
Detecting Compromise of Passkey Storage on the Cloud

Mazharul Islam∗3, Sunpreet S. Arora‡, Rahul Chatterjee3, Ke Coby Wang† ‡

3University of Wisconsin—Madison, ‡Visa Research

Abstract
FIDO synced passkeys address account recovery challenges
by enabling users to back up their FIDO2 private signing keys
to the cloud storage of passkey management services (PMS).
However, it introduces a serious security risk — attackers
can steal users’ passkeys through breaches of PMS’s cloud
storage. Unfortunately, existing defenses cannot eliminate
this risk without reintroducing account recovery challenges
or disrupting users’ daily account login routines. In this paper,
we present CASPER, the first passkey breach detection frame-
work that enables web service providers to detect the abuse of
passkeys leaked from PMS for unauthorized login attempts.
Our analysis shows that CASPER provides compelling de-
tection effectiveness, even against knowledgeable attackers
who strategically optimize their attacks to evade CASPER’s
detection. We also show how CASPER can be seamlessly
integrated into the existing passkey backup, synchronization,
and authentication processes, with only minimal impact on
user experience, negligible performance overhead, and mini-
mum deployment and storage complexity for the participating
parties.

1 Introduction
FIDO2-based user authentication has compelling security
guarantees which allows users to log into their web service
accounts with device-bound private keys. While they are
promising at (finally) replacing passwords, recovering ac-
counts in the event of device loss remains a significant chal-
lenge preventing the adoption of FIDO2. To address this
challenge and accelerate the adoption of FIDO2-based pass-
wordless user authentication, Microsoft, Apple, and Google
announced passkeys [1], which enables cloud backup and
multi-device synchronization of FIDO2 private keys. Today,
there are many passkey management services (PMS) that al-
low passkey backup, e.g., iCloud Keychain from Apple [14],
Google Password Manager [12], Password Monitor from Mi-
crosoft [11], 1Password [5], LastPass [4], and DashLane [3].
∗Work partially done during a research internship at Visa Research.
†Corresponding author: coby.wang@visa.com

While synced passkeys address the account recovery con-
cern, backing up passkeys to a centralized cloud server poses
a serious security risk: attackers can steal users’ passkeys
through PMS breaches and use them to take over users’ web
service accounts. The breach can happen when an attacker
compromises a user’s PMS account (possibly by guessing the
account password) or when an insider attacker gains access
to the cloud backup storage [27, 82]. Unfortunately, existing
passkey backup and synchronization implementations lack
the capability to detect unauthorized access to users’ passkeys
stored at the PMS.

In this paper, we address this problem by proposing
CASPER1, which, to the best of our knowledge, is the first
framework to detect the abuse of passkeys leaked from
PMS. Underlying CASPER is a decoy-based detection tech-
nique [30, 50, 75]: it hides the real passkey within a list of
decoy passkeys that are indistinguishable from the real one.
As a result, an attacker who steals the passkeys from PMS and
attempts to use them to log into the user’s account at a relying
party (RP), e.g., a website, inadvertently will end up using
a decoy passkey with high probability. These login attempts
will trigger breach detection at the RP, indicating the abuse of
passkeys stolen from the PMS. However, unlike focusing on
allowing relying parties (RP) to detect breaches of their own
password databases, as explored in prior works [30, 50, 75],
CASPER enables the relying parties to detect breaches of
PMS — a different service. To do so, there are additional
usability challenges that CASPER must overcome. For exam-
ple, false detections by a denial-of-service attacker must be
avoided, as they would undermine the trustworthiness of any
breach detection system. Arguably more importantly, even if
an additional user secret is needed in such a system, it should
be easy for users to manage so it avoids reintroducing the ac-
count recovery problem, and it should not disrupt their daily
account login routines.

To meet these requirements, we design a new passkey
backup and restoration (BnR) protocol and a compromise

1CASPER is short for Capturing pASskey comPromise by attackER.

mailto:coby.wang@visa.com

detection (CD) algorithm. The BnR protocol protects the real
passkeys by encrypting them under a recovery key that is re-
trievable given a user secret (denoted by η, only known to the
user). A user with the correct η will be able to recover the
real passkey for account logins.

An attacker who could have already obtained users’
passkeys from PMS breaches without CASPER deployed
must now guess η in order to decrypt and retrieve the user
passkeys. Each guess will produce a well-formed passkey, i.e.,
a well-formed private signing key but not necessarily the cor-
rect key. As a result, without η, the attacker cannot determine
if their guess yields the real passkey or a well-formed decoy
unless they test it by attempting to log in with it to the user’s
RP account. As the decoys are indistinguishable from the real
passkey from the attacker’s perspective, they will easily end
up using a decoy passkey during the login attempt. RPs that
implement our CD algorithm will detect such attempts and
deem them unauthorized use of passkeys leaked from PMS.
This detection will enable RPs to make informed decisions
and promptly mitigate such threats.

To show the effectiveness of CASPER, we model sophisti-
cated attackers who strategically optimize their attack strate-
gies to evade CASPER’s detection by leveraging useful in-
formation leaked from already compromised websites where
users have accounts and CASPER is deployed. Our detection
effectiveness analysis shows that CASPER provides com-
pelling true-detection and negligibly small false-detection
probabilities even when the user secret η contains low en-
tropy (e.g., as low as 5 bits) — confirming that CASPER does
not impose additional high-entropy secret management bur-
dens on users. Also, CASPER does not impose any extra tasks
on users during their daily account login routines. Importantly,
as a general framework with η serving as a configurable com-
ponent, CASPER can be fine-tuned for specific authentication
scenarios balancing deployability, usability, and security.

We provide a prototype implementation [47] and show
that CASPER can be seamlessly incorporated into FIDO2
authentication protocols (i.e., CTAP 2.0, WebAuthn) without
introducing significant storage costs or causing noticeable
login delays. As CASPER aligns with FIDO Alliance’s ongo-
ing exploration of trusted signals to detect abuse of synced
passkeys, we believe our work will spark interest within the
authentication community to consider its adoption in practice.

To summarize, our contributions are as follows.

• We propose CASPER, the first framework to detect the
abuse of FIDO2 synced passkeys leaked from passkey man-
agement service (PMS) providers. Importantly, CASPER
can also be easily extended to detect breaches of other
cryptographic credentials that are widely used today, such
as HMAC-based / time-based one-time passwords (HOTP
/ TOTP) seeds.

• We demonstrate the detection effectiveness of CASPER
systemically against sophisticated attackers who tries to

evade detection by leveraging breaches from other already
breached websites.

• Through a prototype implementation of CASPER, we con-
firm that CASPER introduces negligible performance and
storage overhead for all parties involved and demonstrate
that deploying CASPER requires minimal modifications
to PMS and RPs.

2 Background and Related Work
In this section, we provide background on FIDO2 authentica-
tion (Section 2.1) and discuss related work (Section 2.2).

2.1 Background

FIDO2 authentication method. FIDO2 consists of a set of
sub-protocols (e.g., CTAP 2.0 [36] and WebAuthn [73]) with
digital signature schemes serving as its cryptographic heart.
Briefly, during registration, the user’s authenticator device cre-
ates a signature key pair (s,v), where s and v are the private
signing key and public verification key, respectively. Only v is
sent to the website while s stays private on the authenticator.
During the login phase, RP sends a challenge to the authenti-
cator, and the authenticator then uses s to produce a response
to the challenge. Finally, the RP can use the corresponding
verification key v to verify the response and decide whether
to grant the user account access.

FIDO2 authentication is not only resistant to guessing
and phishing attacks, which traditional passwords have been
long suffering from, but also protects users’ accounts against
RP data breaches — a breached v reveals only a negligible
amount of information about its corresponding s if the under-
lying digital signature schemes are secure, and importantly,
nothing about users’ credentials for other RP accounts.

Account recovery concerns. The improved security guar-
antees of FIDO2 [17, 19, 42] have prompted their adoption
either as a single-factor replacement for passwords [1] or it-
self as multi-factor authentication (MFA) [9]. However, the
lack of secure and user-friendly account recovery solutions
for the key management required by such cryptographic pro-
tocols has been a source of serious user frustration and con-
cerns [18, 35, 52, 57, 59, 61, 68, 81]. This happens when users’
FIDO authenticators — the devices to which users’ FIDO2
private signing keys are bound — become permanently un-
available due to device loss, reset, or theft. For example, re-
cent studies [18,81] identify the lack of convenient and secure
account recovery options for FIDO2 passwordless authenti-
cation as a major obstacle to eliminating passwords on the
web in the foreseeable future. A study by Las et al. [52]
found that over 60% of the participants expressed serious
concerns about secure account recovery in enterprise settings.
Some RPs attempt to resolve such user frustration and con-
cerns by offering easy-to-use yet insecure account recovery or
backup authentication options, e.g., user-chosen passwords,

email/phone-based one-time codes, or secret questions, for
FIDO authentication. This, however, overshadows the secu-
rity benefits provided by FIDO authentication and degrades
the overall security of users’ accounts [72]. To tackle the ac-
count recovery problem, industry-led efforts have emerged to
encourage the adoption of synced passkeys, which we will
introduce next.

Synced passkeys. Synced passkeys are rebranded FIDO2 pri-
vate signing keys, with passkey2 management services (PMS)
synchronizing them between PMS’s cloud storage and users’
authenticators. Examples of PMS Today include, Apple’s
iCloud Keychain [14], Google Password Manager [12], Mi-
crosoft’s Password Monitor [11], 1Password [5], LastPass [4],
and DashLane [3]. These services are supported by all major
browsers, and used by millions of users [65].

The tension between security vs. recoverability. Due to
their centralized nature in storing users’ private signing keys,
passkeys have inadvertently become a lucrative target for
attackers. Many PMS now use another cryptographic key
to protect a user’s passkeys backup at rest, for example, by
encrypting it with another key. This encryption key needs
to be consistently available for users; otherwise, users will
not be able to decrypt the encrypted passkeys after retrieving
them from passkey providers. In other words, if not properly
addressed, managing such a cryptographic key, which has long
been a daunting task for users [31], inevitably reintroduces
the account recovery problem that synced passkeys attempt
to solve in the first place.

For this reason, some PMS only require users to maintain
a user-chosen secret (e.g., passwords or PINs in most cases),
which is presumably more memorable, recallable, and hence
recoverable than a high-entropy cryptographic key. In prac-
tice, this secret can be used in two flavors of strategies, i.e.,
key derivation based and key escrow based, with each empha-
sizing different priorities on the security and recoverability
of the encryption key. However, both strategies rely on user-
chosen secrets that are subject to guessing attacks (e.g., offline
cracking), making them insufficient for protecting passkeys.
If PMS is compromised and the user-chosen secrets used to
derive or to retrieve the decryption key are guessed, attack-
ers can access users’ passkeys in plaintext. Please refer to
Appendix A for a more detailed introduction about these two
strategies and their limitations.

Need for passkey compromise detection. The foregoing
discussion echoes the challenge we are facing today to se-
cure users’ passkeys against breaches, revolving around many
moving parts. These include, but are not limited to, the secu-
rity of users’ PMS accounts, the resistance of user secrets (for
key derivation or escrow) to offline cracking, the correctness

2For conciseness, in this paper, we use “passkey” to refer specifically to a
“synced passkey” as opposed to a “device-bound passkey” — a FIDO private
key that never leaves the authenticator.

of PMS implementations, and PMS’s defenses against both
remote and insider attackers. The failure of any of these com-
ponents could expose all of a user’s passkeys, leading to users’
mistrust in the provider [59] and, more critically, large-scale
account takeovers across numerous RPs, which highlights
the urgent need for an effective framework to detect passkey
breaches from PMS storage, which we provide in this paper.

2.2 Related work

Decoy-based credential breach detection. Existing decoy-
based detection systems for user-chosen passwords [30,50,75]
allow websites to detect the breaches of their own password
storage. The idea is for the websites to plant a fixed num-
ber of decoy passwords, known as honeywords, in their pass-
word storage alongside the user-chosen password. If an at-
tacker breaches the website’s password storage and attempts
to exploit the leaked (hashed) passwords to access the user’s
account at the website, entering a honeyword will trigger a
password breach detection.

Traditional honeyword systems [13, 30, 50] rely on the in-
formation asymmetry between the defender (e.g., a website or
RP) and the attacker — they assume that the attacker cannot
access the secrets stored by the website to distinguish between
honeywords and the user-chosen passwords. This information
asymmetry inevitably requires additional assumptions about
what the website knows that the attacker does not in order
to enable effective detection. For example, the information
asymmetry may arise from a honeychecker, which stores an
identifier of the user-chosen password that is known only
to the website [50]. Alternatively, it may originate from a
pseudorandom number generator only accessible by the web-
site [30], or from the assumption that the attacker is unaware
of the deployment of a breach detection system facilitated by
machine-dependent password hashing [13].

Amnesia [75] is the first symmetric design that allows at-
tackers to learn the entire persistent state of a website and
enables detection based on probability distribution changes of
some password “markings” that can help distinguish between
honeywords and the user-chosen one.

Existing honeyword systems mentioned above aim to detect
unauthorized logins at a website or an RP — the same party
where the password breach occurs. In comparison, CASPER
enables the detection of unauthorized login attempts that
abuse breached passkeys at an RP when passkey breaches
occur at a different party — a PMS provider. For this rea-
son, existing honeyword systems fall short of addressing the
problem CASPER aims to solve. To be practical, however,
CASPER adopts a symmetric security assumption similar to
that of Amnesia and avoids relying on additional security
assumptions required by other traditional designs.

