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Abstract

The recent rollout of passkeys by hundreds of web services
online is the largest attempt yet to achieve the goal of pass-
wordless authentication. However, new authentication mecha-
nisms can often overlook the unique threats faced by at-risk
users, such as survivors of intimate partner violence, human
trafficking, and elder abuse. Such users face interpersonal
threats: adversaries who routinely have physical access to de-
vices and either know or can compel disclosure of passwords
or PINs. The extent to which passkeys enable or mitigate such
interpersonal threats has not yet been explored.

We perform the first analysis of passkeys in interpersonal
threat models. To do so, we introduce an abusability analy-
sis framework to help practitioners and researchers identify
ways in which new features can be exploited in interpersonal
threat models. We then apply our framework to the setting
of passkeys, ultimately investigating 19 passkey-supporting
services. We identify a variety of abuse vectors that allow
adversaries to use passkeys to cause harm in interpersonal
settings. In the most egregious cases, flawed implementations
of major passkey-supporting services allow ongoing illicit
adversarial access with no way for a victim to restore security
of their account. We also discover abuse vectors that prevent
users from accessing their accounts or that help attackers
emotionally manipulate (gaslight) users.

1 Introduction

Password-based authentication remains the most widely used
mechanism for user authentication on the web. Recently,
however, there has been a push to adopt cryptographic,
phishing-resistant credentials to achieve passwordless authen-
tication via the FIDO2 standard [1]. Unlike FIDO2’s prior use
in second-factor authentication (2FA), passkeys are crypto-
graphic credentials that can be used for primary authentication.
Passkeys are, by design, portable: they can be exported to be
used from another device, or synchronized across devices
via passkey providers such as Apple, Google, or password
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managers. Passkeys have seen rapid uptake in the last four
years, with Google reporting that, as of May 2024, 400 million
accounts have enabled passkeys [2].

Despite growing research on passkeys’ availability [3], us-
ability [4-9], and security [10-13], there has been no investi-
gation into their role in interpersonal threat models. Adver-
saries in such settings may have periodic physical access to
(unlocked) devices and the ability to guess or compel dis-
closure of authentication information from highly vulnerable
user populations, including children [14, 15], young adults [16,
17], disabled persons [18], or survivors of intimate partner
violence (IPV) [19, 20], human trafficking [21], and elder
abuse [22, 23], among others [24, 25].

We therefore initiate exploration of passkeys in interper-
sonal threat models. To do so, we introduce a new abusabil-
ity analysis framework that generalizes one used by Bellini
et al. [26] to assess tech abuse in the context of financial
apps. The goal is to identify abuse vectors, or sequences of
steps a malicious user can perform with a digital product to
enact harm against a target. Our six-stage framework pro-
vides structure for an analyst team to identify threat models,
assess functionality, hypothesize abuse vectors, design and
execute stepthrough protocols to test viability of the hypothe-
sized abuse vectors, and summarize the findings in easy-to-
understand abuse scenarios.

We exercise our framework by applying it to recent passkey
implementations using interpersonal threat models gleaned
from the academic literature. Our threat models capture an
interpersonal adversary that either seeks unauthorized access
to their victim’s account, to deny the victim access to their
accounts, or to gaslight (emotionally manipulate or harm) the
victim via passkey features. To do so, the adversary can either
periodically use a victim’s unlocked device, or be able to log
in remotely from an adversarial device, and uses either stan-
dard user interfaces in typical ways or has expertise sufficient
for reconfiguring software settings.

To understand the current state of passkey implementations,
we explore their common functions through a functionality
assessment of the Ul affordances of six online web services.



Interacting with Uls as typical end users, we examine how
passkeys may be registered, authenticated, managed, exported,
and (if possible) revoked. In doing so, we uncover a range of
buggy implementations, inconsistent design patterns around
passkey management, and subtleties that confused even expert
team members.

We then worked to hypothesize seven possible abuse vec-
tors, three related to unauthorized access, and two each related
to denial of service and gaslighting. For example, one is an ad-
versary using local access to add their biometrics to a victim
device in order to retain illicit access to an account. Another
uses a remote device to log in to a victim’s account and revoke
their passkeys to perform denial of service.

To evaluate the viability of these abuse vectors, we designed
stepthrough protocols in which an analyst alternatively plays
the role of simulated victim and adversary, to assess whether
(and in what exact way) abuse vectors can be enacted and,
if so, whether victims can detect and/or recover from the
harm. We apply our stepthrough protocols to four client-side
platforms (i0S, MacOS, Windows, Android) and 15 popular
services that support passkeys.

Unfortunately, the abuse vectors are overwhelmingly suc-
cessful: anyone with sufficient knowledge and a basic level of
adversarial access can leverage passkeys to cause harm, with
those harms often exacerbated by lack of victim visibility
and recoverability. For example, we show how an adversary
adding their biometric to a victim’s device does not trigger
any clear Ul-visible notifications and allows ongoing access
to all victim accounts (even if a victim routinely logs out of
accounts). We also discover that passkey portability features
allow passkey cloning: an attacker with one-time access to a
phone and knowledge of a victim’s PIN can obtain passkey-
based access from another device. For some services (CVS,
Porkbun, TikTok) this access is impossible to detect and we
could determine no way to revoke access.

Summary. Our key contributions are as follows:

e We detail a new framework for abusability analysis to
help practitioners and researchers identify abuse vectors.

e We apply our framework to passkey deployments across
a variety of clients and 19 online services.

e We identify seven abuse vectors that can be exploited
in interpersonal threat models to cause harms such as
unauthorized access, denial of service, and gaslighting.
In some cases services provide the user no visibility into
abusive actions or ability to recover from them.

While attacks due to adversaries with high levels of access
may sometimes be inevitable, our work suggests concrete mit-
igations. Enhancing abuse prevention through improved notifi-
cations, visibility into passkey use on Uls, and integrating our
auditing techniques into feature reviews could help mitigate
these threats. Moreover, our abusability analysis framework
can be adopted by testing teams to discover problems and
explore possible mitigations before deployment.

2 Background and Related Work

FIDO2. The Fast IDentity Online (FIDO) Alliance [27] is
an open industry association that develops and promotes al-
ternate authentication standards to passwords. FIDO has pub-
lished three specifications for cryptographic authentication:
FIDO Universal Authentication Framework (FIDO UAF),
FIDO Universal Second Factor (FIDO U2F), and the FIDO
protocols 1.0, 2.0 (FIDO, FIDO2) [1].

The original FIDO protocol (aka FIDO 1.0) was tied to
hardware devices (e.g., hardware tokens, biometric scanners),
called authenticators, making them both difficult to standard-
ize and manage at a software level. In response, the World
Wide Web Consortium (W3C) working group has standard-
ized the Web Authentication protocol (WebAuthn) [28] for
allowing primary or second factor authentication via platform-
managed cryptographic credentials (FIDO2).

FIDO2 specifies challenge-response interactions between
an authenticator, client, and a web service known as the re-
lying party (RP). An authenticator is a hardware or software
component on the client side that manages the generation and
use of credentials. Credentials, consisting of a public-private
key pair, are unique to each RP, user account, and authentica-
tor. Roaming authenticators do not synchronize credentials,
requiring users to physically transfer a hardware key. Plat-
form vendors have also implemented their own authenticators
and support for syncing credentials across multiple user de-
vices, giving rise to the notion of passkeys—cryptographic
credentials that are portable and can be used instead of pass-
words. The unsynchronizable FIDO 1.0 credentials may also
be referred to as passkeys.

Challenges with FIDO2 uptake. The FIDO2 protocol in-
volves a complex ecosystem of RPs, client applications, and
authenticators, making widespread deployment of passkeys
reliant on adoption by major browsers, operating systems
(OSes), and online services. The protocol is currently sup-
ported by popular browsers (Chrome, Firefox, Edge, and Sa-
fari) and OSes (MacOS, iOS, Android, Windows) [29]. Many
services have also started deploying passkeys to end users.
Google introduced passkeys across all its accounts on major
platforms in May 2023. Although only five services supported
FIDO?2 for passwordless authentication in a 2022 analysis of
Tranco’s 100K [30], this has increased to 145 services!.
Despite such a rapid roll-out across web services, multiple
research studies have highlighted that FIDO2’s WebAuthn
and CTAP protocols are not without their flaws [10-13]. For
instance, Jubur et al. [31] discovered a timing attack that ex-
ploits push notifications. Furthermore, Kuchhal et al. [30]
identified client-side attacks enabled by uncertified authenti-
cators and lack of mitigations on the server side. FIDO?2 is
also not immune to social engineering attacks; such as down-
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grading to weaker 2FA alternatives [32], or tricking victims
into authenticating the actions of an attacker [30].

Since the release of FIDO2’s U2F specification for using
security keys for 2FA in 2017, studies have also highlighted
usability and security concerns [4-9]. Ciolino et al. [9] and
Owens et al. [4] found users faced difficulties finding and
following setup instructions for security keys, especially when
pairing keys or roaming authenticators. Account recovery
was also highlighted by participants as a significant concern,
particularly when a security key is lost or stolen [7].

