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Abstract
We present Cloudscape, a dataset of nearly 400 cloud archi-
tectures deployed on AWS. We perform an in-depth analysis
of the usage of storage services in cloud systems. Our find-
ings include: S3 is the most prevalent storage service (68%),
while file system services are rare (4%); heterogeneity is com-
mon in the storage layer; storage services primarily interface
with Lambda and EC2, while also serving as the foundation
for more specialized ML and analytics services. Our findings
provide a concrete understanding of how storage services are
deployed in real-world cloud architectures, and our analysis of
the popularity of different services grounds existing research.

1 Introduction

The cloud has become a dominant platform for service
development and deployment. In 2023, cloud computing
infrastructure investment represented roughly 60% of all IT
infrastructure spend worldwide; cost efficiency was cited as
the main driver behind this expansion [61]. Further growth
is expected, with some predicting a compound annual growth
rate of 16% over the remainder of this decade [37].

Despite the large and increasing importance of cloud,
little is known about how cloud-based systems are generally
constructed. A key design decision is choosing the appropriate
storage services that fit the architecture. While there are some
well-known examples of cloud-based data systems (e.g., the
Snowflake data warehouse [29]), there is no comprehensive
study of the many other systems that are being built and
deployed atop today’s cloud where storage is one part, and not
necessarily the central part, of the system. This deficiency is
problematic both for practitioners, who lack a unified resource
to learn from the collective experiences of the community,
and for storage researchers, who do not know where to focus
cloud-based research efforts in order to maximize their impact.

In this work, we present the first large-scale study of cloud-
based system architectures. Our dataset consists of 396 sys-
tems, each built atop Amazon Web Services (AWS). Each archi-
tecture is described in detail in video and collected by Amazon
(presumably) to showcase the breadth and scope of AWS-based
systems; the videos are, to our knowledge, the largest collective

data source on cloud-based systems. However, the videos in
raw form do not readily facilitate analysis and exploration.

To remedy this limitation, we apply a rigorous process using
a range of best practices [31, 73, 88] to transform the videos
into a rich and detailed quantitative dataset, which we refer
to as Cloudscape; we then can query Cloudscape to answer
critical questions about the systems under study. For each
architecture, Cloudscape contains a directed graph of the AWS
services used to construct it, thus including rich information
about how compute, storage, and other AWS services interact.
Most architectures consist of a small number of interacting
workflows (i.e., subsets of the graph) that cooperate to achieve
the goals of the given system. We capture flow directions to
understand the reads and writes serviced by storage systems. In
addition, we augment our dataset with qualitative annotations,
with a focus on the type of data stored inside storage systems,
enabling us to ask and answer questions not readily discovered
via quantitative analysis. While our dataset has inherent biases
(as discussed in Section 2), we believe the data is valuable and
is broadly representative of modern cloud-based systems.

Our analysis focuses on the impact of cloud-based
architectures on storage services. We find that even though
the functional goal of a cloud system influences the services
chosen, S3 is unsurprisingly the dominant force, used in
68% of the systems we study. Structured data storage is
also popular, with 40% of systems using a key-value store
(e.g., DynamoDB [35]), and 30% using a SQL database (e.g.,
RDS [19]). However, most systems utilize a combination of
storage services (about half use two or more), i.e., storage is
heterogeneous. We further find that for the architectures in this
dataset, distributed file systems (e.g., Elastic File System [12])
are rarely used; distributed file systems, in the context of
web-based services, are not particularly important.

We find that S3 is critical for specialized services. ML
services [17, 20] store their inputs and outputs in S3, making it
their default interoperability layer. Analytics engines [13, 18]
store both pre-processed and post-processed data in S3, often
leading to duplication between S3 and other storage services.

We find that while many different cloud services interact
with storage services, they predominantly serve the needs
of Lambda, EC2, and other compute services. S3 interacts
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meaningfully with services by acting as a bridge between
workflows and is not a mere dumping ground. We also find
that services host a rich variety of semantically different data,
ranging from media to configuration files in S3, and system
metadata to pointers to S3 data in DynamoDB.

Finally, we find that serverless compute offerings (e.g.
Lambda) are widely utilized, and occur in roughly 60% of the
systems we study; furthermore, nearly 20% of systems rely
solely on serverless as a compute platform.