Credential keys / password backup storage leakage. Exist-
ing work on preventing unauthorized access to users’ accounts
due to breaches of credential backup services can be roughly

Figure 1: Overview of CASPER and threat model: CASPER
allows a relying party to detect the abuse of a compromised
passkey for unauthorized account access when the attacker
obtains the passkey from a breached passkey storage of a
passkey management service (PMS) provider and also has
access to a certain number of data breaches of other RPs.

categorized into two camps.
The first line of work [24, 67] aims to prevent the leakage

of users’ cryptographic keys by distributing them securely
across multiple parties on the cloud. In the context of synced
passkeys, one might consider distributing users’ passkey stor-
age across multiple PMS providers to mitigate the risk of
breaches affecting one or a subset of them. However, this
approach would pose a significant deployment burden, as
it is against the centralized nature of existing major PMS
providers, e.g., Apple, Google, and Microsoft, which man-
age users’ passkeys within their own ecosystems and is in-
compatible with their current implementations for credential
synchronization and storage.

The second line of work [21, 25, 26] proposes honey
password vaults to make attackers difficult to perform ef-
ficient offline-cracking on leaked password vaults / man-
agers3. However, the insufficient rate-limiting defense of
most websites against online guessing [37, 60] and vulnera-
bilities in current honey vault designs against sophisticated
attacks [26, 32, 41, 69] have cast doubt on the overall efficacy
of these proposals in recent years.

In comparison, CASPER is a detection framework to en-
hance users’ account security by enabling RPs to detect the
abuse of passkeys leaked from PMS. Notably, CASPER is
deployable and user-friendly, while remaining effective even
against highly sophisticated attackers.

3 Threat Model
In this section, we detail the participating parties and our
threat model.

Participating parties. Following the convention of FIDO2,
we refer to the device that generates the private signing keys

3Password vaults / managers are cloud backed up synced passwords of
the user — encrypted under a single master password.

as the authenticator, and the websites as relying parties (RP).
We assume the authenticator supports synced passkeys, mean-
ing that it has the capability to synchronize the private signing
keys with a passkey management service (PMS) provider
who stores users’ passkeys on their cloud storage. The au-
thenticator itself could be dedicated hardware that is platform-
independent (e.g., YubiKeys) or a virtual one that is platform-
dependent (e.g., phones or laptops). The users authenticate
themselves locally to the authenticator (e.g., via PINs, bio-
metrics) and allow a client (e.g., browsers, mobile apps, etc.)
to complete account registration/authentication at a RP using
passkeys.

Introducing caat. We consider a credential backup abuse
attacker (caat) who has access to the data (and associated
metadata, if any) stored at the PMS provider. The goal of
caat is to undetectedly take over user accounts at RPs where
CASPER is deployed. We follow the threat model of FIDO2
authentication [2] and assume that the user and her devices
(e.g., the authenticator and client involved) are trusted. We
also assume that RPs are trusted for honestly detecting attacks
by caat and have employed other state-of-the-art defenses
such as protection against denial-of-service attempts during
account registration and login. All communication channels
are assumed to be secure and authenticated using a standard
secure communication protocol (e.g., SSL/TLS [29]).

Making caat realistically stronger. Given the increasing
number of data breaches that websites are experiencing today,
we also consider the case where caat may have access to
data breaches (e.g., obtained from black market forums [71])
from breached websites where the target user has accounts.
We follow, to the best of our knowledge, the strongest threat
model [75] in the literature on credential breach detection (as
discussed in Section 2.2) where caat is given read access
to the entire persistent storage of a certain number of com-
promised websites, including all data used for account login
or registration and breach detection by CASPER. However,
like prior work on breach detection [13, 30, 50, 75], we do
not allow caat to actively compromise those breached web-
sites, and we assume the transient information that arrives in
a login attempt is not stored by a breached website and not
available to caat. Note that the primary focus of this paper
is to detect breaches of PMS storage, and we do not aim to
enable breached websites to detect PMS breaches, as we view
those data breaches as static information that can be lever-
aged by caat. However, our framework can be extended to
enable even passively breached RPs to effectively detect PMS
breaches by incorporating the probabilistic detection method
proposed in [75].

To summarize, as shown in Figure 1, we assume that caat
has access to users’ passkey backups at PMS, as well as to the
persistent storage of a certain number of passively breached
websites. As we will show in Section 6, CASPER can effec-
tively detect a sophisticated attacker like caat when it adopts

GenDetectSecrets(k):
W ← /0

for i ∈ {1,2, . . . ,k+1}:
wi

$←{0,1}κ \W
W ←W

⋃
{wi}

return W

SelectRealSecret(W,η):

L ←HashSort(W)
i∗← (Hash(η) mod k+1)+1
wi∗ ← L(i∗)
return wi∗

Figure 2: An instantiation example of GenDetectSecrets and
SelectRealSecret. Here HashSort sorts all elements in W by
their hash values seeded by η, i.e.,Hash(wi∥η) for all wi ∈W ,
and then outputs these elements as an ordered list. Hash is a
collision-resistant hash function. Here i∗ indicates the index
of the real detection secret.

its optimal strategy to take over user accounts at unbreached
RPs and to evade detection by CASPER.

4 Detection Secrets
CASPER relies on a set of detection secrets W =
{w1,w2, . . . ,wk+1} where one of these secrets is the real de-
tection secret and its index is denoted by i∗ ∈ {1,2, . . . ,k+1}
throughout the paper. Following this notation, the real de-
tection secret is denoted by wi∗ ∈W , while the remaining k
secrets in W \{wi∗} are referred to as decoy secrets.

Survivable user secret η. We use η to represent the informa-
tion needed to identify wi∗ from a given W . This η should not
be shared with any PMS providers or RPs, and we assume η

to be survivable; that is, we assume that η is always accessible
by the user (even in the case of device loss or failure). For
example, η could be instantiated in practice by secrets that
can be easily recalled by the user (e.g., PINs) or retrievable
from physical objects or trusted parties (e.g., credit card ver-
ification codes, bank account numbers), or biometrics. The
options of instantiating η with a proper user secret will be
discussed further in Appendix E.

Decoy generation. How to generate good decoy creden-
tials [23,33,43,74,76] has been more of an orthogonal line of
research to our work. In this paper, we consider a pair of pro-
cedures G = ⟨GenDetectSecrets,SelectRealSecret⟩ where
GenDetectSecrets is a randomized procedure for generat-
ing decoy secret candidates and SelectRealSecret a deter-
ministic detection secret selection procedure. The procedure
GenDetectSecrets produces a set W of size k+1 when given
an integer k. SelectRealSecret takes W and a user’s surviv-
able secret η as input, and outputs wi∗ ∈W so that wi∗ is the
real detection secret and other k are decoys. A simple instanti-
ation example of GenDetectSecrets and SelectRealSecret is
shown in Figure 2. As such, when the passkey backups are
additionally encrypted under an encryption key derived from
wi∗ , the attacker who attempts to recover users’ passkeys from
stolen passkey backups, without knowing η, can only make
guesses on which in W is wi∗ . Such guesses may be undesired
in other authentication scenarios, but our framework, as we

Symbol Description

w / W detection secret / the set of detection secrets
v / V passkey verifier / the set of auth. verifiers
V ′ the set of active decoy passkey verifiers V ′ ⊆V

s / s̃ passkey / encrypted passkey
u the recovery key used to encrypt s
wi∗ /si∗ /vi∗ the real detection secret / passkey / passkey verifier
z nonce used to encrypt s
k # of decoys, |W |= |V |= k+1

α fraction of active decoy passkey verifiers α =
|V ′|
|V |−1

n # of breaches caat has observed
m # of relying parties (RPs) caat wants to login

sid unique identifier of the RP
aid / uid unique user account identifier at PMS / RP

Figure 3: Notations used in this paper.

will show in later sections, leverages such guesses to detect
the compromise of users’ passkey storage on the cloud.

5 CASPER: A New Detection Framework
To enable a relying party (RP) to detect the abuse of users’
passkey leaked from passkey management services (PMS)
provider, CASPER introduces a new passkey backup and
restoration (BnR) protocol (Section 5.2) and a compromise
detection (CD) algorithm executed by the RP (Section 5.3).
For brevity, we refer to the attacker who has compromised
users’ passkey storage at breached PMS provider as caat.
Section 5.1 provides a high-level overview of CASPER and
its design considerations. Figure 3 presents the key notations
used throughout this paper.

5.1 Design considerations and overview

Design considerations. Consider that a user (say Alice) uses
a PMS provider to backup and synchronize her passkeys for
RP account logins. As usual, Alice is responsible for certain
operations already required by PMS provider (e.g., account
creation with PMS using a master password and new authen-
ticator setup using passcode) for passkey synchronization or
access across her existing devices / authenticators. CASPER
is designed to effectively detect malicious login attempts by
caat using Alice’s passkeys leaked from a PMS provider,
while meeting the design requirements as detailed below.

1 Easy to deploy. CASPER does not require PMS
providers to modify their protocol designs or implementa-
tions for passkey synchronization and storage, and it requires
only minimal changes on the RP side. Also, CASPER is com-
patible with existing two-/multi-factor authentication or risk-
based authentication schemes and does not require any addi-
tional (trusted) hardware for PMS providers or RPs. Please

see Section 8.3 for further discussion of the deployment con-
siderations for CASPER.

2 User-friendly. To avoid introducing usability challenges,
such as the account recovery problem caused by requiring
Alice to manage additional high-entropy keys, CASPER is
designed to achieve high detection accuracy while allowing
Alice to manage only a low-entropy secret that is easy to re-
member (e.g., a 2-digit numeric PIN) or retrieve (e.g., the last
few digits of Alice’s bank account number). Note that, after
the initial PMS and device setup, CASPER operates transpar-
ently in Alice’s view — she can use online services provided
by RPs and PMS providers without any additional actions
required by CASPER during account login or passkey backup
and synchronization. Furthermore, to avoid introducing new
usability challenges, CASPER does not rely on users to man-
age multiple devices for new device setup. We will discuss
CASPER’s usability in more detail in Section 8.1, including
ways to further enhance its user experience.

3 No security degradation. CASPER does not degrade
users’ account security in any way. In other words, Alice’s
accounts must be at least as secure as they would be without
CASPER deployed. This also implies that, when no PMS
passkey breach has occurred, a denial-of-service attacker must
not be able to disrupt the availability of RPs’ services by
abusing CASPER to cause false breach detection.

CASPER overview. Behind the scenes, given Alice’s
η, CASPER produces a set of detection secrets W =
{w1,w2, . . . ,wk+1} with one of them being the real detection
secret represented by wi∗ . Then CASPER encrypts Alice’s
passkey, denoted by s, with a key derived from wi∗ . If the
encrypted passkey is denoted by s̃, Alice backs up to provider
the detection secret set W together with s̃ instead of s. In other
words, PMS backs up s̃ as if it were backing up s, requiring
no changes to its implementation for passkey synchronization,
storage, and end-to-end encryption (if enabled). If a caat has
access to (W, s̃) leaked from PMS, they can attempt to decrypt
s̃ and recover Alice’s passkey by guessing which among W
is wi∗ . In this case, the attacker may guess a wrong detection
secret, derive a wrong key to decrypt s̃, and subsequently ob-
tain a wrong passkey for unauthorized account login attempts.
With detection information registered at the RP beforehand,
the RP would be able to verify the authentication response
with the corresponding decoy verification key, which indi-
cates a potential compromise of users’ encrypted passkeys s̃
leaked from PMS.

In this paper, we introduce CASPER in the context of detect-
ing FIDO2 passkeys leaked from PMS. However, the concept
of CASPER can also be applied to detect breaches of PMS
that support other system-generated authentication creden-
tials, such as randomly generated passwords and long-term
seeds for HMAC / time-based one-time passwords (HOTP /
TOTP) widely used for 2FA today. For interested readers, we
will explain in Appendix F how CASPER can be extended

for OTP as another example of CASPER’s application.

5.2 Backup & restoration protocol
As shown in Figure 4, the passkey backup and restoration
(BnR) protocol includes the following four steps.

Step 1. Provider account setup. This initialization setup is
invoked only once when the user signs up for a new passkey
management service (PMS) account. In this step, alongside
assigning a unique provider account identifier denoted by
aid, the authenticator generates a detection secret set W of
size k + 1 by calling the GenDetectSecrets procedure de-
scribed earlier in Section 4. The authenticator then synchro-
nizes (aid,W) to the PMS provider for backup and saves a
local copy optionally.

Step 2. Authenticator setup. Upon successful authentica-
tion, PMS typically requires an existing PMS user to set
up a new passkey authenticator to enable it for passkey
synchronization via PMS. For CASPER, in addition to
the usual authenticator setup processes specified by PMS,
the authenticator also retrieves (aid,W) from PMS and
prompts the user to provide η. The authenticator executes
SelectRealSecret(W,η), recovers the real detection secret wi∗ ,
and saves (aid,wi∗ ,W). Then the user can start using this au-
thenticator to register new RP accounts (see Step 3) or to log
into RP accounts with passkeys restored from PMS passkey
backups (see Step 4). Crucially for the security, wi∗ is kept pri-
vate locally from any other parties including the PMS provider
or RPs. The user secret η is never stored at any participating
parties.