Interpersonal threats. A major advantage of device-bound
credentials, such as passkeys, is that they mitigate the risk
of phishing attacks and compromise [33]. While these are
important to mitigate, a drawback of such an approach is
that device compromise grants an adversary access to all
credentials on the device. Credential security is thus reduced
to device security [3, 34]. This places additional stressors on
users who share devices or authentication information [33]
and those targeted by interpersonal threats.

Interpersonal threat models are contexts where an adver-
sary has a pre-existing social relationship with the target, and
exploits this relationship for proximity to a victim’s physical
and/or digital assets. Proximity to a victim could be physical,
such as living together or frequently being in the same loca-
tion (e.g., occupational), or logical, such as via device/account
sharing. Traditional security measures often fail to mitigate
these types of threats because adversaries employ highly tar-
geted attacks and are driven by complex, social objectives
like social control, surveillance, and intimidation [26, 35].

Such factors of interpersonal threats make device and ac-
count compromise extremely common for users targeted by
such adversaries. For instance, many at-risk users—such as
teenagers [16, 17], children [14, 15], people with visual or
mental impairments [18], and older adults [22, 23, 36]—may
appoint a trusted individual to help configure their account
security, necessitating device access. In cases involving abuse,
such as survivors of human trafficking [21] and intimate part-
ner violence [19, 37], victims may have no choice other than
to provide an adversary with access to their devices, either
through threat of coercion or social manipulation.

Auditing for abuse. A small amount of prior work has in-
troduced ways to conduct audits of systems for abuse [26,
38, 39]. Working in the context of IoT devices, Slupska et
al. [38] apply threat modeling—which is mostly used to iden-
tify technical risks inherent to systems—to instead identify
risks to people. Similarly, Bellini et al.’s work [26] introduces
a methodological approach to elicit digital-safety concerns in
consumer financial applications in the context of IPV. Their
work utilizes UI stepthroughs—an experimental investigation
into the Ul features of the technology being audited—as a
fundamental part of their approach. Our framework builds off
and generalizes Bellini et al.’s [26] auditing approach.

3 Abusability Analysis Framework

In this section, we contribute a generalized framework for
conducting abusability testing on technology products and
features, and discuss how we applied it to passkeys. Our frame-
work’s goal is to enable researchers, designers, and engineer-
ing teams to proactively identify exploitable abuse vectors—
steps a malicious user might take to enact harm against a
target—in a feature or product. Ideally, such review would
occur before new features are released, enabling design to
be revisited to add friction or fully prevent ‘abusability’ (a
portmanteau of abuse and usability) of the feature at hand.

To prepare for an abusability analysis, teams and organi-
zations should assign a main point-of-contact person (point
person) to oversee the design and delivery of such an audit. If
such an analysis is intended to be used inside an organization,
technology companies may already have assigned a point per-
son to coordinate specialized training for other types of system
abuse (i.e., spotting unusual activity or unauthorized access).
Due to its reliance on pre-existing usability methodologies, a
team may wish to seriously consider the incorporation of a
team member experienced in UX or service design. We antic-
ipate that our abusability analysis (as described below) would
also work as an extension of targeted training programs that
already address some system vulnerabilities.

Our abusability analysis framework involves a structured
sequence of six auditing steps, the output of which is a set of
tested abuse vectors, along with which ones were exploitable,
detailed exploit descriptions, and abuse scenarios that summa-
rize the potential harms arising from exploitation. We explain
each of the steps below. Throughout, we refer to the people
conducting the abusability analysis as analysts.

(1) Identify threat models. Threat model identification is
the process of defining who the adversary is in relationship to
the target, what their goals are, and what their capabilities are.
We suggest using succinct one to two sentence descriptions
for threat models when performing abusability analysis, and
avoiding jargon that may be unfamiliar to analysts or other
stakeholders. For example, a threat model we consider later is
an interpersonal attacker personally known to the victim, who
seeks to maintain the ability to log into the victim’s account
from a different device, and knows the victim’s password.
Most often, an analysis should consider multiple, related
threat models to increase coverage of potential abuse issues.
A good starting point is to consider the common qualities
of at-risk populations [24] or an area of acute risk for these
communities, such as Bellini et al.’s [26] focus on digital
financial abuse. Some teams will already be familiar with
relevant threat models for the context and can rely on their
expertise. Teams might complement existing expertise with
a rapid review [40]—a process for quickly reviewing high-
quality, authoritative resources (such as academic scholar-
ship). Teams that lack expertise could opt for more rigorous
reviews that prioritize coverage [41]. In performing such re-



# Stage Description

Output

1 Identify threat models
literature review

Determine a set of threat models, optionally aided by

Set of threat models

2 Assess functionality

Open-ended exploration of system features

User pathways; screen captures; inventory of functionality

3 Hypothesize abuse vectors

Develop set of hypothetical abuse vectors by reviewing

List of hypothesized abuse vectors

system functionality in light of threat models

4 Design stepthrough protocols

Develop set of stepthrough protocols to guide testing

List of step-by-step protocols to test abuse vectors

hypothesized abuse vectors, detection, and cleanup

5  Test abuse vectors

Conduct stepthroughs to test abuse vectors

Evaluate viability of abuse vectors; stepthrough transcripts

6 Summarize with scenarios

Distill successful abuse vectors into short scenarios

Abuse scenarios

Figure 1: A summary of our six-stage abusability analysis framework.

views, an analyst should draw out documented adversarial
goals and capabilities until saturation is reached, meaning no
new information is gleaned from published works.

In many cases, one may be able to generalize population-
specific threat models without substantively affecting the sub-
sequent steps of the analysis. For example, an interpersonal
attacker could be an intimate partner or someone else with
similar goals (family member, friend, co-worker).

Given our focus on abuse, the adversarial capabilities we
consider tend towards Ul-bound adversaries [19] that inter-
act via standard Uls with systems configured in standard
(non-adversarial) ways. We also consider reconfiguration ad-
versaries that modify software settings, including installing
readily available applications. For example, an abuser that
installs a VPN and uses built-in browser tools to modify user
agent strings in order to obfuscate account access via spoof-
ing [42] is an example of a reconfiguration adversary. Our
framework may not be as effective for threat models with
technical capabilities beyond reconfiguration or Ul-bound ad-
versaries (e.g., the ability to deploy software exploits such as
privilege escalation or remote code injection).

Stage (1) for passkeys: Our team collectively has decades of
specialized knowledge in computer security, authentication
protocols, and interpersonal abuse, encompassing contexts
such as IPV, human trafficking, and sex work. As such, we
felt comfortable relying on our existing knowledge of the lit-
erature and practical realities of tech abuse to help us identify
relevant threat models, and did not perform a rapid review.

In our considered threat models, we presume an adversary
that targets a specific individual (rather than a group) and
that adversary is within the same social circles as the target.
For example, the adversary may be an intimate partner, other
family member, co-worker, or other close acquaintance.

We consider several goals from the literature. The first is
unauthorized access where the adversary seeks to obtain one
time or ongoing privileged access to a victim’s account. The
second is denial of service where the adversary seeks to lock-
out, restrict, or disrupt a victim’s account access. Third, we
consider gaslighting, where the adversary seeks to emotion-
ally manipulate the victim into doubting their digital safety.

Our threat models also assume the adversary has either: (1)
one-time or periodic physical access to the victim’s device
and the ability to unlock it (e.g., with a PIN); and (2) the one-
time ability to login to the victim’s account from a separate
adversarial device which we call remote login. Such scenarios
have been reported by security and privacy scholars as arising
often in interpersonal abuse contexts [17-20, 43].

(2) Assess functionality. A functionality assessment is a fo-
cused survey of system behavior. In this context, the analyst
seeks to produce a full inventory of the breadth of the sys-
tem’s functions from a user’s perspective. In this phase, Ul
stepthroughs are used as a primary investigative method. This
method is grounded in the cognitive walkthrough frameworks
used to evaluate the usability of websites [44] but we adapt
this, following [25], to evaluate areas of potential abusability.
During this phase, the analyst interacts with the system
using standard UI tools and features like a regular (non-
malicious) user, documenting UI details, user journeys, and
capturing screenshots. They may also gather web traffic and
relevant source files (i.e., from web pages) to understand the
system and its behavior. This phase is considered more open-
ended exploration thus the analyst is not required to follow a
specific protocol. However, to structure the stepthrough (and
ensure consistency between like technologies) they could
identify a set of tasks representative of the system behavior.

Stage (2) for passkeys: Section 4 describes the results of
this stage in detail. Briefly, we first enumerated a variety of
services that deploy passkeys and identified a set of tasks as-
sociated with the passkey lifecycle: (a) configuring a passkey
for primary authentication; (b) logging into services with the
passkey; (c) reviewing the information visible to users about
the passkey post-setup/use; (d) exporting or transferring the
passkey to another device; and (e) disabling the passkey for
service access. We then performed UI stepthroughs for these
tasks for each service. These stepthroughs already surfaced
several functionality problems, and pointed towards some
problems in our chosen threat models.

