition of S. Total number of username, password pairs with
duplicates shown in the last row.

having more than 1,000 passwords. The resulting dataset D
consists of 1.3 billion unique username-password pairs from
908 million unique users (Fig. 3). More details about the
dataset can be found in [41].

For our simulations, we partitioned D into two: a larger
split (80%) simulates the leaked dataset S, which we further
divide into two equal sets S1 and S2 with no common users
between them; and the remaining dataset (20%) is used as
the testing dataset T. In Fig. 3, we report some statistics on
the dataset splits. S and T consist of 760 and 230 million
unique usernames, respectively. About 82 million usernames
are present in the intersection of T and S, implying that these
users in the test dataset have at least one password in the
simulated breach dataset. The number of users, passwords,
and user-password pairs are similar for S1 and S2, as expected.

For the attack simulations in Section 4.3, we conservatively
assume the attacker has access to more data than what is
known to the MIGP service. That is, we provide the attacker
with the entire leaked dataset S but train the similarity mecha-
nism for MIGP only on S1 (training is needed for Das-R, P2P,
and wEdit). The test dataset can, therefore, be considered a
list of users’ current passwords on some target websites for
which the attacker wants to gain illicit account access. The
test dataset is neither accessible to the attacker nor to the
similarity mechanisms that we train.

4.3 Empirical efficacy evaluation
We examine the effectiveness of a similarity measure based
on protection from credential tweaking attacks and impact on
usability due to false warnings, which can cause user fatigue.
To quantify this, we classify each pair of passwords belonging
to the same user as vulnerable or safe based on whether or
not they are vulnerable to credential tweaking attacks.

We pick password pairs (w1,w2) belonging to the same
user, such that w1 is selected from S1 and w2 from T. Hence,
both the attacker and service know the breached password w1
corresponding to the target user and want to attack/protect the
user’s unknown (test) password w2. We flag a pair vulnerable
if w2 can be guessed by pass2path [41] given w1 in a thousand
guesses. Otherwise, we flag the pair as safe. From all vulner-
able pairs, we randomly sampled 10,000 pairs to measure
the true positive rate (TPR) of a similarity measure τ as the

Parameters
Similarity
measures

% True
positive

% False
positive

n = 10
or

m = 10

Das 33.2 0.6
Das-R 52.6 0.0
P2P 46.4 0.0
wEdit 49.6 0.0

n = 100
or

m = 100

Das 46.9 2.2
Das-R 63.5 0.2
P2P 69.0 0.1
wEdit 69.3 0.1

n = m = 10 Das-R 89.9 2.9
wEdit 75.2 2.2

n = m = 10
(Greedy)

Das-R 93.5 4.5
wEdit 84.4 3.0

θ = 0.83
PPSM

67.9 2.0
θ = 0.75 87.6 4.7
θ = 0.5 99.1 14.0

Figure 4: True positive (ones vulnerable to 1,000-guess
pass2path attack) and false positive (others) rates for different
similarity measures, computed over 10,000 randomly sampled
password pairs. The best performing measures are boldfaced.

fraction of vulnerable pairs that are flagged by it. Similarly,
we randomly sampled 10,000 safe pairs and measured the
false positive rate (FPR) of τ as the fraction of these pairs that
are flagged by τ, which burdens users with spurious warnings.

The efficacy of a generative similarity measure can be dif-
ferent based on whether it is applied to the breached password
(on the MIGP server, τn) or to the queried password (on the
client, τ̃m). For a pair of passwords w, w′ in the breach data, if
we knew w was used before w′, then we could train τn to gen-
erate edits that modify w to w′ while τ̃m consider variants of
w′ leading to w. However, our training data does not contain
such temporal ordering information. Therefore, as mentioned
above, we use τ̃m = τn, i.e., the variants are generated in the
same way on the client and the server.

An orthogonal point is that for the hybrid case, in which
both m > 0 and n > 0, better utility may come from consider-
ing simultaneously which rules should be used on the client
and which ones should be used on the server. But the space
of all possible m×n combined client-server rule sets is large,
and we do not know how to search for optimal solutions effi-
ciently. We used a greedy approach to understand the efficacy,
but leave to future work developing better search techniques,
and evaluating their potential for improving efficacy.

Result. Fig. 4 shows the performance of the similarity mea-
sures. As expected, increasing the number n or m of similar
passwords improves the coverage against vulnerable pairs
across all methods. However, that also increases the false
positive rate, flagging safe passwords.

For MIGP where variants are only generated on the server
(or on the client side), Das-R gives the maximum 52.6% cov-
erage for n or m = 10 tweaks among all the generative ap-
proaches. P2P and wEdit perform the best with n or m = 100
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Figure 5: Percentage of vulnerable password pairs flagged by
different similarity measures for varying n. The slopes of the
graphs for all similarity measures decrease rapidly for n > 10.

with 69% coverage. PPSM gives high coverage against the at-
tacks but also has a higher false-positive rate compared to the
generative approaches. As the TPR of PPSM with reasonable
FPR ≈ 2% is lower than that of generative approaches (such
as wEdit, n or m = 100) and anyway does not lead to efficient
protocol, we do not consider it further. Between wEdit and
P2P, wEdit is drastically simpler to deploy and faster to run,
requiring 4.5× less pre-computation time (see Appendix A).

The hybrid approach, where n = 10 variants are generated
by the server and m= 10 are generated by the client both using
Das-R rules, gives the best coverage to credential tweaking
attacks, flagging 90% of vulnerable passwords at considerably
low false flagging of safe passwords (2.9%). We also tried a
greedy approach where we iteratively pick the tweaks on the
client and the server that maximizes coverage of the tweaks
until each side has m and n tweaks. This approach performs
better at identifying vulnerable passwords, flagging 94% of
them, but also has a high false positive rate (4.5%).

Efficacy with increasing variants. Fig. 5 examines how the
efficacy of the four generative models varies by the increas-
ing number of tweaks n in server side variant checking. The
results are the same for m in the client-side MIGP. Das-R out-
performs other techniques for n≤ 30. wEdit outperforms the
other measures after that for 30≤ n≤ 100. It was surprising
to us that the rule-based approaches (Das-R,wEdit) end up
matching or exceeding the performance of the much more
complex deep learning approach underlying P2P. This is be-
cause rule-based approaches can easily capture frequently
seen variants, for low values of n. The deep learning approach
works better for large n by finding and ordering less frequently
seen similarity relationships. For example, for n = 103, P2P
outperforms wEdit by 4%.

Although increasing n increases attack coverage, the slope
of the curves decrease rapidly (Fig. 5). Therefore, the benefit
of considering a higher n value diminishes while increasing
storage (only for server-side variant checking), computation,
and bandwidth cost, as we see in Section 6.

Therefore in the rest of the paper, we use Das-R for
n or m = 10 or hybrid n = m = 10 and wEdit for n or m = 100.