Step 3. Passkey registration. When the user registers a
new account at a RP identified by sid, the authenticator first
runs KeyGen to generate a passkey pair (si∗ ,vi∗) including
the passkey si∗ and its corresponding public verification key
vi∗ . We can identify this newly registered account by uid and
implicitly follow the implementation of KeyGen as defined
by FIDO2 standard signature schemes (e.g., ECDSA [48]).

Next the authenticator calls two procedures ΠEncCred and
ΠGenVerifierSet (as shown on the right side of Figure 4).
ΠEncCred returns s̃ — an encrypted version of the user’s
passkey si∗ for later passkey synchronization and backup via
PMS. Given si∗ , ΠGenVerifierSet returns a set of verification
keys V , which will be provided to the RP for the compromise
detection (CD) algorithm we will detail in Section 5.3.

Under the hood to encrypt the si∗ as s̃, the ΠEncCred proce-
dure first samples a nonce uniformly at random z and then
invokes a key derivation function (KDF) with wi∗ and z as
its input. KDF returns a recovery key ui∗ which serves as the
encryption key to encrypt si∗ in a “one-time pad” manner.
Considering what lies ahead for the CD protocol, however,
CASPER needs to ensure that the attacker gets an incorrect
but well-formed valid passkey s when running ΠDecCred with
a decoy detection secret w ∈W \{wi∗}. Thus the authentica-

� Step 1. Provider account setup
1. W $← GenDetectSecrets(k) // Sec.4 discusses GenDetectSecrets

2. send (aid,W) to provider for backup
� Step 2. Authenticator setup

// If W not saved by the authenticator during step 1

3. download (aid,W) from provider
// Get η from user, Sec.4 discusses SelectRealSecret

4. wi∗ ← SelectRealSecret(W,η)
5. saves (aid,wi∗ ,W) to authenticator

� Step 3. Passkey registration
6. ⟨si∗ ,vi∗⟩

$← KeyGen(1κ) // KeyGen as specified by FIDO2 standards

7. (s̃,z) $←ΠEncCred(wi∗ ,si∗)
8. V ←ΠGenVerifierSet(W, s̃,z)
9. sample V ′ ⊆V \{vi∗} uniformly randomly s. t. |V ′|= ⌈α · (|V |−1)⌉

10. sends (uid,V ′,V) to RP and subsequently saved by RP on its credential database
11. sends (aid,uid,sid, s̃,z) to provider and backed up by provider for passkey restoration
� Step 4. Passkey restoration
12. si∗ ←ΠDecCred(wi∗ , s̃,z) // Get wi∗ from authenticator, s̃,z from provider

13. saves (uid,sid,si∗) for completing future login requests with sid

ΠEncCred(w,s):

z $←{0,1}κ

u← KDF(w,z)
s̃← u⊕ s
return (s̃,z)

ΠDecCred(w, s̃,z):
u← KDF(w,z)
s← u⊕ s̃
return s

ΠGenVerifierSet(W, s̃,z):
V ← /0

for each wi ∈W :
ui← KDF(wi,z)
si← ui⊕ s̃
vi←VerifierGen(si)
V ←V

⋃
{vi}

return V

Figure 4: (Left) Passkey Backup and Restoration (BnR) protocol as described in Section 5.2. (Right) Building blocks introduced
by CASPER and used by the BnR protocol. Notations used are explained briefly in Figure 3.

tor should perform additional passkey validity tests. These
tests include for all w ∈W \{wi∗}, running ΠDecCred(w, s̃,z)
to get s and checking if s is a well-formed passkey. Otherwise,
the authenticator should repeat running KeyGen and ΠEncCred

until all resulting s are well-formed passkeys. This process
is efficient because the probability of yielding a well-formed
(decoy) private key when s̃ is decrypted with an incorrect w
is overwhelmingly high (see Appendix D for more details).

The ΠGenVerifierSet procedure takes (W, s̃,z) as input and
generates k+1 verification keys with each corresponding to
a detection secret wi ∈W . To do this, for each wi ∈W , the
authenticator invokes KDF(wi,z) to get a recovery key ui and
uses it to decrypt s̃ by running si← ui⊕ s̃. Then the authen-
ticator assembles the set of verification keys V ←

⋃k+1
i=1 {vi}

by deriving vi from si. Afterward, the authenticator marks a
certain fraction (denoted by α) of V \{vi∗} uniformly at ran-
dom as a new subset decoy verification keys, denoted by V ′,
and thus α = |V ′|/(|V |− 1). Both (V ′,V) are sent to RP to
complete passkey registration4, and these two sets are used by
RP to run the compromise detection algorithm in Section 5.3.

Looking ahead, we refer to V ′ as the set of active decoy
verification keys for the RP because, as we will show later
in Figure 5, an authentication response successfully verified
by any of these active decoy verification keys will trigger

4Here, the authenticator sends V ′ together with V for better clarity. In
practice, instead of the entire V ′, it suffices for the authenticator to send the
RP only a set of identifiers or indices indicating which verification keys
among V are in V ′, which can slightly lower the communication and storage
costs.

a detection alert. In contrast, other decoy verification keys
in V \ ({vi∗}∪V ′) are inactive and, together with the real
verification key, vi∗ , will be viewed as valid verification keys
since successful verification by these verification keys will
lead to successful logins.

Finally, after receiving the successful registration confirma-
tion from RP, the authenticator synchronizes (aid,uid,sid, s̃,z)
to PMS. Now PMS backs up the s̃ alongside the correspond-
ing (uid,sid,z) for the user’s PMS account identified by aid.
Note that PMS now manages s̃ instead of si∗ . As a result, after
a PMS breach, a caat cannot accurately derive si∗ from s̃
without η.

Step 4. Passkey restoration. As usual, PMS allows the user
to synchronize their passkeys back to a registered authenti-
cator. The registered authenticator first retrieves from PMS
a copy of the encrypted passkey s̃ alongside (uid,sid,z). It
then executes the procedure ΠDecCred(wi∗ , s̃,z) to retrieve s
from s̃. This procedure, as shown on the right side of Figure 4,
decrypts s̃ with the recovery key ui∗ to obtain si∗ . Finally, the
user’s authenticator saves (uid,sid,si∗) so the user can use the
restored passkey si∗ to log into their account with the identifier
uid at RP identified by sid. For correctness, given a (s̃, z) pair,
observe that ∃i ∈ [k+1] s.t. wi = wi∗ , and thus ui = ui∗ . Then
we have si = si∗ since si = ui⊕ s̃= ui∗ ⊕ si∗ ⊕ui∗ = si∗ .

An alternative design. Instead of backing up a single en-
crypted passkey s̃ in Step 3, CASPER could alternatively de-
rive and back up all k+1 passkeys, i.e., s1, . . . ,sk+1, to PMS.
This alternative design could provide the same level of de-

• For a login request for an account uid, the RP checks
if uid exists and then returns a challenge to the user.
• Let v, rsp, and γ denote the public verification key, the
response produced by the user’s authenticator, and the
signature generated with the user’s passkey, respectively.
Upon receiving (v, rsp,γ) from the user, the RP performs
the following tests and actions:

◦ retrieves (V,V ′) corresponding to uid

◦ if Verify(v, rsp,γ) = false OR v /∈ V , RP rejects
this login request.

◦ else if v ∈V ′, RP raises a detection alarm.

◦ else RP accepts this login request.

Figure 5: The Compromise Detection (CD) algorithm of
CASPER used by the RP to detect passkey compromise.

tection effectiveness but would introduce two deployment
limitations: (i) PMS storage and communication overhead
would increase from O(1) to O(k) for each user account; (ii)
it would become incompatible with existing PMS designs as
existing PMS synchronization and storage implementations
are designed to handle one passkey for one credential registra-
tion at RPs. We therefore take a different approach by drawing
inspiration from honey encryption [49]: instead of directly
backing up all possible decoy plaintexts (i.e., passkeys si), our
design ensures that decrypting the backed up ciphertext (e.g.,
the encrypted passkey s̃) with incorrect decryption keys yields
those decoys. This approach optimizes PMS compatibility
while minimizing PMS communication and storage overhead.

5.3 Compromise detection algorithm
The passkey compromise detection (CD) algorithm (Figure 5)
is run by the relying party (RP) upon each login request it
receives. It allows the RP to leverage the set of active decoy
verification keys to detect the caat’s account login attempts
with corresponding decoy passkeys (see Step 3 in the BnR pro-
tocol for producing active decoy verification keys). Next, we
describe in detail how the detection is performed for FIDO2.

In FIDO2 (as shown in Figure 5), when the RP receives
a login request with an account identifier uid, it produces a
random challenge and sends it together with other informa-
tion specified by the WebAuthn protocol [73]. Upon receiving
the challenge, the authenticator produces an authentication
response rsp and generates a signature γ using the private sign-
ing key s by running γ← Sign(s, rsp) on the authenticator5.
Finally, the user device sends (v, rsp,γ) as a response back to
the RP for login.

Once the RP receives the response (v, rsp,γ), it will perform

5The definitions and implementations of Verify and Sign adhere to the
FIDO2 standards, which we omit here for simplicity.

a set membership test for v
?
∈ V and also run Verify(v, rsp,γ)

to check if the received γ is a valid signature of rsp under the
verification key v. If either of these two tests outputs false,
this login attempt fails. If both tests output true, the RP can
further check whether v is in the active verification key set
V ′ to determine whether the current login attempt triggers a
passkey breach detection or results in a successful login.

6 Detection Effectiveness
In this section, we show the detection effectiveness of
CASPER. First, we show that CASPER does not make it
any easier for a caat to distinguish the real detection secret
from the decoys (Section 6.1). We then estimate true detec-
tion probabilities and the overall security benefits CASPER
provides through probabilistic model checking (Section 6.2),
followed by a false detection analysis (Section 6.3).

6.1 Flatness preservation
Following the informal definition of flatness by related
work on decoy passwords [33, Sec. 2.1], [43, Sec. 3.1],
here we informally define flatness as the probability that
the caat outputs the real detection secret wi∗ as its guess
on the first try given the set of detection secrets W and
denote it by flt(W,wi∗). We also say W to be perfectly
flat if flt(W,wi∗) =

1
|W | (or equivalently, 1

k+1). Recall that
in Section 4, we specified that CASPER relies on G =
⟨GenDetectSecrets,SelectRealSecret⟩ that given (η,k) out-
puts wi∗ and W of size k+1. We show that CASPER provides
a critical security property, flatness preservation. We formally
define and prove this property in Appendix C.

The flatness preservation property of CASPER ensures that
given multiple (s̃,z) pairs from the PMS credential backup
compromise for the same user, the caat does no better in
identifying the real detection secrets, wi∗ , from W with the
knowledge of multiple (s̃,z) pairs than without. Briefly, to
show this, as further explained in Appendix C, we consider a
simulator without multiple (s̃,z) pairs but can by itself gen-
erate multiple simulated (s̃′,z′) pairs by choosing all s̃′ and
z′ uniformly at random from {0,1}κ. Since simulated (s̃′,z′)
pairs are indistinguishable from (s̃,z), there is no useful infor-
mation in (s̃,z) about which among W is wi∗ for the caat to
improve its guessing on wi∗ .

6.2 True detection and efficacy of CASPER

We provide a comprehensive perspective by estimating both
true detection probabilities (TDP) and the overall security
efficacy of CASPER. The former provides a simple yet clear
picture of how likely CASPER can detect the attack by the
caat if the attack occurs. However, TDP alone falls short of
capturing the security efficacy provided by CASPER to users’
account security completely in a more realistic setting where
the caat’s attack strategy has already been influenced by the
deployment of CASPER; it may decide to attack later or stop

m = 1 m = 3 m = 5 m = 7 m = 9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
in

im
um

T
D

P

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) n = 0 (b) n = 1 (c) n = 2 (d) n = 3
α

Figure 6: Minimum expected true detection probabilities as a function of α with varying m and n, where k̄ = 32. Here α is the

fraction of active decoy verifiers V ′ present in V (i.e. α← |V ′|
|V |−1), n is the number of breached websites caat observes, m is the

number of websites caat wants to compromise.

m = 1 m = 3 m = 5
m = 7 m = 9

0 32 64 96 128
0

0.2

0.4

0.6

0.8

1

M
in

im
um

T
D

P

0 32 64 96 128

(a) n = 0,α = 0.9 (b) n = 2,α = 0.4

k̄

Figure 7: Minimum true detection probabilities as a function
of k̄ with varying m, n, and α.

attacking early. For example, to avoid detection by CASPER,
a cautious caat may postpone the attacks until a later time
to obtain more information about the user. However, PMS
may have already discovered its credential backup compro-
mise and asked the user to reset their credentials prior to the
caat starting such a deliberately delayed attack. In this case,
the deployment of CASPER would already add efficacy to
the user’s account security. To capture this nuanced scenario
besides TDP, we measure the efficacy of CASPER by measur-
ing how comparatively well CASPER can reduce the caat’s
ability to consistently take over user accounts unnoticeably
with compromised credentials leaked from PMS.