(3) Hypothesize abuse vectors. An abuse vector refers to
the steps an attacker takes to cause harm. For example, an



Adversarial goal Capability

Abuse Vector Harm

Periodic physical access
One-time physical access
One-time remote login

Unauthorized Access

Adversarial biometrics
Passkey cloning
Adversarial passkeys

Ongoing local login
Ongoing remote login
Ongoing remote login

One-time physical access

Denial of Service . R
f One-time remote login

Local passkey deletion (device & OS level)
Remote passkey revocation (service)

Deny victim’s login
Deny victim’s login

Periodic remote login

Gaslighting Periodic physical access

Spoofing information on the service (ASIs)
Spoofing information locally (device & OS)

Mislead/harass victim
Mislead/harass victim

Figure 2: Adversarial goals and capabilities identified in Stage (1) mapped to abuse vectors hypothesized in Stage (3). Additionally,
for each abuse vector we show the resulting harm (e.g., attacker obtains ongoing unauthorized local login to victim’s account).

abuse vector could be: use a known PIN to unlock a target
phone, add an adversarial biometric to the device, and then
use that biometric to access the device later. We recommend
using clear, prescriptive language to describe these actions.

In the third stage of our framework, the analysts brainstorm
a set of hypothetical abuse vectors, each of which is consis-
tent with one of the threat models identified in the prior stage.
To do so, the analysts hold a series of meetings with rele-
vant members of expertise in computer security, and trust and
safety. During these meetings, the team can review the notes
and recordings from the functionality assessment phase in
light of the threat models to identify potential abuse vectors.

Meetings may raise questions about new system operations
and environments, prompting analysts to perform additional
functionality assessments. These continue until the team iden-
tifies no new hypothetical abuse vectors. The outcome of this
phase is a set of to-be-tested abuse vectors.

Stage (3) for passkeys: The team performed a sequence of
six meetings in which members who performed functionality
assessments presented their discoveries to the broader group,
and we did active brainstorming to identify potential abuse
vectors within our previously identified threat models (unau-
thorized access, denial of service, and gaslighting each with
physical access and remote login adversarial capabilities). We
then hypothesized how an interpersonal adversary might use
the observed passkey functionality to enact their goal. We
summarize the resulting abuse vectors in Figure 2, and clarify
the capabilities required to enact each abuse vector when we
discuss our testing results in Section 5. As we will see, each
hypothesized abuse vector was viable on at least one service.

Although the abuse vectors we discover do not cover every
possible issue, they effectively highlight key vulnerabilities
and risks related to the deployment of passkeys.

(4) Design stepthrough protocols. Stepthrough protocols
are detailed step-by-step guides for testing hypothesized abuse
vectors. A protocol provides a series of steps for an analyst to
follow that simulate both victim and adversary actions related
to an abuse vector. A good stepthrough protocol should cover
not only a way to test the viability of the abuse vector (i.e.,
carrying out the attack), but also whether the victim can detect
the abuse and, when relevant, recover back to a safe state.
As example, a protocol for the hypothesized adversarial

biometric abuse vector could be: (V) setup a simulated victim
device with PIN; (A) unlock the device with known PIN; (A)
add a new biometric to unlock the device; (A) lock the de-
vice; (A) unlock the device with biometric; (V) check device
settings to see if a biometric is added; (V) attempt to remove
the added biometric. Here the parenthetical letters indicate
whether the victim (V) or adversary (A) are being simulated.

As in this example, stepthroughs will tend to be semi-
structured thus allowing the analyst some flexibility in the
exact sequence of Ul steps and navigation paths required
to implement each step. A stepthrough protocol should also
come with description of expected testing environments, i.e.,
the type and number of devices, the OS and application soft-
ware used. In short, the stepthrough protocol should provide
an experimentation plan that an analyst can easily follow.

In general, an individual stepthrough protocol might be
used to test multiple abuse vectors, and the next stage bene-
fits from identifying the smallest feasible set of stepthrough
protocols that cover all the hypothesized abuse vectors.

Stage (4) for passkeys: We developed five stepthrough proto-
cols corresponding to the first five abuse vectors in Figure 2.
Stepthrough protocols for passkey cloning and adversarial
passkeys were also used to test the gaslighting vectors (see
Figure 5). Each protocol consists of a set of tasks simulating
victim and adversarial actions to carry out the attack. We also
provide a summary of the stepthrough protocols for two of our
abuse vectors in Figure 8. A stepthrough protocol covers the
realization of the abuse vector, the detectability of the attack
(i.e., can the victim detect the attack through system provided
UI affordances), and the recoverability of the attack (i.e., can
the victim recover from the attack and prevent adversarial
access through system provided UI features).

(5) Test abuse vectors. In this phase, an analyst conducts
stepthrough protocols to test the hypothesized abuse vectors.
For each stepthrough protocol, the analyst: (1) prepares the
stepthrough testing environment; (2) determines and docu-
ments the precise Ul paths the analyst follows; and (3) con-
cludes whether the abuse vector succeeded, along with the
extent to which the victim can detect and recover from it.
Teams should consider whether they should perform each
stepthrough protocol multiple times. For example, if deter-
mining the precise UI steps is sensitive to analyst back-



Scenario A: Alex and Billy have been dating.
Billy saw that Alex uses TikTok, logging in just
using the device’s pin (i.e., a passkey). Billy con-
vinces Alex to share the 6-digit pin to their phone.
When Alex is in the bathroom, Billy unlocks
Alex’s device and exports the TikTok passkey to
Billy’s iPhone using AirDrop. Billy logs into
Alex’s account using the exported passkey. Billy
is now able to monitor Alex’s TikTok messages
and interactions. When Alex becomes suspicious
due to comments Billy made, Alex resets their
password and sets up a new passkey. Unbe-
knownst to Alex, this doesn’t work: Billy still
has remote, covert access to the account.

Scenario B: Andy and Mark are coworkers.
Andy uses Yahoo Mail for personal use and has
a passkey registered on a Yubico security key.
Mark is interested in learning whether Andy
landed a job with another company. He sees that
whenever Andy logs into his Yahoo mail, he in-
serts the security key and taps the sensor on the
key. One day, Andy leaves his computer unlocked
with the security key inserted. Mark accesses
the computer, navigates to Yahoo, and attempts
to login using the browser autofill feature that
populates user information. Mark re-inserts the
security key and taps the sensor on the key. He
can now access Andy’s Yahoo mail account.

Scenario C: Mona and Adam are teenagers who
attend the same school. They are active users on
Roblox. Mona has gone viral with hundreds of
people playing games she created. Adam’s jeal-
ousy leads him to shoulder surf to learn Mona’s
Roblox password. He uses it to log into Mona’s
Roblox account from his computer; revokes all
her passkeys on the account, and then resets the
password. Mona was locked out of her account
and could not find any way to recover it.

Figure 3: Vignettes describing plausible abuse scenarios that result from our analysis, and that correspond to a subset of the
transcripts generated in Stage 5. Scenario A and B describe how an interpersonal attacker obtains unauthorized access due to
passkey cloning and improper user verification respectively. Scenario C describes a peer locking a victim out of their account.

ground, then having multiple analysts independently run the
stepthrough protocol could be warranted. Or if the studied
systems exhibit non-deterministic behavior in response to
user actions (e.g., due to bugs), then an analyst may need to
execute a protocol multiple times. Also, it will often be the
case that one will want to execute stepthrough protocols for
different environments (e.g., client software configurations).

At the end of this stage, the analyst team should determine
which hypothesized abuse vectors are viable, and have a de-
tailed transcript of the steps taken during the stepthrough
protocol. The latter is analogous to a proof-of-concept exploit
in software security, and will help in reproducing the abuse
vector, e.g., during disclosure processes. Relatedly, the tran-
script will also be useful to relevant product teams to help
them understand the design features implicated in the abuse.

Stage (5) for passkeys: Two authors executed all five
stepthrough protocols for each of the 15 services. They used
test accounts with synthetic user information and dedicated
email addresses and phone numbers for research purposes
only. Each protocol required testing with multiple client-side
environments (MacOS, 10S, Android, and Windows). In total,
we performed 87 stepthroughs. We discuss the experimental
setups and stepthrough results in Section 5.

(6) Summarize with scenarios. The final step is to craft
abuse scenarios, which contextualize an abuse vector’s harms.
The scenarios should concretize via example one or more
abuse vectors. We suggest a distilled scenario that consists
of a concise, high-level narrative overview of the sequence
of events leading to harm. These scenarios serve the purpose
of documenting identified abuse vectors in a contextualized
way and also communicating them in an easy-to-understand
way to to relevant stakeholders, including product managers,
executives, engineers, lawyers, and others who may have the
power to develop and deploy abuse mitigation [26].

Stage (6) for passkeys. We provide vignettes for plausible
abuse scenarios in Figure 3.

4 Passkey Functionality

In this section we describe our passkey functionality assess-
ment in greater detail. We assess functionality across six dif-
ferent services, covering a range of company types: technol-
ogy companies (Google, Amazon, Paypal), retailers (CVS,
Target), a domain registrar (Porkbun). Although not com-
prehensive, these services were selected as an ample cross-
section of major services that support passkeys.