Breach alerting method q = 10 q = 100 q = 1000

Exact checking [37, 47] 10.1 13.4 16.3
MIGP [Das-R,n = 10 or m = 10] 2.8 5.0 7.9
MIGP [wEdit,n = 100 or m = 100] 1.9 3.0 5.2
MIGP [Das-R,n = 10 and m = 10] 0.6 1.0 1.4

Figure 6: Success rate of credential tweaking attacker in q ∈
{10,100,1000} guesses, assuming that the attacker is aware
of the breach alerting mechanism.

4.4 Adaptive credential tweaking attackers
We now measure the reduction in a credential tweaking at-
tacker’s success in breaking into a user account, should a
MIGP service be deployed with one of the similarity mea-
sures discussed in Section 4.3. We compare against the base-
line where an exact-checking C3 service such as [37, 47] is
used. For the simulation, we adapt the best-known creden-
tial tweaking attack — pass2path [41] — to be aware of the
MIGP service.

We conservatively assume that the attacker has access to
the entire breach dataset S, while the MIGP service has access
to the subset S1. We sample 10,000 users from the test dataset
T, who are also present in S1 and have a password marked
safe (not flagged as match or similar) by the service under
consideration; this constitutes the target users for the attacker.
With this user list, we can simulate the scenario where the
service (the exact checking C3 service or the MIGP service)
warned the user about their unsafe passwords on a target
website and the user subsequently changed their password.
Though not all users will abide by warnings, this setup allows
us to compare the maximum security benefits of a service
using similarity measures.

We consider an online attack setting, where too many incor-
rect password submissions should trigger an account lockout,
resulting in attack failure. Thus the attacker has a query bud-
get q≤ 103. We measure the fraction of user passwords the
attacker can guess in q attempts, assuming one of their other
passwords is present in S. The attacker enumerates guesses by
first generating candidates using pass2path, and skipping any
that would be flagged by the service. The attacker can infer
this themselves because we assume that the service’s breach
data and the similarity measure are known to the attacker.

As shown in Fig. 6, when only credential stuffing coun-
termeasures are in place, such as using [37] or [47], the cre-
dential tweaking attacker can guess passwords of 10.1% of
accounts using 10 guesses, which matches the performance re-
ported in [41]. The hybrid MIGP reports the highest reduction
in attack efficacy, 94% for q = 10. For the server or client-
side MIGP service, the efficiency decreases to 1.9% when
n or m = 100 variations based on wEdit are used; a reduc-
tion of 81%. The attack accuracy decreases by nearly 78%
and 68% for q = 100 and q = 1,000, respectively. Across
the board, larger n or m gives better protection against the
credential tweaking attacker, reducing the attack’s efficacy.
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MIGP(w′1, . . . ,w
′
m)

q← q−1
if q≤ 0 then return none
for i = 1 to m do

if w′i = w∗ then return (i,match)
if w′i ∈ τ(w∗) then return (i,similar)

return none

MIGPGuess(A ,q):
w∗←pW
w̃← AMIGP

if w̃ = w∗ return true
else return false

Figure 7: An abstract breach extraction attack security game
for a MIGP service parameterized by a number of MIGP pro-
tocol invocations q, a distribution of passwords p, a similarity
model τ, and a number of client-side variants allowed m.

5 Security Evaluation
A MIGP service allows clients to check whether a password
similar to the queried one is present in the breach. Current
C3 services, such as GPC [47], do not reveal any information
about breach data unless a client queries the exact username,
password pair. A natural question is: Will moving towards
similar-aware C3 services degrade the confidentiality of the
username, password pairs in the leaked database?

We formalize the abstract setting of a malicious client that
has access to a similarity oracle, assuming it is cryptographi-
cally secure (we refer to this as the ideal functionality follow-
ing parlance from the 2PC literature).

5.1 Breach extraction attacks
A MIGP service could be abused by malicious clients that
seek to learn about user credentials. This is particularly con-
cerning should a MIGP service have access to relatively new
breaches that are not widely available to attackers, making
the service a potential target for what we call a breach ex-
traction attack. We model such attacks via the security game
given in Fig. 7. In it, the adversary is given access to an oracle
that implements the ideal functionality of a MIGP service.
Note that the oracle is parameterized by a target password
w∗ chosen by the game, the query budget q, and a similarity
measure τ. In each query, the adversary can send up to m
passwords, and each is checked against the target w∗ and its
variants τ(w∗). Here we use τ for the server-side variants, but
allow a malicious client to choose any m passwords for the
client-side variants. The goal of the attacker is to guess w∗

within the given query budget q.
Finding an optimal guessing strategy for breach extrac-

tion is NP-hard. (See Appendix C for details.) However, it
is possible to create efficient greedy approximate algorithms
(Appendix D). We note that Chatterjee et al. [19] explored
NP-hardness results and greedy heuristics for typo-tolerant
password authentication, where the server returns true or false
should the submitted password be a typo of the registered pass-
word. But, in our setting, MIGP oracle returns one of three
possible answers. Therefore, their setting and results don’t
directly carry over to our setting.

In Appendix D, we present an efficient greedy algorithm
for the m = 0 case, called GreedyMIGP. We now turn to mea-

suring the efficacy of the greedy algorithm to understand
the real-world threat of a malicious client attempting to ex-
tract data from the MIGP service. We assume the attacker
has a guessing budget of q ≤ 103. This setup assumes that
the MIGP server will deploy some form of rate-limiting on
queries from a client (as discussed in Section 7).

Experiment setup. For simulation, we assume the MIGP
oracle is instantiated with S1 data (see Section 4.2), and the
attacker has access to only S2. This simulates the situation
where the attacker does not know the leaked data present in
MIGP, and is trying to learn those breached passwords for a
user. We sample 25,000 username, password pairs from S1.
For each pair, the attacker is given the username and required
to find the target password. We compute the efficacy of an
attack as the fraction of username, password pairs that the at-
tacker can successfully guess. (As per our data division, none
of the target usernames are present in S2, and therefore the
attacker cannot attempt a targeted credential tweaking-type
attack.) We evaluate the security loss for 10 variants based on
Das-R rules, and 100 variants based on wEdit rules. We first
experiment with only server-side variant generation (m = 0);
later in the section, we report the efficacy of breach extraction
attacks when allowing client-side variant generation.

The S2 dataset has 210 million passwords. If the attacker
sets W to all the passwords in S2, it will make GreedyMIGP
very slow to run (Fig. 15). We instead heuristically picked
the top one million passwords as W for the attack. These
passwords are used by 24% of users in S2.

For comparison, we also simulate a C3 service that does
not provide checking for similar passwords, which we refer
to as MIGP service with n = 0. For this case, the attack is
simpler: query the MIGP service with the top q passwords,
and if any query returns match, output the queried password.

Results. The success probability of the attacker in guess-
ing the target password using q ∈ {10,100,1000} queries is
shown in Fig. 8. We explain the β values below; here we fo-
cus on the rows with β = 0. An attacker can learn 6.57% of
passwords in less than a thousand guesses against an exact-
checking C3 service (n = 0,β = 0). The attacker’s success
probability increases to 13.58% for n = 10 and 17.18% for
n = 100. In the latter case, moving to a MIGP service may
lead to a 2.8× increase in an attacker’s ability to perform
breach extraction attacks.