Modeling detection secrets. Recall that η is the survivable
user secret that determines which among W is wi∗ . The level
of flatness provided by (W,wi∗) and measured by flt(W,wi∗)
is in fact difficult to estimate since we do not know (1) the
probability distribution of η or (2) how well the caat’s strat-
egy together with its knowledge about η can improve its
guessing results. Therefore, to have a better generality for
our true detection and efficacy analysis, we follow the simi-
lar formal treatments of password guessing from prior work
(e.g., [51]). Specifically, instead of providing the caat with

the original detection secret set output by G with flatness
flt(W,wi∗), we give an equivalent detection secret set W̄ of
size k̄ that is perfectly flat and provides approximately the
same flatness as flt(W,wi∗). This implies the caat can do no
better in guessing the real detection secret in W̄ with proba-
bility 1

k̄+1 , where k̄ = ⌊ 1
flt(W,wi∗)

−1⌋, i.e., the largest integer

k̄ such that 1
k̄+1 ≤ flt(W,wi∗).

This abstraction helps us to model the caat’s ability to
guess the real detection secret in our analysis as a function
of k̄, avoiding additional (and possibly inaccurate) assump-
tions on the caat’s knowledge about η and its strategies, as
well as making our analysis applicable for different types of
probability distributions and flatness that η as instantiated
in practice may have. To see this consider the case when η

that is generated uniformly at random, e.g., a random (nu-
merical) PIN with x digits where 10x > k+1, then (W,wi∗),
produced by G given k and η here, provides perfect flatness,
i.e., flt(W,wi∗) =

1
k+1 and so k̄ = k. However, when η is a

user-chosen password or PIN, the min-entropy [22] of these
secrets must be at least log2

(
k̄+1

)
bits for a given k̄. For

example, for k̄ = 32, if instantiated with a random (numerical)
PIN, η should include at least 2 digits such that 102 > 32+1;
whereas if η is a user-chosen PIN, the min-entropy of η should
be at least log2 (32+1)≈ 5 bits.

Following Section 3, we allow the caat to learn from PMS
the detection secret set W sent to PMS during PMS account
setup together with (s̃,z) pairs sent during the RP account
registration step by the authenticator. Additionally, the caat
observes breaches from n other already compromised RPs.
These breaches include both the verification key set V and the
active decoy verification key set V ′ from each n compromised
RPs. Considering that, given a (s̃,z) pair, for each v ∈V , there
exists a w ∈W such that v can verify the authentication re-
sponse produced by its corresponding s, which is recoverable
by ΠDecCred(w, s̃,z), the caat can rule out exactly |V ′| decoy
detection secrets in W by observing V ′ from the first breach
snapshot and rule out ≤ |V ′| for each of the rest of the n−1

breach snapshots due to that overlapping may exist. Here we
use W̄ (n) to denote the subset of detection secrets correspond-
ing to verification keys that always fall into V \V ′ across these
n breaches.

The goal of the caat is to compromise the user’s accounts
at a specified number of unbreached RP (denoted by m). Note
that the probability of the caat triggering a true alarm when
compromising a user’s account at an unbreached RP is the
probability of the event that the caat picks a detection secret
from W̄ (n), uses it together with s̃ to derive a (decoy) passkey
s, and produces an authentication response verifiable by an
active decoy verification key v ∈ V ′ at the unbreached RP
(see Figure 5).

True detection probability. To capture the caat’s best strat-
egy for minimizing the true detection probability (TDP) while
achieving its goal, we model the caat as a Markov deci-
sion process (MDP). Conceptually an MDP consists of a set
of states and potential transitions between them. When the
MDP is in a specific state, it can select one of several avail-
able actions, which leads to a specific probability distribution
over the possible next states. The MDP attacker enters the
final state when it triggers a breach alarm raised by CASPER
while attempting to compromise the users’ accounts at least
one of the m unbreached RPs. In our experiments, without
loss of generality, we consider that the caat is targeting one
user with a web account at each of the m unbreached and n
breached RP with CASPER deployed. Specifically, using the
PRISM model checker [56], we construct an MDP to model
a caat who does the following:

• The caat randomly selects a detection secret w from W̄ (n),
derives a passkey through ΠDecCred(w, s̃,z) and attempts to
authenticate at the first RP.

• If the selected detection secret w corresponds to a verifi-
cation key v ∈ V ′ at the current RP, the caat enters the
“detection” state and the experiment is over. Otherwise,
this RP is considered compromised without detection. If
m > 1, the caat can choose to either 1) reuse the same de-
tection secret used in the last attack or 2) randomly select
a different detection secret w′, i.e., w′ $← W̄ (n) \{w}, and
then attack the next RP.

• The caat repeats the above attacks until it either 1) moves
to the final “detection” state and triggers an alarm or 2)
completes attacking and compromising all m RPs without
detection.

The experiment outputs the minimum probability of the
best-strategy caat entering the final state over all possible
action paths, as reported in Figure 6 and Figure 7.

Results of TDP experiments. Figure 6a-6d correspond to
four different n ∈ {0,1,2,3} respectively for a fixed k̄ = 32.
When n = 0 (Figure 6a), a larger α results in a higher prob-
ability of the caat triggering a detection alarm because it

is more likely that the verification key corresponding to the
selected detection secret falls into V ′. Also, attacking more
RPs exposes the caat to greater risks in triggering a detec-
tion alarm more than one RPs. However, as n is increased
to 1, 2, or 3 as shown in Figure 6b, Figure 6c, and Figure 6d
respectively, the detection probabilities for a relatively high
α, e.g., 0.9, drop significantly but remain almost unaffected
for a relatively low α, 0.1. This is because a higher α leads
to a smaller

∣∣∣W̄ (n)
∣∣∣ given a fixed n, and, as a result, increases

the possibility of the caat selecting the real detection secret
at the very first attack.

Figure 7 shows the minimum true detection probabilities
as a function of k̄ for a given fixed α and the number of RPs
n where the caat has observed breaches. One interesting ob-
servation here is that when k̄ reaches a certain level, e.g., 32,
increasing k̄ further can hardly give a significant boost in the
minimum probability. We believe this observation provides an
informative insight for determining a proper k̄ that provides
a good balance between CASPER’s detection accuracy and
performance—additional detection power provided by an un-
necessarily larger k̄ would be limited, but it would negatively
affect the overall performance and storage costs of CASPER
(see Section 7).

Estimating security efficacy. We implement another model-
checking experiment to investigate the efficacy of CASPER
when the caat decides to wait for τ time intervals before
starting the attack or stop attacking early after successfully
taking over m′ (≤ m) accounts to minimize detection prob-
ability. Specifically, once the caat have access to a user’s
compromised credential backups from PMS, the caat decides
whether to attack immediately (i.e., τ = 0) risking detection
with a higher probability (see Figure 6, particularly Figure 6a)
or wait τ time intervals, hoping to observe more RP breaches
to lower the detection probability. In that latter case, how-
ever, the caat has to accept the risk that, over time, the PMS
provider will discover the compromise of the user’s credential
backup itself and notify the user. We also consider that the
caat may choose to stop the attack early after successfully
taking over m′ (≤ m) accounts if the caat “believes” com-
promising accounts at more RPs will lead to a high detection
probability.

To understand CASPER’s detection efficacy under this real-
istic scenario, we allow the caat to have access to snapshots
of a certain number of compromised RPs’ persistent storage,
which are breached at a Poisson arrival rate with mean λ per
time interval. We use a random variable TPMS to represent the
time interval soon after which the PMS (provider) identifies
by itself the compromise of the user’s credential backup with-
out CASPER. We define another random variable T ′PMS, that
is, the time interval soon after which the PMS (provider), if it
has failed to detect its breach for the first τ interval, identifies
the compromise of the user’s credential backup by either itself
or CASPER.

Given the public knowledge of λ and TPMS, we build an
MDP attacker similar to the one specified in Section 6.2 but
with two additional options for the caat.

• The caat can either choose to immediately start attacking
at τ = 0 by attempting to log into each RP (one at a time
for simplicity) or to wait for τ > 0 time intervals before
starting the attack. At the end of the τ-th interval, if PMS
has not identified the compromise by itself in the first
τ intervals, the caat can start its attack with persistent
storage snapshots of RPs that are breached at a Poisson
arrival rate with mean λ.

• After successfully taking over a certain number of accounts,
the caat can choose to continue to attack the next or stop
its attack early. In the former case, if it triggers detection
by CASPER when attacking the next, the experiment ends
immediately with T ′PMS = TPMS. In the latter case, the num-
ber of taken-over accounts is fixed, denoted by m′ (≤ m)
and we assume that the caat can persistently access m′

taken-over accounts until T ′PMS when the PMS detects the
compromise by itself.

We measure the security efficacy of CASPER by observing
how CASPER reduces the expected overall takeover duration
of the user’s RP accounts and define it as follows.

eff =
E(TPMS×m)−E((T ′PMS− τ)×m′)

E(TPMS×m)
(1)

Here E(TPMS×m) is the expected overall takeover dura-
tion of the user’s m RP accounts until when PMS discovers the
credential compromise without CASPER. E((T ′PMS− τ)×m′)
represents the expected overall takeover duration of m′ (≤ m)
accounts that are taken over by the caat with the deployment
of CASPER. The MDP attacker’s goal is to minimize eff (and
maximize E((T ′PMS− τ)×m′)) by adopting the best available
strategies.

In our experiment, for a reasonable realistic estimate, we
see each time interval as one month. Thus assuming a nine-
month average compromise discovery delay as reported
in [45], we set TPMS following a normal distribution with
mean µ = 9 with a varying standard deviation σ. To interpret
that the caat can observe one additional RP breach snap-
shot after waiting for every 2 and 4 additional months, we set
λ = 0.5 and λ = 0.125, respectively.

Results of efficacy experiments. To understand the effi-
cacy of CASPER, we explore the effects on eff from (1) un-
der different parameterization settings of (λ, k̄,σ) as reported
in Figure 8. Figure 8a represents the baseline setting where
λ = 0.5, k̄ = 32, and σ = 2. We modify λ, k̄, and σ respec-
tively in Figure 8b, Figure 8c, and Figure 8d from the base-
line setting to observe the improvement in efficacy.

We observe a boost in the minimum eff when λ is decreased
from 0.5 (8a) to 0.125 (8b) and k̄ increased from 32 (8a) to

128 (8c) as shown in Figure 8b and Figure 8c respectively
for α ∈ [0.6,0.9]. The main reason behind these boosts is
that lower λ (and thus smaller n) or higher k̄ increase the
probability of the caat triggering detection by CASPER, par-
ticularly for a relatively large α (see Figure 6 and Figure 7).
So the caat chooses either to bear such an increased risk or
to attack later, hoping to observe more breached RPs. This
results in shorter account takeover duration and is reflected
by the boost of the minimum eff. The effect of modifying
σ on the minimum eff is slightly less pronounced as shown
in Figure 8a (σ = 2) and Figure 8d (σ = 1) respectively. This
is because a smaller σ results in a more tightly centered nor-
mal distribution — a stronger detection power of the PMS
provider.

One interesting observation is that m does not affect the
results for a relatively large α, e.g., when α > 0.6 in Figure 8a
and Figure 8d, and α > 0.8 in Figure 8c. This is because
larger α motivate the best-strategy caat to adapt its strat-
egy to increase τ, that is, to wait longer (i.e., with a larger τ)
for more breached RP snapshots for a more accurate guess on
the real detection secret. With it, the caat can derive real au-
thentication credentials and log into all m(= m′) RP accounts
without being detected by CASPER. This, however, shortens
the overall account takeover duration from E(TPMS×m) to
E((T ′PMS− τ)×m). As such, eff from (1) can be simplified

to E(TPMS)−E(T ′PMS−τ)
E(TPMS)

. The elimination of m in this simplified
expression explains why m has no effects on eff for these
cases.

6.3 False detection by a false-alarm attacker
CASPER may raise false alarms if a false-alarm attacker (also
known as a denial-of-service attacker in literature, e.g., [50]),
without compromising the PMS provider (and thus without
knowledge of s̃), successfully derives a passkey s that cor-
responds to an active decoy verification key, that is, v ∈ V ′.
However, without knowledge of s̃, a guess by a false-alarm at-
tacker can hit one of the active decoy verification keys with a
probability no greater than αk/2κ which is negligible in terms
of the credential length κ. For example, for 256-bit private
signing keys with k set to 32 and α set to 0.6, the probability
of the false-alarm attacker guessing one decoy key that can
trigger a false alarm is no greater than 0.6×32/2256 < 2−251

which is negligibly small.

7 Experimental Evaluation

Implementation details. We developed a prototype imple-
mentation of CASPER [47] in Go language using the open
source library virtualwebauthn [28] — which itself is built on
top of another WebAuthn library [34]. We first implemented
the three building blocks ΠEncCred, ΠDecCred, ΠGenVerifierSet re-
quired during the four steps of the BnR protocol as shown
in Figure 4. The key derivation function (KDF) used by these
three blocks is instantiated using the Password-Based Key

m = 1 m = 3 m = 5
m = 7 m = 9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
in

im
um

ef
f

0 0.2 0.4 0.6 0.8 1

(a) Baseline (b) λ = 0.125
α

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
in

im
um

ef
f

0 0.2 0.4 0.6 0.8 1

(c) k̄ = 128 (d) σ = 1
α

Figure 8: eff as a function of α with varying m. Subfigures
(8b), (8c), and (8d) show the effects of strengthening security
by on parameter, i.e., λ, k̄, and σ respectively, from the base-
line (8a) where λ = 0.5, k̄ = 32, and σ = 2.