We believe our findings are useful to the systems research
community for the following reasons. First, while key-value
stores and databases are widely used, object storage via S3 is
dominant; perhaps more research into object stores would be
useful, to better understand the variety of use cases and how to
better optimize them [3,86]. Second, about half of the architec-
tures use two or more data services (e.g., S3 and DynamoDB);
understanding the new issues (e.g., consistency) that arise due
to storage of data in multiple different services would be valu-
able [36,81]. Third, new specialized ML and analytics services
are decoupled from the object stores; it is important to co-
design them to minimize data movement between services [89,
93]. Fourth, distributed file systems are not particularly im-
portant in this context. Finally, the prevalence of serverless
compute within hundreds of architectures justifies the focus of
researchers on serverless platforms [26, 30, 38, 47, 52, 67, 91].

The rest of the paper is presented as follows: In §2, we de-
scribe our methodology for converting raw videos into Cloud-
scape, and in §3 we provide a high-level overview of the result-
ing dataset. We present our analysis in §4, in which we ask three
research questions: a) how are storage services used across
architectures, and does an architecture’s functionality goal af-
fect the choice of storage services? b) how are storage services
used by other services, and what data is stored in them? And
c) how do specialized services use the storage layer? Finally,
in §5, we discuss the next steps for the research community.

2 Dataset

This section describes the data we use and our methodology
for converting video content into a structured and queryable
dataset, called Cloudscape. We also describe how each archi-
tecture is represented in Cloudscape. The dataset and analysis
scripts are available at https://github.com/WiscADSL/
Cloudscape. The artifact is described in Appendix A.

2.1 Data Source
Cloudscape consists of 396 architectures that were obtained
from a YouTube video playlist [21] maintained by AWS. Each
video describes the architecture from a different company,
focusing on one team within the company rather than the
entire system. They are presented as interviews in which
an AWS representative asks questions that allow the invited
representative to explain and elaborate on the architecture
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Figure 1: Distribution of video release date: Each bar
denotes the number of videos released that month. The number
at the top shows the number of videos released that year.

step by step. We build Cloudscape using videos published
before 2024 and include most of them, barring a few that do
not describe an architecture.

These architectures have rich and diverse contexts. They are
described by businesses ranging from Fortune 500 companies
to small startups. The timeline in Figure 1 shows that the
videos span 5 years, from March 2019 to December 2023.
While most videos were in English, they span 11 languages.

Although these videos are fairly short, with an average
runtime of ~6 minutes, the interview format and visual aids
used to describe the architecture result in information-dense
videos. A typical video features a developer describing the
AWS services used and how they interact. This is presented as a
collection of images of AWS services on a whiteboard, and the
developer draws connections between them while explaining
workflows. A workflow describes a collection of services
and interactions that fulfill some notion of work subjective
to each video. A typical video consists of multiple workflows.
Additionally, the developer might discuss how they use or
configure a particular service. Such contextual information
does not exist in all videos, and when it is available, developers
might discuss from a broad range of topics.

We extract data from such videos into a structured dataset
reliably. In the next section, we describe our methodology
for capturing the services used, their interaction patterns, and
workflows.

2.2 Structural Annotation

Each video represents one architecture in Cloudscape. An
architecture is encoded as a graph and is a collection of
nodes, workflows, and edges. Figure 2 presents three sample
architectures from Cloudscape. We use them as running
examples throughout this section.

Nodes The nodes in the graph reflect the services used in
the architecture. Most nodes represent AWS services but
some refer to users or the company’s internal platforms.
To faithfully encode the video, we keep duplicate nodes if
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Figure 2: Typical architectures in Cloudscape. Each node is a service used in the architecture. An edge encodes an interaction
between services. Solid edges are data edges, and dotted edges are meta edges. Edges with the same color belong to one flow.
Colored nodes denote AWS services of different capabilities: compute, storage, network and integration.

they appear multiple times in the video. We rarely add to or
remove from the nodes described in the video. In Figure 2a,
the architecture of Snap uses EKS, Elasticache, DynamoDB,
S3 and CloudFront. It also includes users using the Snapchat
mobile app. We categorize vaguely defined services, e.g.
Dashboard in Figure 2b, as ThirdParty nodes.

Edges An edge conveys an interaction between two nodes.
We classify edges as either data edges (solid lines) or meta
edges (dotted lines). Data edges indicate movement of user
data, e.g. in Figure 2c the data edge from S3 to Lambda indi-
cates that Lambda reads from S3. Meta edges do not carry data
but indicate a request trigger or an acknowledgment response.