We observed a counter-intuitive pattern for q = 10 and 100:
the attack success rate decreases with the increase of n from
10 to 100. This is because large n produces larger balls, mak-
ing it easier to get in the ball, but harder to identify the correct
password given a small query budget q = 10. Therefore, for
small q, guessing the most weighted password ball may not be
the optimal strategy. We plot the attack success for different
values q for n = 10 and n = 100 in Fig. 9. For query budget
q < 230, increasing the number of password variants n from
10 to 100 actually decreases this attack’s success rate.
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β n q = 10 q = 100 q = 1000

0
0 1.64 (± 0.22) 3.36 (± 0.35) 6.57 (± 0.61)
10 2.14 (± 0.26) 5.22 (± 0.56) 13.58 (± 0.61)
102 1.69 (± 0.17) 3.54 (± 0.30) 17.18 (± 0.73)

10
0 0.03 (± 0.00) 0.36 (± 0.08) 2.80 (± 0.27)
10 1.19 (± 0.15) 3.90 (± 0.40) 12.12 (± 0.45)
102 0.93 (± 0.11) 2.43 (± 0.25) 15.67 (± 0.61)

102
0 0.03 (± 0.03) 0.37 (± 0.08) 2.50 (± 0.30)
10 0.93 (± 0.13) 2.71 (± 0.27) 9.91 (± 0.42)
102 0.79 (± 0.13) 1.52 (± 0.26) 10.91 (± 0.41)

103
0 < 0.01 (± 0.00) 0.18 (± 0.06) 1.46 (± 0.14)
10 0.76 (± 0.11) 1.42 (± 0.10) 5.94 (± 0.16)
102 0.72 (± 0.09) 0.97 (± 0.11) 9.21 (± 0.24)

104
0 < 0.01 (± 0.02) 0.03 (± 0.02) 0.27 (± 0.03)
10 0.71 (± 0.10) 1.02 (± 0.07) 3.34 (± 0.23)
102 0.70 (± 0.10) 0.92 (± 0.11) 4.87 (± 0.12)

Figure 8: Attack success rate given different query budgets
(q) for different attack scenarios. Here n = 0 (first row in each
block) emulates existing exact checking C3 services. MIGP
oracle uses Das-R and wEdit similarity rules for n = 10 and
n = 100, respectively. The service blocks most frequent β

passwords. All success rates are in percent (%) of 25,000
target users sampled from S1. Standard deviations (shown in
parenthesis) are measured across the 5 random folds of these
pairs. Lower values imply better security.

Blocklisting. The abuse prevention mechanisms (e.g., slow
hashing and API rate limits) used in current C3 systems can
only slow down breach extraction attacks, but do not prevent
them. We, therefore, propose a simple yet effective mecha-
nism to reduce the attack success: blocklist the top β pass-
words so that an attacker learns nothing from the MIGP ser-
vice should a user’s password be one of them. The MIGP ser-
vice can do so by removing all the blocklisted passwords and
their variants from its breach database. (This will also reduce
storage and bandwidth overhead as we show in Section 6.)
These popular passwords are anyway unsafe to be used by any
user irrespective of whether they are leaked or not. Therefore,
a client application can warn the user who is using a password
equal to or similar to one of the blocklisted passwords.

For our simulations, we assume the MIGP service blocks
the β most frequent passwords according to S1 and their vari-
ants (according to the setup). If an attacker queries the MIGP
service with any of the blocklisted passwords the service al-
ways responds as none. Of course, the attacker is aware of
the set of blocklisted passwords and their variants.

We experiment with different values of β as shown
in Fig. 8; β = 0 denotes no blocklisting. Blocklisting reduces
the attacker’s success across all values of n. For q≤ β, the suc-
cess probability of an attacker for n= 10 and n= 100 remains
below that of existing C3 services (with n = 0 and β = 0),
except for β = q = 103 in n = 100. We believe this is due to
the higher ball size in case of n = 100. In this case, we need to
blocklist β = 104 passwords to reduce the attack success rate

1 200 400 600 800 1,000
0

5

10

15

20

Guess budget (q)

A
tta

ck
su

cc
es

s
ra

te
(%

)

n = 100
n = 10

Figure 9: Comparison of attack success of breach extraction
attack for Das-R (n = 10) and wEdit (n = 100). for different
values of q. For query budgets q ≤ 230 (black dashed line),
success rates are slightly lower for the higher value of n.

below existing C3 services. We highlight those numbers in
the figure. As the top β passwords are blocklisted, the attacker
can’t learn if the user has a breached password that is one
of the top β passwords. The attacker’s best bet is to guess
passwords that are outside the top β passwords. The password
distribution follows Zipf’s law [50], therefore leading to a
significant decrease in breach extraction accuracy.

We also compute the breach extraction success rate against
users who do not use weak passwords. The results are shown
in Fig. 16 (Appendix E). For these users, we found that the
relative increase in attack success due to MIGP service is
higher, but the absolute success rates are small. For example,
for β = 104 and q = 102, the attack success is 0.27% when
n= 0, 2.98% when n= 10, and 2.56% when n= 100. Similar
to Fig. 8, the attack efficacy for n = 100 is worse than that of
n= 10 in most cases. We suspect that this is because our attack
is not optimal, especially for a smaller number of guesses
(q≤ 103).

Security of client-side variant generation. A client can
generate m variants of a password w and check them all in
parallel with the MIGP server. Due to the limitation of our
MIGP protocol there is no way for the server to verify if
the client has generated variants truthfully. Thus a malicious
client can use this to expand its query budget by a factor of
m: The client simply submits the next m passwords computed
using GreedyMIGP, to obtain in total m ·q queries.

We show the success rate of this breach extraction attack
for different m and n values with β = 104 in Fig. 10. Allow-
ing m = 102 variants on the client side increases the attack
success by more than twice for any q≤ 103 compared to al-
lowing only the server side n = 102 variants. Using the hybrid
approach to variant generation with m = 10 and n = 10 re-
duces the attack success rate, but still remains significantly
higher than m = 0,n = 100 setting. Therefore, we suggest that
if the breach data is sensitive it is safer to disallow client-side
variant generation and apply strict rate limiting.
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n m q = 10 q = 100 q = 1000

102 0 0.70 (± 0.10) 1.10 (± 0.05) 4.87 (± 0.12)
10 10 1.02 (± 0.07) 3.34 (± 0.23) 8.49 (± 0.09)
0 102 1.45 (± 0.08) 3.06 (± 0.22) 10.60 (± 0.68)

Figure 10: Comparing breach extraction attack success rate
between generating m variants on the client-side and n vari-
ants on the server-side. Here we assume β = 104. The first
row is the same as the last row in Fig. 8.

5.2 Security of the MIGP Protocol
Our MIGP protocol (given in Fig. 2) requires minimal
changes to previously proposed [37] and currently de-
ployed [47] protocols. This made deployment simpler, and
also the cryptographic security is derived directly from the
underlying protocol. Here we briefly summarize the security
achieved by MIGP, considering in turn curious servers and
malicious client threat models. MIGP communications must
be protected with TLS, preventing any manipulations of the
buckets or client queries by a network adversary.