Derivation Function (PBKDF2) with SHA-256 and 600,000
iterations. For all cryptographic operations, we select the el-
liptic curve group secp256k1 and set κ = 128.

To demonstrate the implementation feasibility of CASPER,
we instantiated the user secret η with 2-digit system-generated
PINs for completeness and set k = 32 and α = 0.6. We per-
ceive this as a reasonable setting based on our detection anal-
ysis presented in Section 6, it will have a minimum true de-
tection rate of 0.92 (for m = n = 1) and 0.83 (for m = n = 3)
as observed from Figure 6. The virtual authenticator marks
⌊α · k⌋= ⌊0.6 ·32⌋= 19 of the 32 decoy verification keys as
active and sends to the RP all 32+1 verification keys includ-
ing all decoys and the real, as well as 19 indices indicating
which are active decoys.

We implemented the RP and PMS on two separate server
nodes also written in Go language. The RP node allows a
WebAuthn-supported user account registration and a login
end point for the virtual client. For simplicity, instead of using
existing APIs PMS from providers such as Apple, Google, or
Microsoft, we emulated the same for our PMS node that ex-
posed standard APIs for passkey sync and restoration support.
These APIs were then consumed by our virtual authentica-
tor and client. The current prototype implementation did not
use TLS to secure the communication channel of the virtual
client and authenticator with PMS and RP but is strongly
recommended when CASPER is deployed in practice.

Measuring performance overhead. For latency and perfor-

mance comparisons, we run the PMS (t2.medium) and the
RP (t2.micro) on two different AWS EC2 instances running
on Ubuntu 20.04 LTS and located in two different regions —
US-East and US-West respectively. We run the virtual authen-
ticator and the client on commodity hardware (MacBook Pro
M2 with 16 GB of memory). Finally, we registered 10 user
accounts at the RP and attempted 25 login attempts on each
of the accounts and measured the time delay during account
registration and login as experienced by users for CASPER.

When k = 32, and α = 0.6, our evaluation shows that
CASPER introduced an additional delay of 325 (± 29) ms
to account registration. The majority of the computation
time during account registration is taken by the KDF used
by ΠEncCred, ΠDecCred, ΠGenVerifierSet procedures of around
224 (± 3) ms. Increasing (k,α) would increase the num-
ber of invocations of KDF, and thus result in higher delays
in user registration and authenticator setup time (step 1 and
2). However, we remark that user registration is an infrequent
operation, and will not affect user experience significantly.
Importantly, the compromise detection algorithm, specifically
the additional membership tests required by CASPER in the
algorithm, adds only an average delay of 36 (± 8) ms to users’
daily login time, which we argue would be hardly noticeable
by users.

Benchmarking storage overhead. CASPER adds only min-
imal storage costs to participating parties. The PMS addition-
ally stores a random value z for each credential entry and a
detection secret set W for each user. Each authenticator also
needs to store the real detection secret wi∗ and a set of detec-
tion secrets W . An RP needs to store V and V ′ for each user
account, assuming that there is only one valid credential per
account. If z, w, and v are of size 256 bits, and k = 32, as a
rough estimate for 1 million users with each having 200 RP
accounts, the deployment of CASPER would cost the PMS
approximately 13.86 Gigabytes and each RP no more than
2.08 Gigabytes in storage only.

8 Discussion
We design CASPER to enable RPs to detect attackers’ at-
tempts to log into users’ accounts using passkeys stolen from
a PMS. In Section 6, we demonstrate the detection effective-
ness of CASPER. In this section, we discuss the usability and
deployment considerations of CASPER.

8.1 Usability analysis
We propose CASPER as a general detection framework, with
the user secret η serving as a flexible component. The us-
ability of CASPER depends on that of η. Specifically, from
an end-user’s perspective, CASPER may involve user partici-
pation in two operations:6 (1) registration of η during setup

6As we will detail later, certain design options can eliminate the need for
user involvement in one or both of the operations. However, for the sake of
examining CASPER’s usability, we conservatively aim to list all possible

of the first authenticator following PMS account creation,
and (2) providing the same η to a new authenticator during
authenticator setup for retrieving passkeys from the PMS.

The user secret η can be a memorized secret selected by
the user or assigned by the system, or derived from biometrics
or other (long-term) secrets (e.g., bank account numbers or
device unlock PINs) of the user. Here we present a brief
usability analysis for the case where η is instantiated with 2-
digit system-generated PINs 7 to identify the usability caveats
and potential mitigation for this instantiation.

PIN-based CASPER: a usability case study. Since
CASPER is mostly invisible to users in their daily lives, we
focus solely on the following user tasks required by this “PIN-
based CASPER”: (1) PIN registration: During setting up the
first device after creating an account with the PMS, CASPER
generates a 2-digit random PIN and displays it to the user,
instructing them to memorize or note it down. The user is
then required to confirm receipt by entering the PIN twice.
The last step is repeated if either entry fails to match the PIN
displayed. (2) PIN management: The user needs to memorize
or note down the 2-digit PIN and recall or retrieve it when
needed. (3) PIN entry: Later, for each subsequent authentica-
tor device setup, the interface will prompt the user to enter
the 2-digit PIN twice.

For PIN-based CASPER, the key usability issue is diffi-
culty in memorizing or noting down the PIN, and recalling
or retrieving the PIN when setting up subsequent devices /
authenticators. This challenge is not particular to CASPER—
similar usability challenges also arise in everyday scenarios
where such secrets are commonly used for device unlocking
or end-to-end encryption in most cloud-based credential man-
agement systems [31]. In these cases, users must effectively
manage their PINs to avoid being locked out of devices or
losing access to their credential backups. We argue that with
PIN-based CASPER, the likelihood of such events is lower, as
prior user studies have shown that 2-digit PINs are relatively
easier for users to manage [44]. Other usability issues such
as PIN input errors during device setup could be avoided by
leveraging existing typo-reducing techniques, e.g., [53] or by
requesting repetitive PIN entry and confirmation.

While system-generated PINs offer quantifiable security
and involve lower deployment complexity, other options to
instantiate η, e.g., based on biometrics, can relieve users of
memory burdens and address most of the usability issues
identified above. For further discussion on alternative options
to instantiate η, see Appendix E.

Future user studies. To thoroughly evaluate CASPER’s us-
ability — including user adoption, perceptions, ease of use,
and action accuracy — comprehensive user studies tailored to

user involvement here.
7A 2-digit system-generated PIN has approximately log2(100) ≈ 6.64

bits of entropy, whereas η with around 5 bits already provides compelling
detection accuracy according to our analysis in Section 6.

specific η instantiations and UI designs are necessary prior to
deployment. This paper does not include such studies, leaving
them as future work to better understand CASPER’s real-
world usability.

8.2 Enhancing CASPER’s usability
Here we provide suggestions and recommendations to en-
hance CASPER’s overall usability, such as by setting up accu-
rate user perceptions of CASPER, and reducing or eliminating
users’ efforts additionally required by CASPER.

User perceptions of CASPER. We believe CASPER is ap-
pealing to users who: 1) wish to use PMS, 2) have concerns
about the security of their PMS passkey storage, as high-
lighted in a recent user study [59], and 3) prefer not to adopt
less user-friendly mitigations for account security that affects
daily login routines (e.g., 2FA / MFA). However, establishing
an accurate perception and mental model is a necessary step
towards a usable CASPER. To do so, the user interface of
CASPER should first clearly detail its goal — to improve
users’ account security by detecting abuse of passkeys leaked
from PMS providers. Second, the interface should clarify
that CASPER aims to provide “an additional detection layer”
without disrupting users’ daily account login routines.

Reducing users’ efforts. After η registration, CASPER only
requires additional user efforts for η input during authenti-
cator setup, and such instances will be rare. Assuming users
set up a new device as often as they replace smartphones
(approximately every 40 months [8]), a user would enter η

only 32 times over 106 years.
Users’ efforts could be even further minimized for the ma-

jority of cases when users have at least one registered authen-
ticator available when setting up a new one — for example,
when setting up a new smartphone while a previously regis-
tered smartphone, tablet, or laptop is available. In such cases,
secure device-to-device communication (e.g., similar to Ap-
ple’s AirDrop) can be used between a new authenticator and a
registered one to synchronize wi∗ derived from η, eliminating
the need for users to input η.

Making CASPER user-invisible. When usability require-
ments dictate that no additional user tasks should be per-
formed, one may consider extracting η from existing secrets
that users already have and use daily, e.g., from PINs / pass-
words, pattern locks, or biometrics locally for device unlock.
In this scenario, it is possible to hide CASPER entirely from
users to improve CASPER’s usability. However, we caution
readers that such a design could introduce additional secu-
rity implications, particularly if the entropy source is a user-
chosen secret without sufficient entropy, which could render
CASPER less effective.

8.3 Deployment considerations
Deployment requirements. CASPER is by design well-
suited for real-world deployment because it is compatible

with PMS providers’ existing credential synchronization and
storage implementations and requires only minimal changes
on RPs’ side. Implementation-wise, CASPER only requires
PMS to additionally store the constant size detection secret
set W . For RPs, CASPER requires them to store public verifi-
cation keys (i.e., V ′ and V) as specified in the BnR protocol
shown in Figure 4 and to implement the simple detection
algorithm prescribed in Figure 5.

However, a potential deployment challenge may arise from
the need to modify authenticators to support the BnR proto-
col and its underlying algorithms. Therefore, to promote the
deployment of CASPER, authenticator compatibility would
need to be provided by vendors and supported by standard-
ization bodies such as the FIDO Alliance.

Again, instead of a specific instantiation and implementa-
tion, we propose CASPER as a general framework to detect
centralized PMS. Beyond direct deployment, we hope that
our work will inspire future efforts to explore instantiations
of CASPER— exploring options such as η instantiations and
input methods and alternative methods for generating decoy
credentials. These choices should be closely aligned with the
real-world requirements for security, usability, and deploy-
ment. Moreover, as cryptographic credentials like passkeys
and HOTP / TOTP seeds as well as their backup and recovery
become increasingly important, we hope our work encourages
further research on breach detection for credential backup sys-
tems with the goal of improving users’ account security.

Risk-based authentication and CASPER. To improve ac-
count security, one might seek to compare Risk-Based Au-
thentication (RBA) [39, 78, 79] with CASPER to guide de-
ployment decisions. To help with this process, we provide a
detailed comparison of RBA and CASPER to highlight their
differences and complementary characteristics.

RBA aims to detect likely unauthorized login attempts by
profiling login behaviors and identifying malicious behaviors,
without requiring users to manage additional secrets. In con-
trast, given only a low-entropy η, CASPER provides RPs with
a reliable signal indicating whether a user’s passkey may have
been leaked from PMS. This signal offers deeper insight into
the cause of the unauthorized account access and allows RP
to make more informed decisions, such as requesting users
to reset their passkeys to protect their accounts from risks re-
sulting from breaches of PMS. In contrast, RBA aims to flag
unauthorized login attempts based on users’ login patterns to
help RPs to decide if further authentication is needed [78].

RBA relies on login information, e.g., IP addresses, user-
agent strings, and user login patterns, which is independent of
the deployed authentication schemes. This makes RBA com-
patible with a wide range of authentication schemes, although
it is mainly deployed to complement password-based authen-
tication today. CASPER, on the other hand, is a detection
framework specifically designed to identify PMS breaches
that leak synchronized cryptographic credentials like passkeys
and HOTP / TOTP seeds.

In terms of security assumptions, the effectiveness of RBA
depends on whether the login information used to identify
unauthorized login attempts could be stolen and spoofed.
However, existing RBA mostly relies on non-private login in-
formation like geolocations and user-agent strings [39], which
can be easily obtained and spoofed by a sophisticated at-
tacker to effectively reduce RBA’s accuracy [38]. In contrast,
CASPER remains effective against the same sophisticated
attacker. As shown in Section 6, CASPER achieves high de-
tection accuracy even when the attacker is allowed to breach
multiple RPs to gather information for attacking other RPs.

Social engineering attacks against CASPER. Attackers
could use social engineering techniques like phishing [54,
80] or pretexting [80] to steal the user secret η. User secrets
required by existing PMS such as iCloud and Google backup
are also susceptible to similar social engineering attacks. We
note that the leak of a user’s η only renders the detection
ineffective — as if CASPER had never been enabled for this
user — but would not degrade the security of their passkeys
or RP accounts.

Detection notifications. RP may choose to notify the victim
user of the potential compromise of their passkeys from the
provider. We discuss two ways the RP could notify the victim
user: actively or passively. For active notification, RP can
promptly send detection notifications to users via established
communication channels (e.g., email, app notifications, SMS).
When all communication channels between the user and the
RP are unavailable, the RP could also resort to a passive notifi-
cation such as notifying the user on its webpage or application
when they log into their account next time. With such noti-
fication, the user can decide to reset their passkeys, better
secure their provider account, or even consider switching to a
different provider.8

Handling spoofed detection alerts. In this paper, we make
no effort to address the possibility that participating RPs
might withhold detection alerts from users when detection
happens, given that these RPs could equally well do so by sim-
ply not participating. However, we have to take into consider-
ation that participating RPs may attempt to send spoofed de-
tection notifications to users when detection does not happen
(e.g., just to wrong an unbreached PMS provider). CASPER
can provide a strong guarantee for identifying such spoofed
notifications by additionally requiring the RP to return to the
user the authentication response (v′, rsp′,γ′) that triggers the
breach alert as a “proof of detection”.