Our functionality assessment stepthroughs were con-
ducted between Feb.—Apr. 2024 using a MacBook Pro
(MacOS Sonoma v.14.5) using the Chrome browser
(v.124.0.6367.118/.119) and the default authenticator pro-
vided by Apple (Touch ID) to store passkeys. We used Sa-
fari (v.17.6, 19618.3.11.11.5) for two services (CVS, Paypal)
where passkey registration was not supported by Chrome.

(a) Configuring a passkey. We identify two primary path-
ways to configuring a passkey: during initial sign-up or config-
uration following login. The latter may require, or not, passing
an additional authentication challenge.

Google, Amazon, Paypal, CVS, and Target require
password-based authentication during account creation prior
to creating a passkey. To set up a passkey, users must first
authenticate with non-passkey credentials, navigate to the
account settings and security pages—called account security
interfaces (ASIs) [42]—and configure the passkey on this
interface. In our testing, Target and CVS did not require
re-authentication through an additional challenge (e.g., via
one-time password, or OTP) prior to creating the passkey,
whereas the other services required passing the extra check.

Porkbun is the only service we identified that allows
passkey-only authentication immediately at account creation.
We identify that common errors (e.g., an improperly formatted
field) introduced during sign up form submission can gener-
ate extraneous, unusable passkeys for the same username and
email, despite unsuccessful registration.

CVS enables passkey creation following password authen-
tication on the account. Once a user enters their password
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Figure 4: Left to right, Screenshots of (left) Google’s and (right) Target’s ASIs for passkey management.

and it is verified they are presented with a prompt to enroll
in passwordless authentication. However, during this initial
passkey registration, the FIDO2 service-selected credential
identifier [45] associated with the passkey is stored in the
browser’s local storage. This stored value is required during
subsequent authentications so clearing local storage disables
the CVS passkey, even though it remains available in the au-
thenticator. Our testing also revealed that delays or switching
windows can result in registration failure, with the browser
displaying a generic “request timed out” error (see Figure 10).

All services, except Porkbun, support multiple passkeys per
account, if they are associated with different cloud providers.
We identify that Google, Paypal, Target, and Amazon consis-
tently send an email notification each time a passkey creden-
tial is added, while Porkbun and CVS do not.

(b) Authentication with passkeys. We identify that passkeys
can serve as primary authentication on all six services. Typi-
cally, the login process begins with a username and/or email
address submission to the service. We observed varying flows:
some prompt the user for their email address or username,
followed by biometric authentication, granting access to the
account. Other setups may require tapping a pressure sensor,
entering a PIN, or no additional action if verification is absent.

Following the inspection of WebAuthn message transcripts,
we found that PayPal and Porkbun leak passkey credentials
associated with a user account to clients before authenti-
cation. On the login page, submitting the username and
email in an HTTP POST request triggers the service to
send a response message containing a WebAuthn field la-
beled allowCredentials [46], listing a set of credential identi-
fiers linked to the account. For PayPal, this list also includes
device descriptions (model, OS, and browser). The WebAuthn
specification identifies this as a privacy issue and suggests
countermeasures to limit such leakage [28].

(c) Passkey information visible to users. A key complex-
ity of passkeys, unlike other authentication protocols like
passwords, is that credential management is split among the
service, client-side software, and passkey provider. Our as-
sessments highlight the importance of ASIs to enable passkey
management for users. Two example ASIs appear in Fig-
ure 4. We identify that ASIs provided by the service (service

ASIs), and ASIs offered by the client (client ASIs) are both
relevant for passkey management. We refer to both OS-level
and browser-level ASIs as client ASIs. See Figure 10 in the
Appendix for examples.

(c.1) Service ASIs. Google, Amazon, PayPal, and Target of-
fer service ASIs (Figure 4) that allow users to manage their
passkeys. Users can view previously registered passkeys and
configure new ones. However, these ASIs vary in the infor-
mation provided to users. Many services have dedicated ASIs
for passkeys and other ASIs for listing devices with account
access or session lists. These other ASIs tend to have more
granular information about access. None of the six services in
our study clearly link passkeys to specific devices or sessions.

Our analysis found inconsistencies in how passkeys are rep-
resented in ASIs. Target labels all passkeys as “Chrome 126
on Macintosh” or “Chrome 126 on” regardless of the passkey
provider (see Figure 4). Furthermore, our experiments also
revealed that Amazon’s ASI labels security keys as “Other”.

Motivated by the lack of clear language on such important
tools to users, we also conducted experiments to examine if
such ASIs might be reconfigured, such as via spoofing. Many
passkey entries could be manipulated by very basic attacks
including changing the user agent (UA) string (c.f., [42])
to alter the browser or OS model displayed, using a virtual
private network (VPN) to appear in a different location, and
the ability to modify a given passkey label.

(c.2) Client ASIs. Passkeys are also managed by the client de-
vice, which we examined using macOS (Sonoma v.14.5). The
relevant ASI is located in the settings app under Passwords re-
flecting an effort by designers to treat passwords and passkeys
similarly. Accessing this ASI requires re-authentication via
biometric or local device password.

The MacOS-based ASI lists passkeys managed by the
platform authenticator, alongside options including Security
Recommendations, Password Options, and Shared Groups.
We identified that clicking on a passkey entry reveals ser-
vice URL, account username, passkey last modification date,
passkey creation date, and a field allowing a password to be
stored for that service. Users can edit the passkey account
username and delete the passkey. Finally, there is an export
option (AirDrop) to copy passkeys to other Apple devices.



Task Adversarial Biometrics

Passkey Cloning

Adpversarial Passkeys

Precondition (1-V) Set up online account

(2-V) Set up passkey on account

(3-A) Unlock victim’s device
(4-A) Add adversarial biometric

Set up access

Unauthorized access  (5-A) Local login to victim’s account
(6-A) Use adversarial biometric to authenticate

Evidence of access (7-V) Check service ASIs for adversarial access

(1-V) Set up online account
(2-V) Set up passkey on account

(3-A) Unlock victim’s device
(4-A) Reconfigure to spoof passkey label

(5-A) Clone passkey to adversarial device

(6-A) Remote login to victim’s account
(7-A) Use cloned passkey to authenticate

(8-V) Check service ASIs for adversarial access

(1-V) Set up online account

(2-A) Reconfigure to spoof user agent
(3-A) Log in to victim’s account
(4-A) Register new passkey on account & logout

(5-A) Remote login to victim’s account
(6-A) Use adversarial passkey to authenticate

(7-V) Check service ASIs for adversarial access

(8-V) Check device ASIs for biometric manipulation  (9-V) Check device ASIs for passkey manipulation  (8-V) Check service ASIs for gaslighting

Revoke access (9-V) Prevent access through biometrics

Check access (10-A) Login to victim account on service

(11-A) Use adversarial biometric to authenticate

(10-V) Revoke cloned passkey

(11-A) Remote login to victim account on service
(12-A) Use cloned passkey to authenticate

(9-V) Revoke adversarial passkey
(10-V) Reset password and invalidate sessions

(11-A) Remote login to victim’s account on service
(12-A) Use adversarial passkey to authenticate

Figure 5: Stepthrough protocols for testing unauthorized access for the adversarial biometrics, passkey cloning, and adversarial
passkeys abuse vectors. For each step we indicate whether it is simulating a victim (e.g., 1-V) or abuser (e.g., 1-A) action. The
latter two protocols also test the two gaslighting abuse vectors (via steps 4-A, 9-V and 2-A, 8-V, respectively).

(d) Passkey export and sharing. We tested Apple’s ex-
port functionality by copying passkeys to another device (an
iPhone 11 running iOS 17.5.1) and attempted to login with
these passkeys. Our attempts were successful for five ser-
vices (Google, Amazon, Paypal, Target, and Porkbun). The
CVS passkey implementation, as mentioned earlier, relies on
credential identifiers stored in the browser, so copying the
credential to another device alone is insufficient” to authen-
ticate. In addition to manual export, Apple iCloud keychain
automatically syncs passkeys across Apple devices logged
into the same iCloud account. We were unable to sync or
share Apple passkeys with other non-Apple devices.

(e) Passkey revocation and deletion. Passkey management
is divided between the client and service, offering two meth-
ods to prevent login via a passkey. Deletion involves removing
the passkey secret from client storage using a client ASI. Re-
vocation uses a service ASI to remove a registered passkey
public key, so it can no longer verify a WebAuthn challenge.
Across all six services, once all passkey copies are deleted,
passkey authentication no longer works (as expected). The ser-
vices still list the passkey(s) as registered (they have not been
revoked). Google, Amazon, Paypal, and Target all support
revoking individual passkeys. However, only Google sends
consistent email notifications upon revocation. While Paypal
sends notifications, it only does so if the device is deemed
‘untrusted’, yet what consitutes a trusted device is unclear.
Revoking a passkey on Google and Target does not immedi-
ately terminate active sessions authenticated by that passkey;
detailed analysis of the time it takes to terminate the session
upon revocation is shown in Figure 7. Amazon warns users
that revoking a passkey does not delete it on clients, advising
them to manually delete it from their cloud service account.
Neither CVS nor Porkbun provides service ASIs support-
ing revocation, meaning there is no way for users to revoke
passkeys. Porkbun does offer a passkey toggle button in the

2Copying the browser state does enable use of the copied passkey.