As in the prior protocols, the MIGP server learns only the
client’s queried bucket ID. This reveals some bits of infor-
mation about the username, but nothing about the queried
password, assuming the password and username are inde-
pendent. (Some users may choose passwords similar to their
username, but it’s unclear how a malicious server can usefully
exploit this practice.) An actively malicious server can modify
the result obtained by a client, e.g., by erroneously claiming
passwords are not in the breach when, in fact, they are (or
vice versa). This attack is possible also for deployed exact
equality checking protocols [37, 47]. In theory, one could try
to use techniques to prevent this, e.g., by having the server
publish a commitment to the dataset and then performing
zero-knowledge proofs of (non-)membership [39]. We do not
believe this is necessary for breach alerting as such attacks
would seem to have low value to attackers.

An encrypted bucket reveals to a client the number of en-
tries in the bucket, and the updated entries and the time of
updates to buckets will be revealed over time. This could
conceivably have security implications in some contexts.
As shown in Section 5.1, MIGP services are susceptible to
breach extraction attacks, and therefore must employ different
forms of rate limiting. Note that a malicious client can sub-
mit a query for a bucket for username u but submit an OPRF
request for username u′ 6= u. This is true as well for existing
C3 services. Thus rate-limiting should not be based (only) on
bucket identifier, and instead on a client identifier (cookie or
IP address) or a token mechanism such as PrivacyPass [23].

6 Performance Analysis
We implement a prototype of MIGP and conduct experiments
to estimate its performance. We also compare it with existing
C3 services, such as GPC [47] or IDB [37] (equivalent to
MIGP with n = 0 and m = 0). We experiment with no block-

listing (β = 0) and blocklisting the β = 104 most frequent
passwords (and their variants). We want to measure and com-
pare: (1) storage overhead on the server side, (2) latency of
running the protocol, and (3) total bandwidth usage. Here
we use as breach dataset D the entire 1.14 billion username,
password pairs from the dataset described in Section 4.2.

Prototype implementation details. We implement the
MIGP client and server in Python 3.8, with petlib library for
elliptic curve operations. We chose the elliptic curve group
secp256k1 for G and set ` = 128. For H1, we use petlib’s
hash-to-point function to map the username, password pair
to G; internally it uses rejection sampling [30] with SHA256.
We also use SHA256 for H2. Should either of H1 or H2 be a
slow hash, there will be additional overhead in precomputa-
tion. We select the most frequent β passwords for blocklisting
based on the dataset D. The server is built using the Flask [7]
library and the client uses the requests [6] library to make
queries. This prototype implementation is publicly available.2

For all the pre-processing of the data, we used a desktop
with an Intel Core i9 processor and 128 GB RAM. We did
not use any GPU to optimize hash computation in our ex-
periments. For latency and bandwidth comparisons, we run
the server (t2.medium) and client (t2.micro) on two different
AWS EC2 instances running the Ubuntu 20.04 LTS image
and located in two different regions — US-East and US-West.

Precomputation overhead. We precompute the buckets of
PRF values for the entire breach dataset. MIGP, in compari-
son to exact-check C3 protocols, requires processing an ad-
ditional n variants for each leaked password and storing the
resulting PRF values. The precomputation on the server in-
volves computing Fκ(x) = H2(x,H1(x)κ), where x = (u‖w)
for the breached password and Fκ(x)⊕ 1, where x = (u‖w̃)
for w̃ ∈ τn(w). We use H2 to reduce the representation size of
the hash to 16 bytes, which saves disk space and bandwidth.

Generating n = 10 variants for a password using Das-R
similarity rules takes less than 0.02 ms, whereas generating
n = 100 variants using wEdit similarity rules takes 0.8 ms, on
average. If we had used Argon2 as H2, it would take 95 ms on
average for computing the hash of one username, password
pair, an estimated 361.5 CPU-years for pre-processing all
username, password pairs and their variants on our reference
implementation. Should breach data not be particularly sen-
sitive, a deployment can skip slow hashing or use time-lock
puzzles instead (see Appendix F).

The PRF values are then separated into buckets based
on H(l)(u). Duplicate values could arise when pairs (u,w1)
and (u,w2) satisfy the condition τn(w1)∩ τn(w2) 6=∅, which
can be common for users with credentials from multiple sites
in the known breach. Duplicates should be either omitted
(as we do in our prototype) or replaced with other variants.
The former is better for performance, but note that the length

2https://github.com/islamazhar/migp_python
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w/o blocklisting w/ blocklisting
l avg. std. avg. std.

16 1,751,666 36,832 1,431,876 30,107
20 109,479 9,192 89,492 7,513
24 6,842 2,297 5,592 1,877

Figure 11: Average bucket size of MIGP with n= 100 variants
for each password on the leak dataset, which contains 1.14
billion unique username, password pairs.

of buckets now depends on relationships between different
passwords — we are unsure whether this can be exploited by
an attacker given the large number of users in each bucket.

The total storage cost for 1.14 billion unique username,
password pairs and their variants would be 1.67 TB (consid-
ering every entry has n = 100 unique variants). Blocklisting
reduces storage (and bandwidth) requirements, and we found
that blocklisting the 104 most popular passwords and their
variants reduces the database size by 18% to 1.36 TB.

Bucket size selection. To make the private membership test
protocols practical, C3 services use bucketing to partition the
leaked dataset based on the prefix of the hash of the username.
MIGP follows the same approach. However, as MIGP con-
tains n variants of each password, the buckets would be quite
large for MIGP for the same number of buckets. Large bucket
size will increase communication costs in terms of bandwidth
and latency as the client has to download a larger amount of
data. We can reduce the bucket size by increasing the number
of buckets — by increasing the length of the hash prefix l.
The average bucket sizes for different hash prefix lengths for
MIGP are shown in Fig. 11. The bucket size, as expected, de-
creases exponentially with the prefix length (l). The average
bucket size with blocking the most frequent 104 passwords
for l = 16 (which is used by GPC [47]) is 1.43 million, or
22.85 MB. Increasing the length of the bucket identifier l
to 20, reduces the bucket size to 1.37 MB.

Latency & bandwidth comparison. We measure and
compare the latency and bandwidth requirements for
running different compromised credential checking ser-
vices: IDB-16 (also called GPC) [47], IDB-20 [37],
WR19-Bloom [52], WR20-Cuckoo [53], and our proto-
cols MIGP-Server, MIGP-Client, and MIGP-Hybrid. Although
WR19-Bloom and WR20-Cuckoo were designed to check
user’s passwords in multiple web services, these protocols can
be used for checking a user’s leaked passwords. MIGP-Server,
MIGP-Client, and MIGP-Hybrid are the different versions of
our protocol with variants generated on the server side (n =
102), client side (m= 102), and both (n= 10,m= 10). IDB-16
and IDB-20 are implemented following the same construction
as MIGP, but with different lengths of prefixes for bucketing
and setting m = n = 0. For WR19-Bloom and WR20-Cuckoo,
we use the corresponding authors’ implementation3 in Go but

3https://github.com/k3coby/pmt-go

customize it for the client-server setting.
We pick 25 random passwords from the test data set T and

run each C3 service protocol separately for different n, m and
prefix length l. We simulate the server data with dummy buck-
ets containing b entries, where value b is randomly sampled
from the normal distribution with the mean and standard devi-
ation set to the values we computed in Fig. 11, with β = 104.
The server and the client are executed in two different EC2
virtual machines located in two different availability zones
in two coasts of the United States. They are connected via a
252 Mbits/sec network link.