Specifically, for the FIDO2 case, the user (device), after
receiving (v′, rsp′,γ′) as the proof of detection, first performs

8We note that recovering from such an identified compromise, as required
by other account recovery needs as they exist today [62], requires users to
register at the RP for a secure secondary authentication method (or some-
times termed backup/fallback authentication) in advance to ensure the user’s
legitimacy for resetting credentials.

Verify(v′, rsp′,γ′) to check that the detection proof is well-
formed. Given that γ′ is a valid signature of rsp′ under v′,
the user device then runs ΠGenVerifierSet to re-generate V , and
checks if v′ = vi∗ OR v′ /∈V . If this check is true, the user de-
vice can confirm this is a spoofed notification because only a
(rsp′,γ′) pair verifiable by one of the verifiers in V \{vi∗} can
trigger a detection alarm. Informally, without the knowledge
of the user’s private signing key si∗ or a caat’s presence (i.e.,
compromise of users’ credential backup at provider), it would
be difficult for an RP to forge a valid detection proof if the
underlying digital signature scheme is secure.

9 Conclusion
In this paper, we present CASPER, the first framework to de-
tect the abuse of users’ passkeys leaked from passkey manage-
ment services (PMS). CASPER can be seamlessly integrated
into the existing FIDO2 authentication protocols without
disrupting users’ daily account login routines. Additionally,
CASPER is compatible with existing PMS implementations
and introduces minimum storage and computation overhead
to participating parties. We demonstrate that CASPER pro-
vides compelling detection effectiveness, even against attack-
ers who exploit information from website breaches to opti-
mize their strategies to avoid detection. We believe that the
widespread deployment of CASPER will enhance users’ ac-
count security particularly in scenarios where a PMS provider
fails to protect users’ passkey storage from compromise.

Acknowledgments
We thank the anonymous reviewers and the shepherd of our
paper for their insightful comments and suggestions. This
research is supported in part by the University of Wiscon-
sin—Madison Office of the Vice Chancellor for Research
and Graduate Education and NSF award #2339679, and US
Department of Commerce award #70NANB21H043.

Ethics and Open Science Policy

Ethics considerations. Our work aims to improve account
security by detecting the abuse of passkeys leaked from the
cloud storage of passkey management services or providers.
Thus we believe our work does not pose any potential harm
to users or raise any ethical concerns.

Open science. We released the code base of CASPER as
described in Section 7 as open source software [47] under the
GPL-3.0 license. Additionally, we released the model check-
ing scripts (in PRISM [56] model checking language) to eval-
uate the detection effectiveness of CASPER in Section 6.2.

References
[1] CNBC: Why passkeys from Apple, Google, Microsoft may soon re-

place your passwords. https://fidoalliance.org/cnbc-why-p
asskeys-from-apple-google-microsoft-may-soon-replace
-your-passwords/, 2024.

[2] FIDO Alliance. The FIDO (“Fast IDentity Online”) Alliance – Industry
Association to Promote Authentication Standards. https://fidoal
liance.org/fido2/, 2024.

[3] Passkeys in Dashlane. https://support.dashlane.com/hc/en-u
s/articles/7888558064274-Passkeys-in-Dashlane, 2024.

[4] Start Your Passwordless Authentication Journey - LastPass. https://
www.lastpass.com/features/passwordless-authentication,
2024.

[5] Unlock 1Password with a passkey (beta). https://support.1passw
ord.com/passkeys/, 2024.

[6] Experts Fear Crooks are Cracking Keys Stolen in LastPass Breach.
https://krebsonsecurity.com/2023/09/experts-fear-c
rooks-are-cracking-keys-stolen-in-lastpass-breach/,
Available on: 2024-03-01.

[7] LastPass’ latest data breach exposed some customer information. http
s://www.theverge.com/2022/11/30/23486902/lastpass-hac
kers-customer-information-breach, Available on: 2024-03-01.

[8] Smartphone providers await 2H smartphone rebound. https://www.
bloomberg.com/professional/blog/smartphone-providers-a
wait-2h-smartphone-rebound, Available on: 2024-03-01.

[9] Two-Factor Authentication Market. https://www.marketresearch
future.com/reports/two-factor-authentication-market-3
772, Available on: 2024-03-01.

[10] Apple Plaftorm Security, iCloud Keychain security overview. https:
//support.apple.com/guide/security/icloud-keychain-sec
urity-overview-sec1c89c6f3b/1/web/1, Available on: 2025-01-
30.

[11] Passkeys in Windows. https://support.microsoft.com/en-us/
windows/passkeys-in-windows-301c8944-5ea2-452b-9886-9
7e4d2ef4422, Available on: 2025-01-30.

[12] Passwordless login with passkeys. https://developers.google.
com/identity/passkeys, June 2023.

[13] M. H. Almeshekah, C. N. Gutierrez, M. J. Atallah, and E. H. Spafford.
Ersatzpasswords: Ending password cracking and detecting password
leakage. In Proceedings of the 31st Annual Computer Security Appli-
cations Conference, pages 311–320, 2015.

[14] Apple. About the security of passkeys. 2024. https://support.ap
ple.com/en-us/HT213305l.

[15] Apple. Escrow security for iCloud Keychain. https://support.ap
ple.com/guide/security/escrow-security-for-icloud-key
chain-sec3e341e75d/1/web/1, 2024.

[16] L. Ballard, S. Kamara, F. Monrose, and M. K. Reiter. Towards practical
biometric key generation with randomized biometric templates. In
Proceedings of the 15th ACM conference on Computer and communi-
cations security, pages 235–244, 2008.

[17] M. Barbosa, A. Boldyreva, S. Chen, and B. Warinschi. Provable security
analysis of FIDO2. In Advances in Cryptology–CRYPTO 2021: 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16–20, 2021, Proceedings, Part III 41, pages 125–156.
Springer, 2021.

[18] K. Bicakci and Y. Uzunay. Is FIDO2 Passwordless Authentication
a Hype or for Real?: A Position Paper. In 2022 15th International
Conference on Information Security and Cryptography (ISCTURKEY),
pages 68–73. IEEE, 2022.

[19] N. Bindel, C. Cremers, and M. Zhao. FIDO2, CTAP 2.1, and WebAuthn
2: Provable security and post-quantum instantiation. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 1471–1490. IEEE,
2023.

[20] A. Birgisson. Security of Passkeys in the Google Password Manager.
2023. https://security.googleblog.com/2022/10/Security
ofPasskeysintheGooglePasswordManager.html.

https://fidoalliance.org/cnbc-why-passkeys-from-apple-google-microsoft-may-soon-replace-your-passwords/
https://fidoalliance.org/cnbc-why-passkeys-from-apple-google-microsoft-may-soon-replace-your-passwords/
https://fidoalliance.org/cnbc-why-passkeys-from-apple-google-microsoft-may-soon-replace-your-passwords/
https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/
https://support.dashlane.com/hc/en-us/articles/7888558064274-Passkeys-in-Dashlane
https://support.dashlane.com/hc/en-us/articles/7888558064274-Passkeys-in-Dashlane
https://www.lastpass.com/features/passwordless-authentication
https://www.lastpass.com/features/passwordless-authentication
https://support.1password.com/passkeys/
https://support.1password.com/passkeys/
https://krebsonsecurity.com/2023/09/experts-fear-crooks-are-cracking-keys-stolen-in-lastpass-breach/
https://krebsonsecurity.com/2023/09/experts-fear-crooks-are-cracking-keys-stolen-in-lastpass-breach/
https://www.theverge.com/2022/11/30/23486902/lastpass-hackers-customer-information-breach
https://www.theverge.com/2022/11/30/23486902/lastpass-hackers-customer-information-breach
https://www.theverge.com/2022/11/30/23486902/lastpass-hackers-customer-information-breach
https://www.bloomberg.com/professional/blog/smartphone-providers-await-2h-smartphone-rebound
https://www.bloomberg.com/professional/blog/smartphone-providers-await-2h-smartphone-rebound
https://www.bloomberg.com/professional/blog/smartphone-providers-await-2h-smartphone-rebound
https://www.marketresearchfuture.com/reports/two-factor-authentication-market-3772
https://www.marketresearchfuture.com/reports/two-factor-authentication-market-3772
https://www.marketresearchfuture.com/reports/two-factor-authentication-market-3772
https://support.apple.com/guide/security/icloud-keychain-security-overview-sec1c89c6f3b/1/web/1
https://support.apple.com/guide/security/icloud-keychain-security-overview-sec1c89c6f3b/1/web/1
https://support.apple.com/guide/security/icloud-keychain-security-overview-sec1c89c6f3b/1/web/1
https://support.microsoft.com/en-us/windows/passkeys-in-windows-301c8944-5ea2-452b-9886-97e4d2ef4422
https://support.microsoft.com/en-us/windows/passkeys-in-windows-301c8944-5ea2-452b-9886-97e4d2ef4422
https://support.microsoft.com/en-us/windows/passkeys-in-windows-301c8944-5ea2-452b-9886-97e4d2ef4422
https://developers.google.com/identity/passkeys
https://developers.google.com/identity/passkeys
https://support.apple.com/en-us/HT213305l
https://support.apple.com/en-us/HT213305l
https://support.apple.com/guide/security/escrow-security-for-icloud-keychain-sec3e341e75d/1/web/1
https://support.apple.com/guide/security/escrow-security-for-icloud-keychain-sec3e341e75d/1/web/1
https://support.apple.com/guide/security/escrow-security-for-icloud-keychain-sec3e341e75d/1/web/1
https://security.googleblog.com/2022/10/SecurityofPasskeysintheGooglePasswordManager.html
https://security.googleblog.com/2022/10/SecurityofPasskeysintheGooglePasswordManager.html

[21] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh. Kamouflage: Loss-
resistant password management. In Computer Security–ESORICS
2010: 15th European Symposium on Research in Computer Security,
Athens, Greece, September 20-22, 2010. Proceedings 15, pages 286–
302. Springer, 2010.

[22] J. Bonneau. The science of guessing: analyzing an anonymized corpus
of 70 million passwords. In 2012 IEEE symposium on security and
privacy, pages 538–552. IEEE, 2012.

[23] D. Chang, A. Goel, S. Mishra, and S. K. Sanadhya. Generation of
secure and reliable honeywords, preventing false detection. IEEE
Transactions on Dependable and Secure Computing, 16(5):757–769,
2019.

[24] M. Chase, H. Davis, E. Ghosh, and K. Laine. Acsesor: A new frame-
work for auditable custodial secret storage and recovery. Cryptology
ePrint Archive, 2022.

[25] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart. Cracking-
resistant password vaults using natural language encoders. In 2015
IEEE Symposium on Security and Privacy, pages 481–498. IEEE, 2015.

[26] H. Cheng, W. Li, P. Wang, C.-H. Chu, and K. Liang. Incrementally up-
dateable honey password vaults. In 30th USENIX Security Symposium
(USENIX Security 21), pages 857–874, 2021.

[27] E. Dauterman, H. Corrigan-Gibbs, and D. Mazières. SafetyPin: En-
crypted backups with Human-Memorable secrets. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 1121–1138, 2020.

[28] Descope. virtualwebauthn. https://github.com/descope/virtu
alwebauthn, 2024.

[29] T. Dierks and E. Rescorla. The transport layer security (tls) protocol
version 1.2. Technical report, 2008.

[30] A. Dionysiou and E. Athanasopoulos. Lethe: Practical data breach
detection with zero persistent secret state. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pages 223–235. IEEE,
2022.

[31] J. Doolani, M. Wright, R. Setty, and S. M. Haque. Locimotion: Towards
learning a strong authentication secret in a single session. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing
Systems, pages 1–13, 2021.

[32] F. Duan, D. Wang, and C. Jia. A security analysis of honey vaults. In
2024 IEEE Symposium on Security and Privacy (SP). IEEE, 2024.

[33] I. Erguler. Achieving flatness: Selecting the honeywords from exist-
ing user passwords. IEEE Transactions on Dependable and Secure
Computing, 13(2):284–295, 2015.

[34] F. Amacker. WebAuthn server library (Go/Golang). https://github
.com/fxamacker/webauthn, 2024.

[35] F. M. Farke, L. Lorenz, T. Schnitzler, P. Markert, and M. Dürmuth.
“You still use the password after all"—exploring FIDO2 security keys
in a small company. In Sixteenth Symposium on Usable Privacy and
Security (SOUPS 2020), pages 19–35, 2020.

[36] FIDO Alliance. Client to authenticator protocol (ctap). https://
fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-cli
ent-to-authenticator-protocol-v2.2-rd-20230321.html,
2023.

[37] D. Florêncio, C. Herley, and P. C. Van Oorschot. An administrator’s
guide to internet password research. In 28th large installation system
administration conference (LISA14), pages 44–61, 2014.

[38] D. Freeman, S. Jain, M. Dürmuth, B. Biggio, and G. Giacinto. Who
are you? a statistical approach to measuring user authenticity. In NDSS,
volume 16, pages 21–24, 2016.