Account Security ASI for enabling or disabling passkey use.
However, disabling this toggle does not revoke a previously
registered passkey, and, the passkey remains usable for au-
thentication despite passkeys being “disabled”.

Whether FIDO2 should ensure server/client consistency
with revocation and deletion linked remains an open question.
Currently, services are not notified of deletion, and clients are
not informed about revocation. We suspect this will confuse
users, for example one might erroneously believe deleting one
copy of a passkey suffices to secure an account.

5 Testing Abuse Vectors

Our threat models and functionality assessment enabled us
to develop a set of hypothesized abuse vectors (see Fig-
ure 2 in Section 3). Then we developed a detailed set of five
stepthrough protocols that test all the abuse vectors. Figure 5
details three stepthrough protocols for unauthorized access;
these also test the two gaslighting abuse vectors. Figure 8 in
Appendix C details the two other protocols.

For our stepthroughs we use four client-side platforms
(108, MacOS, Android, Windows) and considered 15 passkey-
supporting services (Adobe, Amazon, Apple, Ebay, Github,
Google, Intuit, LinkedIn, Microsoft, Roblox, Samsung, Tik-
Tok, Twitter, WhatsApp, Yahoo) from the top 200 Tranco
list [47]. We focused on web versions of services, but for
TikTok, Twitter, and WhatsApp we used the iOS apps.

We could not perform our stepthroughs for Apple, What-
SApp, and Yahoo. Apple supports passkeys, but only provi-
sions them automatically; users cannot manually generate
passkeys. WhatsApp allowed passkey creation but not au-
thentication, while Yahoo only presented a passkey configu-
ration option sporadically. Thus we performed one or more
stepthroughs on each of twelve services.

Appendices A and B provide more details about service
selection and experimental setups.



5.1 Adversarial Biometrics

In interpersonal threat models, attackers can gain access to
victim devices through physical proximity and shared creden-
tials [19, 23, 26, 48]. Our first abuse vector capitalizes on this,
with an attacker adding their biometrics to a device to provide
persistent access even if the device password changes—an
adversarial method also documented in prior research [26].
In our context, an adversarial biometric also grants ongoing
access to all passkey-protected accounts on the device. The
simplicity of this attack contrasts sharply with the difficulty
of remediating it, which typically involves deleting and re-
registering all biometrics. Sometimes, this is made worse by
a lack of any ASIs to help identify malicious access. For each
client, we registered passkeys on services that have passkey
support for the given client configuration. After registering,
we logged out of each of these services. We then added an
adversarial fingerprint to the unlocked device, and attempted
to log into the services. See Figure 5 detailed protocol steps.

Executing the stepthrough protocol. We ran our adversarial
biometric protocol for 10 services and three client configura-
tions: MacOS, Windows, and Android. Two services, TikTok
and Twitter only support passkeys on iOS, so we skip them
here. This meant we performed a total of 30 stepthroughs to
test the adversarial biometric abuse vector.

Adding an adversarial biometric. On MacOS, an attacker
adds their fingerprint using the device’s settings app. On An-
droid, biometrics are configured under Pixel Imprint in An-
droid’s Security settings. On Windows, biometrics are added
on the sign-in options page in the settings app, under “Fin-
gerprint recognition (Windows Hello)”. All three platforms
require an adversary to input the victim’s device credentials
to add a new biometric.

All of these OSes limit the number of biometric configu-
rations (e.g., fingerprints) on a single device or on a single
account on the device. MacOS allows a maximum of three fin-
gerprints per account, Android allows up to five fingerprints
on the device, and on Windows we were able to configure six
fingerprints® on a single device account. In our stepthroughs,
the victim did not have more than one biometric setup, so
this step always succeeded, but if the victim has reached the
maximum biometrics capacity, then the attacker would have
to replace one, possibly hindering covertness.

Unlocking with adversarial biometrics. Adding adversarial
biometrics succeeded for all services, demonstrating that any
registered biometric suffices to unlock any passkey. By de-
sign, FIDO2 does not support binding passkey operations to
specific user biometrics. This means that the user biomet-
rically authenticating with a passkey is not verified as the
user that registered it. In theory, systems could somehow bind

3We did not confirm a maximum, though online sources suggest it varies
based on hardware model.

FIDO?2 credentials to specific biometrics, but this may ham-
per usability (e.g., one could not use any of their fingerprints
to perform user verification). We conjecture that users may
be confused by these subtleties, assuming that using their
fingerprint ensures that only they can perform service logins.

Detecting adversarial access and manipulation. We find that
detecting adversarial biometrics is difficult or impossible us-
ing available ASIs (if any). On both MacOS and Android,
fingerprints are labelled and enumerated as “Finger 1, “Fin-
ger 27, etc. On Windows 10, the UI does not show any infor-
mation about the number or nature of registered fingerprints.
Additionally, none of the OSes inform users of any changes
to their biometric configurations through notifications.

For most services, adversarial accesses are only distinguish-
able from victim accesses by the day and time a passkey
was used. Figure 6 lists the service ASIs that we discov-
ered through our stepthrough protocols. For completeness, we
also list services explored via our functionality assessments.
We indicate which information attributes are available on
each interface to help users understand access, and whether
they are fully controllable by reconfiguration (i.e., spoofable).
Most information attributes (browser, OS, time, etc.) and their
spoofability were also considered in prior work [42].

Passkey labels are newly considered by our work here:
these are short text descriptions of individual passkeys listed
on a service ASI. The nature of these labels vary widely,
sometimes seeming to indicate the passkey storage location
(e.g., iCloud keychain, Google Account), sometimes labels are
generic names assigned by the service (e.g., “Passkey 1), and
in some cases are directly user-editable on the ASI interface
(making spoofing trivial).

We conjecture that users will find it exceedingly difficult to
use service ASIs to distinguish adversarial accesses from their
own (which, after all, are from the same device), particularly
in the presence of spoofing.

Preventing ongoing adversarial access. To prevent ongoing
access, the analyst attempted to remove the adversarial bio-
metric. On MacOS and Android, the interface for removing a
biometric is the same as for configuration. Given the lack of
visual indicators observed when detecting adversarial access,
users must remove all biometrics on the device and re-register
legitimate ones. On Windows, deletion of individual finger-
prints is not supported. In order to recover from a configured
adversarial biometric, the victim would have to first deactivate
the use of biometric authentication at “Remove this sign-in
option” in the device account settings. This removes all reg-
istered biometrics. They would then either reactivate it and
configure a new fingerprint, or just deactivate it entirely and
rely on pin verification.

None of the above guarantees that access to accounts is
revoked, as the attacker could have used the access from this
attack to setup other forms of remote access. Thus, the user
may need to go through securing all of their accounts as well.
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Figure 6: Summary of services considered in this paper. Bold-
faced services are the 12 for which we performed one or more
stepthrough protocol tests. We list individual ASIs and the in-
formation attributes that are non-spoofable (@), spoofable (O),
or not displayed (blank). A “x” indicates an email notification
and T denotes a native iOS app UI; all others are web Uls.

5.2 Passkey Cloning

Passkey cloning involves an attacker using temporary access
to a victim’s device to copy a passkey registered with a service.
The attacker can then use the cloned passkey on a different
device, upgrading one-time access to an unlocked device to
ongoing remote login to the victim’s account.

There are two ways to clone a passkey, both of which ex-
ploit credential portability functionality. An attacker can either
export the passkey (i0S, MacOS) or use a synchronization
service to have it added to their device (iCloud Keychain,
Apple Password Groups, Google Password Manager).

The victim device is first set up with a registered passkey
on services. Then, the analyst attempts to reconfigure client
ASIs to spoof passkey labels before cloning each passkey
from the victim’s device to an adversarial device. We then
checked each client ASI for evidence of the spoofing and
cloning. Using the adversarial device, we then attempted to
log into each web service using the cloned passkeys, before
examining the service ASIs for evidence of adversarial access.
Finally, we tried to revoke any passkeys that were successfully
cloned. The detailed protocols steps appear in Figure 5.

Executing the stepthrough protocol. We ran our passkey
cloning stepthrough protocol for all 12 services in the Apple
ecosystem and for nine services in the Google ecosystem
(Google sign-in is required for sync, and TikTok and Twitter
only offer passkey support in i0OS). We used multiple client
configurations for cloning as described in Appendix B. Over-
all, we performed 21 stepthroughs to test passkey cloning. We
present our results for the Apple ecosystem here; the Google
ecosystem results appear in Appendix D.

Cloning in the Apple ecosystem. In the Apple setup the ana-
lyst discovered three distinct routes for passkey cloning.

The first is AirDrop export on MacOS and iOS [49]. To
export via AirDrop, the abuser and victim must be in each oth-
ers’ trusted contacts list and AirDrop must be enabled on both
devices. The attacker can add themselves to the contacts list
on the victim’s unlocked device without any re-authentication.
Then, the attacker (while on the victim device) navigates to
the passkey ASI on the Passwords panel in the Settings app.
Opening this ASI requires the attacker to re-authenticate. Af-
ter this, the attacker expands on the entry for the passkey to
be exported and edits the passkey to spoof the username. Fol-
lowing this, they click the export icon on this same passkey
(which again asks for re-authentication). At this stage, the
attacker is presented with an AirDrop dialogue to export their
desired passkey to the adversarial device. Once export is com-
pleted the passkey ASI on the victim device displayed a sen-
tence in very small font, saying “last shared with AirDrop
[Date_of _Sharing]”.