We report the average latency with the breakdown for
preparing the query, calling the API and waiting for the re-
sponse, and finalizing the result for each protocol evaluation
in Fig. 12. The overall time to prepare for a query takes less
than 7 ms, for GPC, IDB, MIGP-Server and MIGP-Hybrid. The
total computational cost for the server is very small compared
to the client, however, the client spends time downloading
the data from the server (leading to higher latency in MIGP
compared to GPC and IDB). After the query, the client final-
izes the result by computing H2 of the username, password
pair to compare with the bucket entries. Using slow hash
function for rate limiting would add about 95 ms to the query
preparation to all protocols. MIGP-Client takes 100x more
time in query preparation due to generating the variants and
checking them. MIGP-Client can be particularly expensive
with rate limiting using slow hashes, such as Argon2. It can
take more than 10 seconds for a complete run of the protocol
run. MIGP-Hybrid strikes a balance between server storage
and query preparation time. It reduces the storage cost and
query time by a factor of 10 compared to MIGP-Server and
MIGP-Client, respectively.

The slowest among all, is WR19-Bloom and WR20-
Cuckoo protocols, taking more than 38 sec for one complete
protocol execution. The primary contributors to the latency
are: (a) before a query, the client has to encrypt each entry
of the Bloom filter homomorphically (using Paillier encryp-
tion [40]), (b) the client has to send all the encrypted Bloom
filter entries to the server, which is quite large (216.8 MB),
and (c) the server has to compute large group multiplications
over all entries in the Bloom filter. WR20-Cuckoo protocol
uses Cuckoo hashing [27] which improves overall latency and
bandwidth, however, still falls short of being practical due to
high computational overhead on the server.

MIGP-Server (with n = 102 and l = 20), MIGP-Client (with
m = 102 and l = 16) and MIGP-Hybrid (with n = 10, m = 10
and l = 20) takes less than 534 ms to compute a query if we
don’t use rate limiting, which is comparable to currently-
in-use IDB-16 (with l = 16) protocol. The overhead for
MIGP-Server stems from the high bandwidth usage due to
large bucket sizes. The buckets can be cached on the client-
side or served directly from CDNs (such as Cloudflare) as
practiced by HIBP [14] to improve performance. Client-side
caching of buckets saves fetching the same bucket again for
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Client side latency (ms)

Server B/w Query prep. Query prep. API Fina- Total w/o Total w/
C3 service l storage (MB) w/o rate limit w/ rate limit call lize rate limit rate limit

IDB-16 (GPC [47]) 16 15 GB 0.23 < 1 96 321 < 1 322 417
IDB-20 [37] 20 15 GB 0.01 < 1 96 125 < 1 126 221

WR19-Bloom [52] 20 1.0 TB 177.20 6,990 7,065 39,045 < 1 46,035 46,110
WR20-Cuckoo [53] 20 0.8 TB 0.81 59 155 38,560 < 1 38,619 38,715
MIGP-Server 20 1.5 TB 1.43 < 1 95 498 3 501 596
MIGP-Client 16 15 GB 0.23 46 10,713 450 38 534 11,202
MIGP-Client 20 15 GB 0.02 48 10,007 390 38 476 10,435
MIGP-Hybrid 20 0.2 TB 1.43 7 953 421 12 440 1,386

Figure 12: Average latency (in milliseconds) for checking one password via different private membership or similarity test
protocols used in different C3 services. with different parameters. IDB-16 and IDB-20 do not use any variants. MIGP-Server and
MIGP-Client generate 102 variants on the server and the client side, respectively. WR19-Bloom uses Bloom filter to reduce the
b/w requirement. For rate limiting we use Argon2 as H2, which takes around 95ms to compute. All latency measurements are
averaged over 25 complete API calls with standard deviations < 10%.

checking different passwords for the same username. As most
users have only a few email addresses, this can save significant
network bandwidth and time over multiple queries.

7 Deployment Discussion
We worked with Cloudflare, a major CDN and security com-
pany [12], to deploy the MIGP protocol (1) as a public-facing
API similar to HIBP, and (2) as a new breach alerting fea-
ture within Cloudflare’s web application firewall (WAF) prod-
uct [9]. MIGP is deployed as an opt-in feature in WAF, which
detects login requests to Cloudflare customer websites, ex-
tracts username and password fields, and queries a MIGP
service deployed on Cloudflare Workers [10]. The result of
the MIGP query is added to an HTTP header that is forwarded
to the customer login service, informing them should the lo-
gin request be utilizing a breached credential or ones similar
to them. The libraries underlying the MIGP implementation
have been open-sourced and are publicly available [8]. In this
section, we present some deployment considerations and the
lessons we learned.

Deployment details. During pre-processing, the breach
database is transformed into MIGP buckets. We post-process
the OPRF outputs using HKDF [35] to generate a 21-byte
hash value; the last byte is XORed with a one-byte flag de-
noting whether a bucket entry is an exact match or a variant.
Slow hashing is supported by the implementation, but ap-
plying slow hashing at the scale is expensive and our initial
deployment omits it. We discuss this more below.

The buckets of credentials produced in the pre-processing
step are stored in Workers KV [11], a high-performance, dis-
tributed key-value store. Our deployment uses 20-bit bucket
prefixes with n = 8 variants per entry generated using the
Das-R rules and without blocklisting popular passwords
(β = 0). The deployment caps each individual bucket size to
25 MB, which under this configuration should support breach
data up to 64 billion entries. The MIGP service is able to

serve over 50% of client requests in under 135ms, and 95% of
requests in under 573ms. Most performance overhead is due
to the cost of fetching buckets form Workers KV store, as only
frequently accessed buckets are cached at 250 datacenters that
are running Workers. Other buckets must be fetched from a
centralized data store which adds latency.

Our current implementation does not support client-side
variants. As shown earlier (Fig. 12), enabling client-side vari-
ant generation in the future may provide attractive perfor-
mance benefits. This must be balanced against the risk of
breach extraction attacks (see Fig. 10).

Breach extraction attacks. A key concern as we designed
and discussed MIGP deployment at scale was gauging the risk
of breach extraction attacks. Any client can attempt to mount
such an attack against the public API. The WAF deployment
does not necessarily provide malicious web clients with a
MIGP oracle: the result of MIGP queries are only shared with
the login service and not the client. Login services should not
reveal MIGP outputs to unauthenticated clients.