[39] A. Gavazzi, R. Williams, E. Kirda, L. Lu, A. King, A. Davis, and
T. Leek. A study of Multi-Factor and Risk-Based authentication avail-
ability. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 2043–2060, 2023.

[40] C. Gilsenan, F. Shakir, N. Alomar, and S. Egelman. Security and privacy
failures in popular 2FA apps. In 32nd USENIX Security Symposium
(USENIX Security 23), 2023.

[41] M. Golla, B. Beuscher, and M. Dürmuth. On the security of cracking-
resistant password vaults. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 1230–
1241, 2016.

[42] J. Guan, H. Li, H. Ye, and Z. Zhao. A formal analysis of the FIDO2
protocols. In European Symposium on Research in Computer Security,
pages 3–21. Springer, 2022.

[43] Z. Huang, L. Bauer, and M. K. Reiter. The impact of exposed passwords
on honeyword efficacy. 33rd USENIX Security Symposium (USENIX
Security 24), 2024.

[44] J. H. Huh, H. Kim, R. B. Bobba, M. N. Bashir, and K. Beznosov. On
the memorability of system-generated PINs: Can chunking help? In
eleventh symposium on usable privacy and security (SOUPS 2015),
pages 197–209, 2015.

[45] IBM Security. Cost of a data breach report 2023. https://www.ibm.
com/security/digital-assets/cost-data-breach-report/,
2023.

[46] M. Islam, M. S. Bohuk, P. Chung, T. Ristenpart, and R. Chatterjee.
Araña: Discovering and characterizing password guessing attacks in
practice. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 1019–1036, Anaheim, CA, August 2023. USENIX Association.

[47] M. Islam and K. C. Wang. CASPER. https://archive.software
heritage.org/browse/origin/directory/?origin_url=https:
//github.com/islamazhar/CASPER, 2024.

[48] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital sig-
nature algorithm (ecdsa). International journal of information security,
1:36–63, 2001.

[49] A. Juels and T. Ristenpart. Honey encryption: Security beyond the
brute-force bound. In Advances in Cryptology–EUROCRYPT 2014:
33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings 33, pages 293–310. Springer, 2014.

[50] A. Juels and R. L. Rivest. Honeywords: Making password-cracking
detectable. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 145–160, 2013.

[51] J. Katz, R. Ostrovsky, and M. Yung. Efficient and secure authenticated
key exchange using weak passwords. Journal of the ACM (JACM),
57(1):1–39, 2009.

[52] M. Kepkowski, M. Machulak, I. Wood, and D. Kaafar. Challenges with
passwordless fido2 in an enterprise setting: A usability study. In 2023
IEEE Secure Development Conference (SecDev), pages 37–48. IEEE,
2023.

[53] M. Khamis, T. Seitz, L. Mertl, A. Nguyen, M. Schneller, and Z. Li.
Passquerade: Improving error correction of text passwords on mobile
devices by using graphic filters for password masking. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,
pages 1–8, 2019.

[54] M. Khonji, Y. Iraqi, and A. Jones. Phishing detection: a literature
survey. IEEE Communications Surveys & Tutorials, 15(4):2091–2121,
2013.

[55] H. Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Annual Cryptology Conference, pages 631–648. Springer,
2010.

[56] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of
probabilistic real-time systems. In Computer Aided Verification: 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings 23, pages 585–591. Springer, 2011.

https://github.com/descope/virtualwebauthn
https://github.com/descope/virtualwebauthn
https://github.com/fxamacker/webauthn
https://github.com/fxamacker/webauthn
https://fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.2-rd-20230321.html
https://fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.2-rd-20230321.html
https://fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.2-rd-20230321.html
https://www.ibm.com/security/digital-assets/cost-data-breach-report/
https://www.ibm.com/security/digital-assets/cost-data-breach-report/
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/islamazhar/CASPER
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/islamazhar/CASPER
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/islamazhar/CASPER

[57] L. Lassak, A. Hildebrandt, M. Golla, and B. Ur. " it’s stored, hope-
fully, on an encrypted server”: Mitigating users’ misconceptions about
FIDO2 biometric WebAuthn. In 30th USENIX Security Symposium
(USENIX Security 21), pages 91–108, 2021.

[58] L. Lassak, P. Markert, M. Golla, E. Stobert, and M. Dürmuth. A com-
parative long-term study of fallback authentication schemes. In Pro-
ceedings of the 2024 CHI Conference on Human Factors in Computing
Systems, 2024.

[59] L. Lassak, E. Pan, B. Ur, and M. Golla. Why Aren’t We Using Passkeys?
Obstacles Companies Face Deploying FIDO2 Passwordless Authen-
tication. In Proceedings of the 33rd USENIX Security Symposium.
Philadelphia, PA, August 2024, 2024.

[60] B. Lu, X. Zhang, Z. Ling, Y. Zhang, and Z. Lin. A measurement study
of authentication rate-limiting mechanisms of modern websites. In Pro-
ceedings of the 34th annual computer security applications conference,
pages 89–100, 2018.

[61] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel. Is
FIDO2 the kingslayer of user authentication? A comparative usability
study of FIDO2 passwordless authentication. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 268–285. IEEE, 2020.

[62] P. Markert, A. Adhikari, and S. Das. A transcontinental analysis of
account remediation protocols of popular websites. arXiv preprint
arXiv:2302.01401, 2023.

[63] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen.
RFC 4226: HOTP: An HMAC-based one-time password algorithm,
2005.

[64] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. RFC 6238: TOTP:
Time-based one-time password algorithm, 2011.

[65] E. Naprys. Third of Americans use password managers. https:
//cybernews.com/security/third-of-americans-use-passw
ord-managers/, 2024.

[66] National Vulnerability Database. CVE-2023-42847. https://nvd.ni
st.gov/vuln/detail/CVE-2023-42847, Published on: 2023-10-25.

[67] C. Orsini, A. Scafuro, and T. Verber. How to recover a cryptographic
secret from the cloud. Cryptology ePrint Archive, 2023.

[68] K. Owens, O. Anise, A. Krauss, and B. Ur. User Perceptions of the Us-
ability and Security of Smartphones as FIDO2 Roaming Authenticators.
In SOUPS USENIX Security Symposium, pages 57–76, 2021.

[69] T. Rao, Y. Su, P. Xu, Y. Zheng, W. Wang, and H. Jin. You reset i
attack! a master password guessing attack against honey password
vaults. In European Symposium on Research in Computer Security,
pages 141–161. Springer, 2023.

[70] Certicom Research. SEC 2: Recommended Elliptic Curve Domain
Parameters. https://www.secg.org/sec2-v2.pdf, 2010.

[71] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi,
Y. Markov, O. Comanescu, V. Eranti, A. Moscicki, D. Margolis, V. Pax-
son, and E. Bursztein. Data breaches, phishing, or malware? under-
standing the risks of stolen credentials. In Proceedings of the 2017
ACM SIGSAC conference on computer and communications security,
pages 1421–1434, 2017.

[72] E. Ulqinaku, H. Assal, A. AbdelRahman, S. Chiasson, and S. Cap-
kun. Is Real-time Phishing Eliminated with FIDO? Social Engineering
Downgrade Attacks against FIDO Protocols. In Proceedings of the 30th
USENIX Security Symposium (USENIX Security 21), pages 3811–3828.
USENIX Association, 2021.

[73] W3C. Web authentication: An api for accessing public key credentials
level 3. https://www.w3.org/TR/webauthn-3/, 2023.

[74] D. Wang, Y. Zou, Q. Dong, Y. Song, and X. Huang. How to attack
and generate honeywords. In 43rd IEEE Symposium on Security and
Privacy, pages 966–983. IEEE, May 2022.

[75] K. C. Wang and M. K. Reiter. Using amnesia to detect credential
database breaches. In 30th USENIX Security Symposium (USENIX
Security 21), pages 839–855, 2021.

[76] K. C. Wang and M. K. Reiter. Bernoulli honeywords. In 31st ISOC
Network and Distributed System Security Symposium, February 2024.

[77] A. Weinert. How it works: Backup and restore for Microsoft Authen-
ticator. https://techcommunity.microsoft.com/t5/microsoft
-entra-blog/how-it-works-backup-and-restore-for-micro
soft-authenticator/ba-p/1006678, 2019.

[78] S. Wiefling, M. Dürmuth, and L. Lo Iacono. More than just good
passwords? a study on usability and security perceptions of risk-based
authentication. In Proceedings of the 36th Annual Computer Security
Applications Conference, ACSAC ’20, page 203–218, New York, NY,
USA, 2020. Association for Computing Machinery.

[79] S. Wiefling, L. Lo Iacono, and M. Dürmuth. Is this really you? an
empirical study on risk-based authentication applied in the wild. In
ICT Systems Security and Privacy Protection: 34th IFIP TC 11 Inter-
national Conference, SEC 2019, Lisbon, Portugal, June 25-27, 2019,
Proceedings 34, pages 134–148. Springer, 2019.

[80] M. Workman. Wisecrackers: A theory-grounded investigation of phish-
ing and pretext social engineering threats to information security. Jour-
nal of the American society for information science and technology,
59(4):662–674, 2008.

[81] L. Würsching, F. Putz, S. Haesler, and M. Hollick. FIDO2 the Rescue?
Platform vs. Roaming Authentication on Smartphones. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems,
pages 1–16, 2023.

[82] M. Zinkus, T. M. Jois, and M. Green. SoK: Cryptographic confidential-
ity of data on mobile devices. In Proceedings on Privacy Enhancing
Technologies (PoPETS), 2022.

A Two Common Strategies of PMS for Creden-
tial Backup Protection

As discussed in Section 2, PMS providers typically offer users
two strategies to secure their credential backups with user
secrets. One is based on key derivation and the other is based
on key escrow.

Key derivation. In the first strategy, a user’s credential
backup is encrypted using a key that only the user can access.
The encryption key can be directly derived from a user-chosen
secret (e.g., a “master password”), e.g., via key derivation
functions (KDF). This approach provides end-to-end encryp-
tion to secure users’ passkeys — encryption and decryption
of a user’s PMS passkey backup are performed locally on the
user’s authenticator, avoiding giving PMS access to the user-
chosen secret and the derived encryption key. This strategy is
adopted by popular credential managers such as LastPass [4],
1Password [5]. While this strategy gives the user some secu-
rity control over their passkeys backup at PMS provider, it
also enables attackers to perform offline cracking on the user’s
passkey backup when it gets leaked from the provider. In par-
ticular, prior research has observed that user-chosen secrets
are easily guessable, especially those that users can recall
consistently [46]. Many applications utilize the KDF defined
in PKCS#12 which is not appropriate to withstand offline
attacks leveraging modern hardware [40]. Thus, ensuring the
protection of users’ passkeys with this strategy has long been

https://cybernews.com/security/third-of-americans-use-password-managers/
https://cybernews.com/security/third-of-americans-use-password-managers/
https://cybernews.com/security/third-of-americans-use-password-managers/
https://nvd.nist.gov/vuln/detail/CVE-2023-42847
https://nvd.nist.gov/vuln/detail/CVE-2023-42847
https://www.secg.org/sec2-v2.pdf
https://www.w3.org/TR/webauthn-3/
https://techcommunity.microsoft.com/t5/microsoft-entra-blog/how-it-works-backup-and-restore-for-microsoft-authenticator/ba-p/1006678
https://techcommunity.microsoft.com/t5/microsoft-entra-blog/how-it-works-backup-and-restore-for-microsoft-authenticator/ba-p/1006678
https://techcommunity.microsoft.com/t5/microsoft-entra-blog/how-it-works-backup-and-restore-for-microsoft-authenticator/ba-p/1006678

a significant challenge. For example, serious concerns have
been raised regarding the impact of offline cracking attacks
following the breach of LastPass’s cloud storage [6, 7].

Key escrow. The second strategy requires the user secret
(e.g., a PIN or passcode, or a screen-lock pattern) to be inde-
pendent of the encryption key generation and serves solely
as a “verification secret” that the PMS provider or its compo-
nents use to verify the user’s identity. Specifically, provider
independently generates an encryption key to encrypt a user’s
passkey backup at rest and stores the key on its own key man-
agement service (KMS). When the user wishes to retrieve
their credential backup, the PMS provider retrieves their key
from KMS securely only if the user presents a valid “verifi-
cation secret”. This strategy is adopted by iCloud KeyChain
from Apple, Google Password Manager, and Password Mon-
itor from Microsoft [15, 20, 77]. Compared to the former
strategy, this strategy requires a user to give up their con-
trol over their credential backups and trust that the provider
can implement their cloud storage and KMS correctly and
securely as expected, even though this may not always be the
case [66].

Furthermore, even if PMS implementation is secure, in-
sider attackers within the PMS provider could potentially
obtain query access to the KMS and retrieve the key after
successfully guessing the low-entropy user verification se-
cret [27, 82]. This remains possible even under the provider’s
rate-limiting policies [10, 20], which could not only fail to
prevent such attacks but also undesirably introduce denial-of-
service concerns for users. What is more concerning is that
many PMS providers adopt one or more non-cryptographic
authentication methods such as passwords or secret questions
for account access, recovery, or verification secret reset [58].
In this case, the security of the user’s passkey backups against
a remote attacker may eventually fall back to that of those
weaker authentication methods.