The second cloning route leverages Apple’s shared pass-
word groups feature [50]. This is enabled whenever Apple’s
Passwords and Keychain are synced using iCloud in the Apple



ID settings window; this is the default setting assuming the
victim is using iCloud. The attacker proceeds by first creating
a new shared password group on the adversarial device and
adds the victim’s Apple ID account to that group. Then, they
use temporary physical access to the victim’s device to accept
the invite. Finally, they add the victim’s passkeys to the shared
group. After this, a group icon is visible on each passkey’s
entry in the passkey client ASI.

The third cloning route is via logging into Apple iCloud on
the adversarial device, given the attacker knows the victim’s
iCloud credentials. Signing into iCloud then sends 2FA chal-
lenges to the victim device, but we assume the attacker has
access to this already. When the attacker logs into the victim’s
iCloud account, the adversarial device will automatically sync
by copying all of the victim’s passkeys locally. Once that is
complete, the attacker can log out of iCloud—a local copy
of the victim’s credentials remains on the adversarial device
if they choose “Keep a copy of Keychain data on this device”
on the iCloud sign out prompt (Figure 9 in Appendix C).

Authenticating using cloned passkeys. All three passkey
cloning mechanisms allowed analysts to log into the twelve
services that had functioning passkey implementations.
Cloning via AirDrop sometimes failed, however analysts were
able to authenticate when the export was successful.

Detecting authentication via cloned passkeys. Unlike the
adversarial biometric abuse vector, in which the same de-
vice is used to access the account, here a distinct device is
used. Evidence of access via passkey cloning varies based on
service-provided ASIs and notifications. On Amazon, Ebay,
TikTok, and Twitter there are no visible differences on any of
the ASIs indicating that an adversarial login via the cloned
passkey took place. For Adobe, Intuit, LinkedIn, Roblox, and
Samsung, we find that cloning is possibly detectable as the
victim can infer unrecognized logins on non-passkey ASIs,
but these do not include information that allows identifying
the time of login or (non-spoofable) device details (Figure 6).

On Github, Google, and Microsoft we find that passkey
cloning is plausibly detectable as the three services include a
“Last used” indicator on their Security, Passkeys and security
keys, Password and authentication ASls, respectively, as per
Figure 6. This indicator is included for each passkey entry
indicating when the passkey was last used for sign-in, so a vic-
tim could potentially spot an unexplained access time. Google
additionally includes the device and location information of
last use. Of course, prior work [42] has explored how tricky
these ASIs are to confirm adversarial access, and we expect
many users will have difficulty doing so.

Detecting passkey cloning. Detecting cloning via client ASIs
can be difficult—each route for performing passkey cloning
gives rise to distinct types of warnings. A victim can in theory
detect cloning via: the previously mentioned last shared text
displayed after AirDrop; the new presence of group icon dis-
played on a passkey after being added to a shared passwords

group; a warning that displays to a victim that a credential
was previously shared to a password group (Figure 9 in Ap-
pendix C); and iCloud sign-in notifications sent to the victim’s
device. We note that for AirDrop, the textual description will
show even if the export fails. We surmise that many users fac-
ing interpersonal abuse may not understand the importance
of these indicators. Additionally, it is impossible to detect the
reconfiguration of passkey labels on Apple’s Passwords ASI.

If an attacker enrolls their own device in the victim’s
iCloud account then signs out, they can retain a previously-
synchronized copy of the victim’s passkeys without any notice
on the victim’s device beyond the initial enrollment. If the
attacker does not sign out, then their device appears in a de-
vice list enumerating trusted devices on the victim’s iCloud
account, but no additional indicators describe which devices
have a copy of the passkeys and which do not.

Revoking cloned passkeys. For passkeys cloned via export,
deleting a passkey on the victim device does not disable the
copy on the adversarial device from working to log into a
service. Similarly, for passkeys cloned via iCloud synchro-
nization, there is no way for the victim to delete those copies
even if they log out the adversarial device. In these cases, the
user must instead revoke the passkey at the service.

Figure 7 lists relevant service ASI management features
for 17 of the services. (Apple and CVS do not have passkey
service ASIs.) An entry in the re-authentication column in-
dicates that during testing the analyst had to re-authenticate
somehow to access the interface or to create a passkey. The
second column indicates whether changing a password au-
tomatically revokes registered passkeys in our testing—only
Ebay does so and in fact that is, unintuitively, the only way
to revoke a cloned passkey. Password change flows did not
include reminders suggesting a user revoke passkeys.

Only four services included options to disable use of
passkeys on the account, whereas most services allow revok-
ing individual passkeys. Doing so most often did not imme-
diately prevent ongoing adversarial access, i.e., the passkey-
authenticated session on the adversary’s device could still
access the account. We performed additional tests to check
if a passkey-authenticated session on the adversary’s device
was invalidated by 5, 15, 30, or 60 minutes after revoking
the passkey. The results are shown in the fourth column of
Figure 7. For several services (Adobe, Github, LinkedIn, Sam-
sung) sessions remained valid even an hour later (denoted by
‘>60")—we do not know when these sessions are ended. For
comparison, we repeated this experiment but instead start-
ing with a password change—the results in many cases are
different with invalidation happening faster. Note that we
only performed these tests twice per service; the exact tim-
ing/behavior might fluctuate for a variety of reasons.

We are unsure what explains this inconsistency in session
management, but view it as a potential vulnerability. Com-
bined with lack of re-authentication (Adobe, Github, Intuit,
Microsoft, Roblox, Target), an adversary might be able to
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Figure 7: Available ASI management options on 17 services
(Apple and CVS do not have service ASIs for passkeys).
Numbers indicate the maximum amount of time (in minutes)
for which sessions authenticated by passkey (resp. password)
remain valid following passkey (password) revocation. We
could not test functionality marked with a dash () due to
service limitations.

recover access by changing security configurations within the
time period their session remains active. A victim may know
to use features for explicitly ending sessions, but these were
not available on Ebay, Intuit, Microsoft, Samsung.

We could not determine any way to prevent ongoing access
with a cloned passkey on TikTok. While we didn’t perform
stepthrough tests for CVS and Porkbun, the same situation
seems true based on our functionality assessment.

For cloning via Apple’s shared passwords group feature,
the account that adds a credential to the group is the only
one authorized to remove it. In our stepthrough, this account
is the victim’s, and they can thus remove the passkey from
the group—the adversarial device loses access to the passkey.
If instead an abuser compels the victim to initially setup a
passkey for a service on a device logged in using the abuser’s
Apple ID, and then shares that passkey to the victim’s Ap-
ple ID, there would be no way for the victim to delete the
attacker’s copy of the passkey using the feature. The victim
would instead have to use service ASIs to revoke the passkey.

5.3 Adversarial Passkeys

Next, we examine adding an attacker’s passkey to a victim’s
account, referred to as an adversarial passkey.

In our stepthrough, we first reconfigure the adversary’s
client to spoof ASI entries, then log into each victim account
from the adversarial device, and then register a new passkey
as the primary authentication mechanism. Then, we check
the victim’s device for indicators (e.g., notifications) of any
adversarial access or passkeys. Next, we would log onto each
web service from the adversarial device using the adversarial
passkeys. We then attempt to secure each victim account
by changing the password, revoking adversarial passkeys,
or disabling passkey support. The stepthrough protocol is
summarized in Figure 5).

Executing the stepthrough protocol. We ran our adversarial
passkey protocol for all 12 services. We performed a single
stepthrough for each service. Details about the client setup
appear in Appendix A.

Registering adversarial passkeys. We find that adding a re-
mote adversarial passkey is successful on Adobe, Amazon,
Github, Google, Ebay, Intuit, LinkedIn, Microsoft, Roblox,
and Samsung. For two services (TikTok, Twitter) only a sin-
gle active passkey is permitted on the account, foiling the
attacker” if the victim already registered a passkey.

On Adobe, Ebay, Github, Intuit, Microsoft, and Roblox
adding a passkey when logged in does not require any re-
authentication (Figure 7). Others require varying levels of
re-authentication before passkey registration: Amazon sends
users a one-time-password (OTP) to their email, Google re-
quires re-entering the victim’s password, and LinkedIn re-
quires both entering the victim’s password and a OTP to
email. This adds friction for the attacker since they would
need to be able to pass these challenges.

The analyst also realized that a variant of the attack works
with one-time access to the victim’s unlocked device and
assuming an active session on the target service. The attacker
again performs a passkey registration on the victim’s account,
but instead of using the local platform authenticator, chooses
to store the passkey on a roaming authenticator such as a
security key, or the attacker’s mobile phone (often possible by
just scanning a QR code during passkey registration c.f., [51]).