For both deployments we have thus far only utilized
datasets that are widely available on underground forums,
obviating the concern about breach extraction attacks in the
short term. To use more sensitive breaches in the future, fur-
ther mitigations will need to be enabled, including popular
password blocklisting and rate limiting. Our deployment al-
ready benefits from rate-limiting of individual IP addresses
and other anti-automation techniques [15]. We note that a
common rate-limiting approach is to require clients to obtain
an API key through some slow (or paid) registration process,
but this approach won’t work for WAF deployment scenario.

Another rate-limiting approach would be to use slow hash-
ing. Recall that the MIGP protocol uses two hash functions
within the OPRF, computing outputs as H2(u‖w,H1(u‖w)κ).
Either of the hashes can be made computationally expen-
sive to both slow down online breach extraction attacks
and to make offline hash cracking attacks harder should the
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MIGP server be compromised. There are nuanced security-
computation trade-offs between choice of which to make slow.
If H2 is expensive the client cannot do offline processing of
the slow hash without communicating with the server, which
is not true if only H1 is slow. However, one benefit of hav-
ing just H1 slow is that the server can store the intermediate
H1(u‖w)κ values for faster key updates (see below). Google
Password Checkup (GPC) [47] uses a slow hash for H1 and a
fast hash for H2.

An alternative approach to slow hashing is to use asymmet-
ric hashing, also called proof-of-work [24, 31] or time-locked
puzzles [45]. We discuss more ways to rate-limit client queries
in Appendix F.

Bucket updates. MIGP services (like other C3 services)
may periodically update their leaked data, such as when new
breaches are exposed online. This will require adding new
credentials to the buckets. Updating the buckets with OPRF
outputs under the same key could, in principle, allow an at-
tacker to identify the newly added username, password pairs.
Although it is unclear how this leakage can be exploited, it
would be better to avoid the leakage entirely. One way is to
rotate the OPRF key κ every time there is a new leak. How-
ever, recomputing the OPRF output from the stored breach
data will be computationally very expensive given the slow
hash function. Assuming H1 is slow, an optimization would
be to have the server record the output of the group multipli-
cation H1(u‖w)κ in some offline, safe storage. Then the new
OPRF outputs can be computed for the new key κ′ by raising
H1(u‖w)κ values to κ′/κ, and applying the fast hash H2(·) to
them. This approach is similar to the key rotation mechanism
used by Pythia [26].

MIGP warnings: effectiveness and usability. To estimate
the effectiveness of the MIGP service, we instrumented the
WAF deployment to measure the ratio of the number of lo-
gin attempts that MIGP flagged as similar to the number that
MIGP flagged as an exact match. The average ratio over the
period of a week is 0.2 (with 0.01 standard error of the mean),
implying that MIGP flags 20% more login attempts compared
to an exact-checking C3 system. This represents a signifi-
cant improvement by MIGP over exact-checking in terms of
alerting on credentials that are vulnerable to attacks such as
those based on pass2path [41]. Our instrumentation does not
record how many WAF-monitored attempts correspond to
vulnerable accounts (e.g., attempts will include some number
of incorrect submissions and attacks), but customer services
can distinguish between these cases and act appropriately.

Prior work has shown that users may not be responsive
to breach alerts [44]. We expect that MIGP deployments
will face a similar challenge. Server-side breach alerting, like
our WAF deployment, allow high-security services to force
users to change MIGP-flagged passwords. One open question
prompted by our work is how best to communicate to users
that their password is similar to a breached password and how

to guide them towards safer choices.

8 Conclusion
In this work, we tackled the problem of building MIGP, an
updated version of C3 systems that can securely warn users
from selecting passwords similar to (and same as) a breached
password which can be vulnerable to credential tweaking at-
tacks. Via comparing different similarity metrics we show
that computing variants of the password using weighted edit
distance rules provide the best combination of performance
and efficacy. Underlying MIGP is a secure private similarity
test (PST) protocol. Despite secure PST, MIGP protocols can
still be vulnerable to breach extraction attacks, where an at-
tacker can extract leaked (but not yet public) credentials from
a MIGP service. We show that the attacker’s success proba-
bility can be reduced significantly using blocklisting popular
passwords. We implement and show that MIGP achieves com-
putational overhead comparable to C3 services. Finally, we
deploy MIGP with Cloudflare and provide nuanced discus-
sions about deploying MIGP in practice.
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A Assessing performance feasibility
We compare the performance of the top four similarity
measures — P2P, Das-R, wEdit and PPSM — to under-
stand the feasibility of their deployment as a C3 service.
The three generative algorithms perform a PMT with the
breached passwords and their variants generated on the server.
PPSM computes similarity by mapping the passwords to 100-
dimensional vectors and comparing their dot product to a
threshold. The resultant list of boolean is summed and sent
to the client. Therefore, the implementation of PPSM-based
MIGP doesn’t require the generation and storage of similar
passwords, but involves computing private dot products, com-
parisons, and summation.

To estimate the cost of performing similarity matching, we
use a bucket of 10,000 username, password pairs (without
any variants). We use n = 100 for P2P, Das-R, and wEdit,
and θ = 0.83 for PPSM. The OPRF based PMT protocol is
implemented in Python and uses secp256k1 elliptic curve
implemented in petlib [5]. We implement the PPSM based
protocol using Crypten [34]. Timing experiments were per-
formed on a machine with an Intel Core i9 processor and
128 GB RAM, and here we run the entire protocol within
the same machine (without network overhead). P2P uses an
Nvidia GTX 1080 GPU along with the processor to run the
pass2path neural network for pre-processing.

We summarize the results in Fig. 13. PPSM-based ap-
proach to MIGP takes 16 seconds to complete a query, while
all other approaches take < 1 second. Note that these mea-
surements, which do not include network latency, should be
considered lower bounds on performance. Crypten uses secret-
sharing to execute the MPC protocols, therefore requires more
than one round trip. The columns of Fig. 13 are ordered from
left to right in decreasing order of our perception of how criti-
cal this aspect of the protocols is to deployment. As PPSM

Similarity
measure Latency B/w Compat. Storage

per bucket Precomp.

wEdit (n = 100) < 1 sec 14 MB Yes 14 MB 41 sec
P2P (n = 100) < 1 sec 14 MB Yes 14 MB 180 sec
Das-R (n = 100) < 1 sec 14 MB Yes 14 MB 0.5 sec
PPSM (θ = 0.83) 16 sec 1.6 KB No 8 MB 1 sec

Figure 13: Performance (latency, bandwidth, storage, etc.)
summary of different similarity measures. All the numbers
are based on a bucket of size 104. The trade-offs are also
ranked left to right based on the importance to deployment.
Here latency does not include n/w or i/o cost.