B Definition of KDF
A key derivation function (KDF) is a fundamental crypto-
graphic primitive that produces cryptographic keys from a
private input, such as a user password. When used as encryp-
tion keys for data storage or transmission, it is crucial that the
keys generated by a KDF are computationally indistinguish-
able from random strings [55] in order to prevent an attacker
from obtaining useful information of the private input string.
In other words, an attacker should not be able to determine
whether a given binary string is a cryptographic key produced
by a KDF or just a random string of equivalent length. In this
paper, we follow standard assumptions by requiring a KDF
to be a pseudorandom function (PRF) [55] and consider the
following definition of a KDF:

Definition 1 (Key Derivation Function). A key derivation
function (KDF), denoted by KDF(w,z), is a pseudorandom
function F: {0,1}κ×{0,1}κ→{0,1}κ that takes as input a

user detection secret w and a randomness z uniformly chosen
from {0,1}κ and outputs a user key u.

C Flatness Preservation
Here we show that the flatness of detection secrets used
in CASPER is preserved despite the compromise of
PMS storage. To capture how accurately a distinguish-
ing attacker can identify wi∗ from W output by G =
⟨GenDetectSecrets,SelectRealSecret⟩, we consider a flat-
ness experiment Exptflt,G

η,k defined as follows:

Experiment Expt
flt,G
η,k (D)

W $← GenDetectSecrets(k)
wi∗ ← SelectRealSecret(W,η)
ŵ←DG (W)
if ŵ = wi∗

then return 1
else return 0

We define the advantage of D , given η and k, as:

Adv
flt,G
η,k (D)

def
= P

(
Expt

flt,G
η,k (D) = 1

)
− 1

k+1
,

Adv
flt,G
η,k

def
= max

D
{P

(
Expt

flt,G
η,k (D) = 1

)
},

where the maximum is taken over all distinguishing attackers
D .

We then consider the attacker’s ability to get a user’s
passkey backup entries for multiple accounts leaked from
PMS by defining the following PMS oracle Ocbs that takes
wi∗ as input and outputs a pair (s̃,z) for each oracle query.
Then we consider the following experiment to characterize
how much better a decoy distinguishing adversary A can dis-
tinguish wi∗ when it additionally has access to such a PMS
oracle Ocbs, where aid, uid and sid are ignored due to the
independence of W and wi∗ on them:

Oracle Ocbs(wi∗)

si∗
$←{0,1}κ

(s̃,z)←ΠEncCred(wi∗ ,si∗)
return (s̃,z)

Experiment Exptflt,cbs
η,k (A)

W $← GenDetectSecrets(k)
wi∗ ← SelectRealSecret(W,η)
ŵ← AG ,Ocbs(wi∗)(W)
if ŵ = wi∗

then return 1
else return 0

We define the advantage of A as

Advflt,cbs
η,k (A)

def
= P

(
Expt

flt,G
η,k (A) = 1

)
− 1

k+1

Advflt,cbs
η,k

def
= max

A
{Advflt,cbs

η,k (A)},

where the maximum is taken over all flatness adversaries A .

Proposition C.1.

Advflt,cbs
η,k = Adv

flt,G
η,k .

Proof. Given A for the experiment Exptflt,cbs
η,k , we construct

a decoy distinguisher D for the experiment Exptflt,G
η,k defined

in Section 4. D provides A with W it receives from the ex-
periment. D responds to A’s G query by its own G query
response. For each Ocbs oracle query made by A , D does the
following:

• D chooses s̃′ and z′ from {0,1}κ uniformly at random.

• For all wi ∈W , D runs s′i←ΠDecCred(wi, s̃
′,z′) and check

if s′i is a valid passkey, i.e., s′i
?
∈ S , where S is the passkey

space.

– If there exists wi ∈W such that s′i /∈ S , D restarts
the whole process by re-choosing a fresh s̃′ uni-
formly at random.

– If s′i ∈ S for all wi ∈W , D returns (s̃′,z′) to A

Note that this process is efficient because it is almost unlikely
that an invalid passkey will be produced (see Appendix D).
Finally D outputs 1 if A outputs 1. Considering that, given
a uniformly randomly chosen z′, for each wi ∈W , there ex-
ists a corresponding si uniformly distributed in S such that
(s̃′,z′) = KDF(wi,z′)⊕ si, and so (s̃′,z′) and (s̃,z) are dis-
tributed identically for each Ocbs oracle query simulated by
D , we have:

P
(
Expt

flt,G
η,k (D) = 1

)
≥ P

(
Exptflt,cbs

η,k (A) = 1
)
,

Adv
flt,G
η,k (D)≥ Advflt,cbs

η,k (A).

Also, we can construct a A for the experiment who runs
a decoy distinguisher D for the experiment Exptflt,G

η,k as a
subroutine. Upon receiving W from the experiment, A directly
provides W as D’s input and responds to D’s G query by its
own G query response. Finally A outputs 1 if D outputs 1 so:

P
(
Exptflt,cbs

η,k (A) = 1
)
≥ P

(
Expt

flt,G
η,k (D) = 1

)
,

Advflt,cbs
η,k (A)≥ Adv

flt,G
η,k (D).

D Well-Formed ECDSA Keys from Decrypt-
ing s̃ with an Incorrect w

Here we show that decrypting s̃ with an incorrect detection
secret w, where w ̸= wi∗ , almost certainly results in a
well-formed private key for ECDSA. For elliptic curves
supported by FIDO2 for ECDSA, e.g., secp256r1 and
secp256k1, n is the order of the base point of the curve
and is a large prime number. Specifically, n is equal to
0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179
E84F3B9CAC2FC632551 and
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A
03BBFD25E8CD0364141 for secp256r1 and secp256k1
respectively [70]. Decrypting s̃ with an incorrect w will
yield s (̸= si∗) that is uniformly distributed in the range of
[0,2256−1] (except for si∗), given w is uniformly sampled by
GenDetectSecrets (see Figure 2). For s (̸= si∗) to be a valid
private key of ECDSA on secp256r1 or secp256k1, s needs
to be within the range of [1,n− 1]. Thus, the probability
that decrypting s̃ with an incorrect detection secret w results
in a well-formed private key is n−2

2256−1 > 0.999999999767
for ECDSA on secp256r1 and n−2

2256−1 > 0.999999999999 on
secp256k1. On another note, if decrypting s̃ with an incorrect
key is non-negligibly unlikely to produce a well-formed
private key for a given signature scheme, an alternative design
could be adopted, as mentioned in Section 5. Specifically,
instead of producing and syncing a single s̃, one could
randomly generate k additional key pairs as decoys and
synchronize k+1 private keys (passkeys) to the PMS directly.

E More about User Secret η

Here, we first explore alternative methods for instantiating
the user secret η without imposing a memory burden on users.
We then discuss potential privacy concerns related to η.

User memory-independent η. In practice, there are other
desirable ways to instantiate η, making it user memory-
independent but retrievable by users from physical objects
(e.g., using credit cards CVVs as η retrievable from credit
cards) or from third parties trusted for maintaining the secrecy
and availability of the secrets (e.g., using several digits of bank
account numbers as η retrievable from banks). Additionally,
η can be derived from users’ biometric data (e.g., fingerprints
or faces) [16] . While such instantiation of η adds little mem-
ory burden on users and raises negligible privacy concerns as
discussed next when wi∗ is stolen, the user interface should
clearly explain how CASPER uses these secrets and, more
importantly, that η will never be stored at any participating
party in CASPER.

Privacy of η A caat who has compromised W and luckily
guessed the correct wi∗ might be tempted to deduce η from W
and wi∗ . However, this is in fact not easy because the modulo
operation in SelectRealSecret restricts the information leak-
age about η to only log2 (k+1) bits of entropy. For example,

• Upon receiving a login request for uid, RP retrieves
v(= s) for uid and requests an OTP, if the uid exists.
• User device runs pwd← GenOTP(s) and sends pwd
to RP.
• Upon receiving pwd from the user, RP performs the
following tests and actions:

◦ if ∀v ∈ V : pwd ̸= GenOTP(v) : RP rejects this
login request.

◦ else if v ∈V ′, RP raises a detection alarm.

◦ else RP accepts this login request.

Figure 9: The compromise detection algorithm of CASPER
for OTP. The BnR protocol remains the same for OTP.

considering the case where a user’s η is the last four digits of
their bank account number and k is set to 32, η would be hid-
den from the attacker among 10000× 1

32+1 ≈ 303 different
4-digit numbers that, if taken with W by SelectRealSecret as
input, would yield the same wi∗ .

An alternative design for generating W given η. Recall
that in Figure 2, we provided an example of generating W
and determining the real secret index based on a user input
η. Here, we introduce an alternative design for generating W
that reduces the probability of a manual η input error leading
to a false detection. The concept is straightforward: CASPER
can assemble a set (denoted as N) of size k, which includes
decoy user secrets randomly sampled from the same secret
space of η. For example, when k = 32 and η is an x-digit
system-generated PIN where 2≤ x < log10 2κ, CASPER can
randomly select 32 distinct PINs as the decoy user secrets
from the remaining 10x−1 (incorrect) PINs. CASPER then
directly assembles W by including Hash (η) as the real de-
tection secret and the hashes of the k decoy user secrets in
N as decoys. This design provides better resistance against
false detection triggered by manual η user input errors. In
the x-digit PIN example here, a randomly entered incorrect
η′ will be mapped to a decoy passkey with a probability of
at most 32

10x . This design is more suitable when η input er-
rors are a larger concern than the privacy of η, as the caat

can more easily determine η if it identifies the real detection
secret (= Hash(η)) within W .

F Extending CASPER for One Time Passwords
Besides passkeys, the concept of CASPER can also be easily
extended to authentication methods based on other crypto-
graphic credentials such as HMAC or time-based one-time
passwords (OTP [63, 64]).

Background on OTP. Unlike FIDO2, OTP authentication
is based on a shared secret between a user device (or au-
thenticator) and an RP (the authentication server). During

registration, the user device and the RP agree on a shared
cryptographic seed s sampled uniformly at random. During
the login phase, the user device generates a new OTP from
s as pwd← GenOTP(s). Here GenOTP takes s as its input
and outputs an OTP that is a truncated output of HMAC(s,c)
(as defined in [63, Sec. 5.2] and [64, Sec. 1.2]) where c is a
counter used to maintain the freshness of a new OTP. Thus, c
is updated either incrementally for each login (i.e., HMAC-
based OTP [63]) or periodically based on the current time
(i.e., timing-based OTP [64]). When the user submits pwd to
the RP for authentication, the RP also generates an OTP pwd’
by invoking GenOTP with the shared s and the same counter
c, and verifies the user’s identity by checking pwd

?
= pwd′.

Extending CASPER for OTP. The BnR protocol for OTP
is similar to the one for FIDO2 as shown in Figure 4. As
shown in Figure 9, the compromise detection algorithm here
is largely similar to the one used for FIDO2-based authenti-
cation, with only slight variations due to differences in their
authentication flows. During a login, the user device generates
an OTP via pwd← GenOTP(si∗), and sends the OTP pwd
to the RP. Note that for OTP, there is no privacy and public
key pair, and in a credential pair ⟨s,v⟩, s = v because they
are the same random seed shared and kept private by both
the user device and RP. However, we keep the notations of
s and v just to follow the specification of our generic BnR
protocol. Therefore, to authenticate the login request, the RP
will also generate an OTP pwd′ on their own for each v in V
from the list of verifiers , and check if pwd′ = pwd. Similar
to the detection algorithm for FIDO2 as described above, if
there exists v ∈V such that pwd′ = pwd, then whether v is in
the active verifier set V ′ or not determines if this login attempt
will trigger a PMS detection or result in a successful login.

Handling spoofed false alert notifications from RP for
OTP. Unlike FIDO2, detecting spoofed false alerts with a
verifiable proof is challenging for OTP-based authentication
methods, or, more broadly, authentication methods based on
shared secrets between the user and the RP. This is because
both parties can generate the same authentication response
from their shared secret, making it difficult to determine
whether a triggering authentication response is produced by a
PMS breaching attacker or a misbehaving RP itself.

While future work can investigate further how to handle
this challenge, for now, we propose an alternative approach
that instead provides a probabilistic guarantee against such
alerts. This approach requires the user device to select a subset
of W at random, denoted by W ′, while still using W as the
input of ΠGenVerifierSet to generate V for the RP. Meanwhile,
CASPER requires the RP to send back the triggering OTP
pwd as a probabilistic detection proof. With this setup, the
probability of a RP producing a pwd with an OTP seed, si,

that corresponds to a detection secret w ∈W \W ′ is 1− |W
′|

|W | .
When this happens, the user can learn that the RP intentionally
raised a false detection.

	Introduction
	Background and Related Work
	Background
	Related work

	Threat Model
	Detection Secrets
	 CASPER: A New Detection Framework
	Design considerations and overview
	Backup & restoration protocol
	Compromise detection algorithm

	Detection Effectiveness
	Flatness preservation
	True detection and efficacy of CASPER
	False detection by a false-alarm attacker

	Experimental Evaluation
	Discussion
	Usability analysis
	Enhancing CASPER's usability
	Deployment considerations

	Conclusion
	Two Common Strategies of PMS for Credential Backup Protection
	Definition of KDF
	Flatness Preservation
	Well-Formed ECDSA Keys from Decrypting with an Incorrect
	More about User Secret
	Extending CASPER for One Time Passwords