Detecting adversarial access. Adding a passkey to the vic-
tim’s account triggers an email notification for Amazon,
Github, Google, Intuit, Microsoft, and Roblox. Besides Ebay—
which does not have a passkey ASI—the new passkey is listed

on service passkey ASIs for all services for which the attack

succeeded (Figure 6). Determining which are the adversarial

passkeys is more difficult due to spoofing.

Authenticating with adversarial passkeys. Login with the
adversarial passkey worked as expected for all of the services

4One could revoke the victim’s passkey, but this bars login with it,
making it less useful for ongoing, covert monitoring.



(beyond those that only supported a single passkey). The
victim visibility into accesses via service ASISs is the same as
in the cloned passkey case.

Revoking adversarial passkeys. Passkey revocation works
for all ten services for which the attack succeeds, albeit us-
ing different mechanisms (Ebay via password reset; the rest
via service ASIs). Only Amazon invalidates the passkey-
authenticated adversarial session immediately (within 5 min-
utes) upon revocation; as described before other services take
much longer to terminate adversarial sessions. This is prob-
lematic as the abuser can possibly use the still active session to
set up another adversarial passkey, or perform a fuller account
takeover (revoke legitimate passkeys, reset the password, etc.).

5.4 Passkey Deletion

The passkey deletion abuse vector has an abuser leverage
physical access to a victim’s device to delete stored passkey
credentials, thereby denying a victim access to their accounts
via them. A detailed stepthrough protocol for deletion is
shown in Figure 8 in the appendix.

Executing the stepthrough protocol. We ran the protocol
for all 12 services in the Apple ecosystem and nine services
in the Google ecosystem using a single client configuration
(MacOS). This meant we performed a total of 21 stepthroughs
to test the passkey deletion abuse vector. We discuss the
results for the Google ecosystem in Appendix D.

Results. The analyst found that for passkeys stored in Apple’s
iCloud Keychain, local deletion can be done using the Pass-
words ASI within the settings app. The adversary may have to
re-authenticate to the device to access this ASI. They can then
expand on each credential listed on the ASI to take actions
including deleting it. Upon doing so, the passkey is moved
to the Recently deleted folder on the same Passwords ASI.
This prevents the passkey from use; the adversary can delete
it from the Recently deleted folder to render it unrecoverable.

Next, the analyst logged into each of the twelve services
on the same device to simulate a victim logging into their
accounts. For all services, authentication was denied using the
(now deleted) passkey, as expected. Most services in our client
configuration show a QR code to the user when requesting
to log in via passkey (i.e., it does not detect a passkey on the
device and instead offers the user the option to use a passkey
from another device).

Users are not informed via any platform or email notifica-
tions about the credential deletion, but in theory could dis-
cover it by seeing fewer-than-expected passkeys on a client
ASI list or because login fails. For all services studied, a pass-
word is required on the account before setting up passkeys, so
absent further adversarial actions, a victim can recover from
the denial of service by logging in via password and creating
a new passkey to replace the deleted one.

5.5 Passkey Revocation

The passkey revocation abuse vector has an attacker lever-
aging remote access to a victim’s service account (e.g., by
learning the password) to deny the victim access via passkeys.
The attacker strictly relies on service ASIs to perform the
revocation; a detailed stepthrough protocol is available in
Figure 8 in the appendix.

Executing the stepthrough protocol. We ran our protocol
once for each of 12 services using MacOS and iOS devices
to simulate the victim and abuser, respectively.

Results. Adversarial passkey revocation succeeded for eleven
services (see Figure 6). For Ebay the only way to successfully
revoke is through password reset. TikTok does not have any
ASIs that enable revocation.

On all services, login via a revoked credential fails. Further,
we find that none of the services provide an in-app notifica-
tion for passkey revocation, and only five out of the eleven
services inform users about passkey revocation through email
notifications. The design of these notifications varies across
services. Information attributes on these notifications and
their vulnerability to reconfiguration are shown in Figure 6.

For services that lack email notifications, a victim would
have to refer to non-passkey ASIs on the service to find infor-
mation about logins and account activity (e.g., session logs,
which were available on all eleven services).

5.6 Gaslighting

The spoofability [42] of service ASIs can enable abusers to
gaslight their victims—emotional manipulation or harm en-
abled by reconfiguring information on security-relevant ASIs.
The abuser might do this to mislead the victim into believing
that they have control over their credentials or accounts. We
tested gaslighting via our stepthrough protocols for passkey
cloning and adversarial passkeys (Figure 5).

Results. Gaslighting can be achieved when the adversary con-
trols information shown to the victim in security-relevant
ASIs. The analyst was able to do so for service ASIs by recon-
figuring the client device to: (1) modify the HTTP user agent
string (which affects device model, browser, or operating sys-
tem on service ASIs); (2) by using a VPN (to change location
shown on service ASIs); and (3) by changing passkey labels
in client ASIs that end up displayed on service ASIs. Figure 6
summarizes spoofability of service ASIs.

As for client ASIs, on MacOS and iOS, for the Passwords
ASI each passkey entry has a username associated with it; this
is set by the service initially, but a user with local device access
can change it. Google’s password manager similarly allows
editing of the username associated with passkeys. Changing a
username does not impact use of the passkey. Windows does
not allow modifying usernames.



6 Discussion

Implementation bugs versus protocol weaknesses. Like
prior work on FIDO2 and WebAuthn [10-13], our work sur-
faced a variety of implementation bugs. These included a
lack of functionality for revocation of passkeys (CVS, Ebay,
TikTok), relying on ephemeral client-side state to use regis-
tered passkeys (CVS, Yahoo), leaking credential identifiers
to unauthenticated clients (Paypal, Porkbun), creating stale
credentials upon registration failure (Porkbun), inconsistent
offering of passkey creation (Yahoo), and improperly format-
ted passkey labels (Target, Amazon). This suggests a lack of
maturity and testing in current deployments.

More fundamental was problematic patterns in how ser-
vices implement passkeys and communicate it to users. No
services list which passkey was used to authenticate a session
(or whether another authentication mechanism was used); this
hinders compromise detection. Moreover, both service and
client ASIs varied in design across services and client config-
urations, hindering usability (reinforcing results offered by [4,
9]). Many services allow customization of passkey labels,
making labels exploitable for adversarial behavior. We believe
credential revocation will confuse users: only Ebay revoked
passkeys upon password reset, and no services prompted users
about revoking passkeys during password reset flows. More-
over, even when revoking passkeys, sessions that were authen-
ticated are not invalidated immediately, leaving a window of
opportunity for interpersonal adversaries to retain access or
reassert control over the account.

Finally, our results raise questions about seemingly inherent
issues with passkey protocols as currently standardized. For
example, the lack of binding between OS-controlled biomet-
rics and passkeys gives rise to abuse vectors such as adversar-
ial passkeys. One potential approach to rectify this would be
to extend FIDO2 protocols to allow binding each passkey to
a specific set of biometrics, but this would seem to hinder us-
ability. Instead, we suggest improving notifications regarding
biometric and passkey configuration changes, which might
require protocol changes as both the client and service ASIs
should be informed about configuration changes including
new biometrics. Similarly, the way passkey sharing or export-
ing works currently needs to be revisited in light of abuse.

From password to passkey problems. Passkeys have been
advertised as a fix-all to the problems with passwords [3].
However, our findings identify weaknesses that are passkey-
specific and do not apply to other authentication mechanisms
like passwords. For example, unlike passwords, an account
can have multiple active passkeys, which enables adversar-
ial passkeys. A major concern is the conflation of passkeys
with passwords in both implementations and documentation.
Many passkey ASIs are found under password management
panels, which may confuse developers and users due to differ-
ences between the two. For instance, passkeys can be added

without revoking old ones, unlike passwords. We need better
ways to communicate these differences, perhaps emphasizing
passkeys as “keys” that can be copied.

In terms of near-term mitigations, to prevent passkey
cloning, developers may look to Google’s enforcement of
stricter controls on passkey export (disallowing it entirely),
and how logging out of a device removes access to synchro-
nized passkeys. To address adversarial biometrics, OSes could
implement an ASI with an immutable log to track changes to
security-critical settings (e.g., biometric additions) and pair it
with account notifications at the OS level. Finally, adversarial
passkeys may be mitigated by adding re-authentication steps
and notifying users of changes to authentication configura-
tion. Many of these mitigations will also help with the denial-
of-service abuse vectors. As noted by Daffalla et al. [42]
spoofing is difficult to mitigate due to competing privacy con-
cerns, though recent work suggests potential cryptographic
approaches [52]. Finally, we anticipate the need for further re-
search in designing and evaluating new wizards to help users
secure their passkey-enabled accounts, with a particular focus
on addressing the needs of at-risk users.

On abusability analyses. Our new six-stage framework for
abusability analysis provides a structured way for researchers
and practitioners to test for potential ways in which prod-
ucts will or can be abused. Future work will be needed to
test the applicability of our framework within other contexts,
develop tooling to assist analysts applying the framework,
perform user studies to gauge the framework’s usability, and
potentially suggest refinements.