Das-R wEdit Rule (%) of matches

1 1 Del last char 27.7
2 3 Switch 1st char case 20.6
3 2 Del last 2 char 15.2
6 4 Ins ‘1’ at end 13.4
- 6 Ins ‘Caps’ at beg 7.6
4 5 Del last 3 char 6.6
9 7 Del 1st char 4.7
5 - Ins ‘0’ at beg 1.5
- 8 Subs ‘1’ at end 1.0
10 - Ins ‘0’ at end 0.7
- 10 Ins ‘123’ at end 0.5
7 9 Ins ‘a’ at beg 0.4
8 - Ins ‘q’ at beg 0.1

Figure 14: Rules for generating password variants and the %
of password pairs matched by the rule among 9,141 vulner-
able pairs found in a randomly sampled 105 password pairs.
We also show their ranks according to Das-R and wEdit.

is slower than other approaches for executing a query, we
focus on the generative methods. We leave as an open ques-
tion whether one can make another 2PC-based protocol fast
enough for reasonably sized buckets.

B Rules-based similar passwords generation
We used three rule-based approaches for generating simi-
lar passwords: Das [22], a reordered variant of Das which
we call Das-R, and wEdit. The top-performing edit rules
based on our dataset S1 are shown in Fig. 14. We also re-
port the percentage of vulnerable password pairs in T ex-
plained by each rule. Deleting characters towards the end,
and adding SHIFT or CAPS LOCK at the beginning are the
most common rules that users use to modify their passwords.
While the top rules capture the common transformations, it
fails for subtle edits that are otherwise guessed by pass2path.
Some example of such pairs are: (‘20041981’, ’200481’ ),
(‘thingsome’, ‘thing.some’), (‘nikaprudova’, ‘nika_prudova’),
(‘MADRE000’, ‘padre000’), (‘jessiemax1’, ‘jessie1’).

C Optimal breach extraction attack is hard
Let W be a set of all possible strings up to some length
(say, 30), and W ⊆ W be the set containing all possible
password strings for users U , with an associated probabil-
ity distribution p of being chosen by a user. Recall we de-
fined τ : W → 2W such that τ(w) is the set of passwords
similar to w. (We show how to instantiate τ in Section 4.) We
assume w /∈ τ(w), and n = maxw |τ(w)|.

The MIGPGuess adversary (in Fig. 7) tries to guess the
exact target password w given access to the MIGP(·) oracle.
We modify the game to measure the advantage of an attacker
as the expected number of queries to the respective oracles to
guess a password, without any limit on the query budget. The
oracles keep track of the total number of queries.

The advantage of the MIGPGuess adversary A is defined as
the expected guess rank: GMIGP (A) = E [MIGPGuess(A) ] .
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An MIGPGuess-adversary A∗ is optimal if for all A it holds
that GMIGP (A∗) ≤ GMIGP (A). The optimal adversary A∗
builds a ternary decision tree to query MIGP such that the
expected guess rank is minimized. We show that building
such a decision tree that minimizes the guesswork is NP-hard,
and so does the optimal attack against MIGP.

Definition 1 (OMIGPGuess). Given (W, p,τ), we define opti-
mal MIGP guess (OMIGP) problem as building the query tree
for A∗ that minimizes the expected guess rank for distribution
p over W with MIGP similarity measure being τ.

Theorem C.1. OMIGPGuess problem is NP-hard.

Proof: To prove this theorem, one might be tempted to reuse
the result from Chatterjee et al. [19, 21], who investigated
guessing attacks against a server that allows the user to login
with a small set of typos in the context of typo-tolerant pass-
word checking. Although the setting is similar, there is one
crucial difference: MIGP reveals whether the query is a match
or is similar to a password, but the password typo correction
oracle does not reveal whether the password was an exact
or near match. This seemingly minor distinction implies we
can’t use their technique.

We, therefore, show that OMIGPGuess problem is NP-hard
by reducing the optimal binary decision tree (OBDT) problem
to OMIGPGuess in polynomial-time. Because OBDT does
not have a polynomial-time solution [36], OMIGPGuess also
cannot have a polynomial-time solution.

Binary decision tree (BDT). Given a set of n items X =
{x1,x2, . . . ,xn} with associated probability distribution pX
and a set of m questions (functions) Q such that Qi : X 7→
{0,1}, the goal is to find a decision tree where the questions
q ∈ Q are specified in all the internal nodes while the items
xi fill the root nodes of the tree. The expected depth of the
tree is defined as ∑x∈X pX (x) ·d(x), where d(x) is the depth —
distance from the root — of the element x in the binary tree.

Definition 2 (Optimal BDT problem (OBDT)). Given
(X , pX ,Q), the problem is to build a binary decision tree that

has the least expected depth, ∑x∈X pX (x) ·d(x).

Laurent and Rivest have shown OBDT problem is NP-
hard [36]. We show that OMIGPGuess is NP-hard by giving a
polynomial-time reduction of an arbitrary instance of OBDT
problem to OMIGPGuess. Thus if there exists a polynomial-
time solution to OMIGPGuess, then we can solve OBDT in
polynomial-time as well, which is a contradiction.

An instance of OMIGPGuess problem is defined as
(W, p,τ), where W are the set of strings, p is a probability
distribution over W , and τ is a similarity measure. Given
an instance of BDT problem (X , pX ,Q), we can construct
an instance of OMIGPGuess problem as follows. For this
we set W = X ∪Q (assuming elements in Q are distinct
from X); p(w) = pX (w) if w ∈ X , and 0 otherwise; and
τ(w) = {y | Qw(y) = 1} if w ∈ Q, and ∅ otherwise.

GreedyMIGP(W, p,B,q):

W ′←
⋃

w∈W
τ(w)∪{w}

for i← 1 to q do
w̃i← argmaxw̃∈W ′ p(B(w̃)) ; r←MIGP(w̃i)

if r = similar then
for w ∈W\B(w̃i) do p(w)← 0
W ′←

⋃
w∈B(w̃i)

τ(w)∪{w}

else if r = none then
W ←W\B(w̃i) ; for w ∈ B(w̃i) do p(w)← 0

else if r =match then return w̃i

W ′←W ′ \{w̃i}
return argmaxw∈W p(w)

Figure 15: Greedy algorithm for finding q guesses to MIGP
oracle (Fig. 7). Here B : W 7→ 2W is a function such that
B(w̃) = {w ∈W

∣∣ w̃ ∈ τ(w)}.

Let T be the ternary decision tree for OMIGPGuess prob-
lem, where each node has three children for each type of
MIGP output. The leaf nodes of the tree are the passwords in
W . The distance of a password w from the root is the num-
ber of queries it take to guess w, which we denote as d(w)
here. As T is optimal, the guesswork ∑w∈W p(w) · d(w) is
minimum. Also note that, because p(w) = 0 if w ∈ Q (as per
the reduction above), ∑w∈X p(w) ·d(w) is minimum. This is
the same as the property of OBDT. Therefore, we can build
the required binary decision tree T ′ by removing the edges
for the exact match of the questions (where w ∈ Q).

Thus, we show that one can reduce an instance of OBDT
problem into an instance of OMIGPGuess problem, and the
solution of OMIGPGuess will provide a solution to OBDT.
This contradicts the fact that OBDT is NP-hard, therefore,
OMIGPGuess cannot have a polynomial-time solution. This
concludes the proof.