7 Conclusion

We propose a new framework for abusability analysis and
apply it to the quickly evolving passkey ecosystem. We in-
vestigated in total 19 services and four passkey providers.
We identified a number of abuse vectors and showed, via
stepthroughs, how adversaries can enact them to cause harms
such as unauthorized access, denial of service, and gaslighting.
While some abuse may not be preventable completely in our
threat models, our analysis suggest important mitigations such
as better notifications, clearer management mechanisms and
documentation, and more. As such, our work provides new
directions for how passkey deployments can be improved to
help users, particularly those targeted by interpersonal abuse.
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Ethical Considerations

This research did not involve human subjects or personal data;
only dedicated research accounts were used. We employed
lab devices solely for analyzing passkey and WebAuthn ca-
pabilities and adhered to each service’s terms and conditions.
Synthetic names, emails, or phone numbers were used, and
we avoided imposing unusual resource burdens on the ser-
vices. When passkey issues were identified, we refrained from
contacting customer service.

Our findings reveal vulnerabilities in current passkey de-
ployments. We are cognizant of the risks of adversarial readers
of this work learning low-level details of these attacks and
using them to inflict harm in interpersonal threat models. To
make progress on discovering and mitigating such abuse vec-
tors before they can be exploited, we believe it important to
document our procedures and work with companies to add
mitigations. In the cases of the eight services with implemen-
tation bugs (see Section 6), we contacted the relevant teams
at each service. We provided a copy of our manuscript, a de-
tailed description of how to reproduce our findings. For the
remaining services, we focused our report on demonstrating
the inherent weaknesses of common implementations of the
passkey protocol. We offered all services the ability to meet
with the research team to answer any questions and sugges-
tions for near- and longer-term mitigations.

Open Science Policy

We offer detailed, separate artifacts describing the results of
our research. This includes copies of the stepthrough pro-
cedures, detailed notes about identifying abuse vectors, and
results from our stepthrough protocol testing. All data pertain-
ing to this work is available online at https://doi.org/10.
5281/zenodo.14745290.
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and analytics services. After filtering through all 200 services,
we were left with 73 services.

Following this filtering process, we removed duplicate
URLs that lead to the same service. For example, What-
sApp showed up twice, once as what sapp.net and another
as whatsapp.com and both redirect to the same site. Addi-
tionally, we considered services connected through shared
accounts as duplicates because they share a common authenti-
cation infrastructure and thus passkey behavior is going to be
similar. For example, both google.com and googlevideo.
com require a Google account for authentication. This also
applies to the Microsoft suite of products and services, e.g.,
live.com, office.com, and skype.con all rely on a Mi-
crosoft account for using the service. After removing dupli-
cates we were left with 59 services.

To learn which services supported passkeys we cross-
referenced our list of 59 services with 1Password’s passkey
directory—a publicly available directory of apps and services
that have adopted passkeys for sign-in and MFA [53]. We
paired this with a manual search on Google’s search engine
to confirm the deployment of passkey support on the services.
The keyword search terms we used included the name of the
service coupled with passkeys, for example snapchat passkeys.
Of the 59 platforms, only 14 platforms were mentioned in the
passkey directory and four more (Snapchat, Samsung, Adobe,
and Intuit) were discovered through our manual search pro-
cess. For Snapchat and Intuit, while the search surfaced the
availability of passkeys on both platforms in [54] and [55]
respectively, we were not able to register a passkey on either
using either a MacOS or an iOS device; we therefore exclude
them from study. Finally, we excluded non-English services
(e.g., VK), leaving us with 15 services for the study.

B Experimental Setups

We chose to perform abusability tests across multiple client
configurations:
e MacOS (Macbook Pro 14inch, MacOS Sonoma v.14.5
using Chrome (v127.0.6533.120),
e Macbook Pro 16inch, MacOS Sonoma v.14.5) using
Chrome (v131.0.6778.110),
e iOS (iPhone 11,10S v.17.5.1),
e Android (Google Pixel, v.10), and
e Windows (Dell Inspiron, Windows v.11).
For our tests involving security keys, we used Yubico YubiKey
(Security Key C NFC).

To test adversarial biometrics (Section 5.1), we experi-
mented with three client victim configurations (MacOS, Win-
dows, Android). To test passkey cloning (Section 5.2), and
denial of service (Sections 5.4 and 5.5) we used a MacBook
Pro and Chrome as the victim and alternated between iPhone
11 and Google Pixel as the adversary for testing in the Apple
and Google ecosystem, respectively. For adversarial passkeys

(Section 5.3), we used a Macbook Pro using Chrome as the
victim’s device, while the adversarial device was an iOS de-
vice for one of the authors and a MacOS one for the other
author conducting the tests.

For passkey deletion Section 5.4, we used a Macbook Pro
using Chrome as the victim’s device for both Apple and
Google ecosystems. The victim’s device is the same device on
which the abuser performs deletion. For passkey revocation
Section 5.5 we used a Macbook Pro using Chrome as the
victim’s device and an iOS device as the abuser’s.

C Additional Figures

Figures that could not fit in the body.

D Passkey Cloning & Deletion in the Google
Ecosystem

Passkey cloning in the Google ecosystem. For Android
client devices, there is no feature for exporting or sharing a
passkey with another device, leaving the only route to passkey
cloning as synchronization. Google passkey synchronization
is similar to iCloud: the victim and attacker device should
both be signed-in to the same Google account and that account
should have sync enabled [56]. This requires the attacker’s
knowledge of the victim’s Google password (2FA is irrelevant
as we assume device access). Then, the attacker device is
automatically given copies of all the victim’s passkeys. Unlike
iCloud, however, there is no option to retain synchronized
items at sign-out, so the attacker must stay logged into the
account.

To spoof the passkey label in the Google ecosystem, the
attacker navigates to the Google Password Manager associ-
ated with the victim’s Google account. This can be accessed
in Chrome’s Passwords & Autofill setting. Once there, the
attacker can expand the passkey entry and edit the passkey to
spoof the username.

Authenticating using synchronized passkeys. Login using the
synchronized passkey was successful for Microsoft, Github,
Amazon, Roblox, LinkedIn, Intuit, Ebay, and Adobe. On Sam-
sung, authentication with a cloned credential fails for unclear
reasons. Roblox downgrades user verification after syncing:
logging in with the synchronized credential on the adversarial
device did not require user verification (i.e., the attacker’s
biometric) despite requiring this on the original victim de-
vice. This may be because Roblox sets the service-requested
authenticator property userVerification to discouraged.

Detecting passkey synchronizations. The fact that the attacker
device is logged into the victim’s Google account is visible on
Google’s ASIs. However, there is no indication on this ASI
that passkeys have been synchronized; that fact is implicitly
inferred from having the sync enabled setting. There is also no
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Task Passkey Deletion

Passkey Revocation

Precondition (1-V) Set up online account

(2-V) Set up passkey on account [Apple]
(3-V) Set up passkey on account [Google]

Locate passkey (4-A) Unlock victim’s device

(5-A) Locate passkey ASI [Apple]
(6-A) Locate passkey ASI [Google]

Delete passkey (7-A) Delete service passkey [Apple]
(8-A) Delete service passkey [Google]

Deny access (9-V) Authenticate using passkey [Apple]
(10-V) Authenticate using passkey [Google]

Evidence of deletion (11-V) Check device ASI for deletion [Apple]
(12-V) Check browser ASI for deletion [Apple]

(1-V) Set up online account
(2-V) Set up passkey on account

(3-A) Login to online account
(4-A) Locate passkey ASI on service

(5-A) Revoke service passkey on account

(6-V) Authenticate using service passkey

(7-V) Check service ASIs for revocation

Figure 8: Stepthrough protocols for the passkey deltion and passkey revocation abuse vectors. For each step we indicate whether
simulates a victim action (e.g., 1-V) or an abuser action (e.g., 1-A). Additionally, we add [Apple] and [Google] for steps only

performed in the Apple and Google ecosystem, respectively.

way to tell that the passkey label was spoofed. Service ASIs
show varying amounts of login information from the attacker
device; Figure 6 shows a breakdown of this information.

Revoking synchronized passkeys. The victim can log out the
attacker device using Google’s “Your devices” ASI. When
the adversarial device is (remotely) signed out, the Chrome
profile on the abuser device shows a Sync is paused text in-
dicator and icon. This prevents the adversarial device from
subsequently logging back into victim service accounts. Even
if sync is paused however, existing active sessions on the
adversarial device still remain active for all services. This
is expected as session management on individual services is
independent from sync management on Google, but neverthe-
less problematic from an abuse perspective. Similar to Apple,
the victim can also revoke passkeys on individual services.

Passkey deletion in the Google ecosystem. In the Google
ecosystem the passkey deletion stepthrough protocol (Sec-
tion 5.4) was successful for ten services. TikTok and Twitter
are only supported on i0S; thus, we could not create a passkey
stored in Google’s Password Manager. To perform a local
deletion the analyst navigates to the Chrome settings menu,
then Passwords and Autofill, and then Google Password Man-
ager. The latter lists both passwords and passkeys. Similar to
the iCloud Keychain, a user can edit each passkey credential
to perform actions such as reconfiguring the credential’s user-
name or deleting the credential. The analyst deletes individual
passkeys. Once deleted, they attempt to log into the service.
As expected, access is denied for all nine services.
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