The BDT problem will have a unique solution only if m≥
log2 n and no two objects have the same output for all the
questions. Since BDT reduces to OMIGPGuess, the same
conditions apply for OMIGPGuess as well.

D Greedy approximation of OMIGPGuess
Finding an optimal guessing strategy that minimizes the ex-
pected guess rank is NP-hard. However, attackers could still
find approximate solutions that minimize the expected guess
rank. We present a greedy algorithm GreedyMIGP Fig. 15.
We define the ball B(·) of a variant w̃ ∈W as the set of pass-
words that share a common variant. That is, B(w̃) = {w ∈
W

∣∣ w̃ ∈ τ(w)}. The probability of a ball p(B(w̃)), also called
the weight of a ball, is the sum of the probabilities of the
passwords in the ball.

The attacker begins with a set of potential passwords W of
the target user. In iteration i, the attacker picks the guess w̃i
that has the highest ball weight, and based on the response
from the MIGP oracle, it updates the set of potential pass-
words. In particular, if the response is none, then it removes
all the passwords in B(w̃i) from W . If the response is similar,
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β n q = 10 q = 100 q = 1000

10
0 1.21 (± 0.17) 2.48 (± 0.25) 5.64 (± 0.51)
10 0.14 (± 0.06) 1.85 (± 0.15) 9.50 (± 0.31)
102 0.03 (± 0.02) 0.44 (± 0.08) 10.65 (± 0.16)

102
0 0.78 (± 0.10) 1.40 (± 0.17) 2.49 (± 0.30)
10 0.12 (± 0.02) 1.78 (± 0.28) 8.57 (± 0.47)
102 0.03 (± 0.03) 0.67 (± 0.13) 6.46 (± 0.27)

103
0 0.72 (± 0.07) 0.89 (± 0.08) 1.46 (± 0.14)
10 0.23 (± 0.02) 0.78 (± 0.12) 5.61 (± 0.54)
102 0.04 (± 0.01) 0.09 (± 0.03) 2.07 (± 0.27)

104
0 < 0.01 (± < 0.01) 0.03 (± 0.03) 0.27 (± 0.03)
10 <0.01 (± < 0.01) 0.41 (± 0.07) 2.98 (± 0.25)
102 0.00 (± 0.00) 0.26 (± 0.21) 2.56 (± 0.20)

Figure 16: Breach extraction attack success when the target
password is not one of the blocked passwords or their variants.

then it knows that the target password is one of the passwords
in B(w̃i), and so it sets the probability of all other passwords
to zero and limits the search to the passwords in B(w̃i) and
their variants.It is important to leave the variants in because
they may make the ball heavier than when the ball was cen-
tered on passwords from only B(w̃i). If the response is match,
then it stops and outputs the guess w̃i (and wins the game).

The greedy algorithm is not optimal but provides a good
approximation of the success of the optimal attacker. Whether
an efficient algorithm with tighter approximation bounds ex-
ists remains an open question. Following the seminal work of
Chakaravarthy et al. [18]), we find the expected guesswork
due to the greedy algorithm GreedyMIGP can be as high
as O(log |W |) factor of the minimum expected guesswork
GMIGP (A∗). This approximation factor is quite large, espe-
cially when |W | is very large. Nevertheless, this shows that it
is possible to compute approximate solutions that might help
an attacker guess a user’s leaked password stored in MIGP
server more effectively (than existing C3 services).

The complexity of the algorithm is O(qn2|W |). The at-
tacker can decide on W that they believe will likely contain
the target password, e.g., popular passwords from prior public
password breaches.

E Breach extraction attack (contd.)
To understand the security impact on users who uses strong
password — passwords that are not blocked by MIGP, we
sample of 25,000 username, password pairs randomly from T
such that the target password is not in the blocklisted set, for
β > 0. We show the results of greedy breach extraction attack
GreedyMIGP in Fig. 16. Notably, for q ≤ 100, our greedy
attack performs worse than that against exact checking C3
service (shown in bold), and the attack success rate is worse
for n = 100 compared to n = 10. We saw the similar trend
in Fig. 8 as well. We believe this is because our greedy algo-
rithm is sub-optimal, especially for smaller number of guesses
and future work should explore other heuristic attacks for a
smaller number of guesses.

F Rate-Limiting Client Queries
As shown in Section 5.1, to reduce the effect of the breach
extraction attacks, MIGP must limit access to the service.
Cryptographic rate-limiting ensures the client performs sig-
nificantly more work than the server to make a query.

MIGP can use a slow, computationally expensive hash
function such as Argon2 [1] or Scrypt [43] for H2 (or H1,
see the trade offs in Section 7) in the PRF Fκ. For example,
computing a slow Argon2 hash with default parameters [3]
on a desktop with Intel Core i9 processor and 128 GB RAM
takes about 97 ms. However, this also requires the server to
compute the slow hash during pre-processing. We estimate
that computing Fκ for 1.14 billion unique username, password
pairs and their n = 100 variants will require approximately
361.5 CPU-years of computational power.

An alternative approach would be to use a time-lock puz-
zle [38, 45] to slow down client queries to MIGP. Time-
lock puzzles, first introduced by Rivest et al. [45], are a type
of verifiable delay function (VDF) [16], where knowledge
of trapdoor information makes computing a hash function
significantly faster. Following the construction in [45], we
can set H2 to be computed as follows. The MIGP server
computes a large RSA modulus N = pq, where p and q
are two large randomly chosen secret primes. Let ν be
the cost factor and H2(x) = SHA256(x)2ν

mod N, for any
binary string x ∈ {0,1}∗. The server can compute H2 ef-
ficiently as H2(x) = SHA256(x)2ν mod φ(N) mod N, where
φ(N) = (p−1) · (q−1). The time complexity of such an op-
eration would be bounded by the size of N in bits. While for
the client, which will not know the factors of N, computation
of H2 will need to perform ν squaring modulo N sequentially
(each time squaring the prior result). By setting the value
of ν accordingly the server can increase the computational
cost. The advantage of using time lock puzzles is that repeated
squaring is an intrinsically sequential process and can’t be par-
allelized. We estimate that the server would need 0.53 ms to
set up a time-lock puzzle that would take 100 ms to solve for
the client. This corresponds to approximately 1.8 CPU-years
of computational power to finish computing H2 of 1.14 billion
unique username-password pairs and their n = 100 variations.

A third alternative approach to throttle client queries is to
add a small secret value to the hash function H2, H2(x) =
SHA256(x‖r), where r is randomly chosen from {0,1}ν for
each username, password pair. The server does not store r (or
share it with the client). Therefore, the client has to brute-force
the value of r. For example, assuming a (malicious) client
can do 10 million SHA256 hashes per second, the server can
set the value of ν to be 21 bits, which will in expectation
ensure 100 ms client-side computing cost. The server will
require approximately 3.1 CPU-hour for precomputation. One
drawback of this approach is that the client can parallelize the
computation of hashes, and it does not guarantee 2ν sequential
operations, unlike time-lock puzzles.
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