Workflows We define a workflow as a synchronous sequence
of invocations and data movements resulting from a trigger.
Workflows are encoded as a sequence of edges. Most videos
describe an architecture in terms of loosely coupled workflows,
e.g. in Figure 2b, the first (purple) flow captures events from
users being ingested into S3 and ElasticSearch using Kinesis
Data Streams, Lambda and EC2. The second (green) flow
captures how Athena uses Glue to read the schema of data
stored in S3 when it needs to perform a query. Each workflow
also imparts a sequence number to its edges, which enables
the ordering of interactions.

We mostly capture these workflows as they are described
in the videos. When the verbal description does not match
what they drew, we consider the verbal description as the
ground truth. In some cases, we introduce new workflows
to keep them synchronous. For example, when architectures
use a message bus like SQS to enqueue jobs, we create a
new workflow when the message gets dequeued because
SQS workflows are asynchronous. In the case of streaming
workflows (Figure 2b), we show a single sequence of edges as
data passes from one service to another. Workflows capture the
full call graph of requests and responses (Figure 2a and 2c).

Annotation process We followed an iterative process to de-
termine the right encoding that sufficiently captured most archi-
tectures. Three team members initially analyzed a subset of the
dataset (50 architectures). We discussed and reiterated the an-
notation process [73, 88] until we finalized the definitions and

No. of Arch. Graph + Notes Quant. Qual.

396 ✔
340 ✔ ✔
176 ✔ ✔ ✔

Table 1: Cloudscape details. This table provides a breakdown
of the information captured in the architecture graphs. It
outlines the number of architectures used for quantitative
analysis (§3, §4) and qualitative (§4.6) analysis.

methodology for capturing nodes, workflows, and edges. We
then trained three more team members for the rest of the dataset,
and their initial dataset additions were verified and discussed
to ensure consistency and further solidify the annotations.

Our methodology works well for most of the dataset (340
out of 396 videos). The rest of the videos are vague regarding
how services interact (e.g. they focus on infrastructure policies
instead). We only consider these 340 architectures (85.9% of
the dataset) in our analysis, and the percentages in the rest of
the paper use 340 as the total number of architectures. Table
1 shows this breakdown.

Notes and qualitative annotation As described in §2.1,
videos often provide contextual information about their
architecture. Cloudscape captures this as textual notes for
all the architectures. Additionally, a video would sometimes
provide additional context that allowed us to capture the type
of data stored in storage services. We were able to capture this
for 176 videos, which we use for qualitatively understanding
the breadth of data stored across services in §4.6. Table 1
summarizes this.

2.3 Limitations
Our dataset is derived from a collection of videos published by
AWS. We were unable to identify a data source of comparable
size and complexity for competing cloud providers. As a result,
Cloudscape only includes architectures that utilize AWS cloud
services. Nonetheless, we believe that the methodology and
findings are generalizable to other providers. There is also po-
tential for selection bias as the AWS team invites customers to
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describe their architecture. However, Cloudscape captures ar-
chitectures from 378 businesses, ranging from conglomerates
to startups. Our methodology also benefits from the explana-
tory nature of the videos which describe entire workflows. This
lets us capture all services in use, instead of those in focus. Our
analysis should therefore be a reasonable proxy for real trends.

On the use of videos and manual annotation We considered
other data repositories, but none described as many real-world
deployments, or they missed the deployment nuances and
instead presented architecture diagrams without workflows
and configuration information. We tried using multimodal
generative models with few shot examples and prompt tuning
to help with encoding, but they had low accuracy. Our goal is to
provide a dataset, built by applying best practices [31, 73, 88],
that can be used to better understand deployments.

Summary Cloudscape consists of architectures captured
from over 40 hours of video footage, taking more than 18
human-months of effort. It encodes the services used and their
interactions as graphs, and captures contextual information
as textual notes, facilitating analysis of deployed cloud
architectures.

3 Overview of the Dataset

In this section, we provide an overview of the architectures cap-
tured in Cloudscape: which, and how many, services are used in
these architectures, and what are these architectures built to do?

3.1 Composition of Architectures
To facilitate analysis, we first construct a service taxonomy
and then examine which services are used to construct these
architectures.

Services used across Cloudscape Across all architectures,
we identify 134 unique AWS services. To understand
architectures conceptually, we distill these services into their
core capabilities and categorize them as:

• Compute: Services that enable general purpose compute,
or services that do predefined compute (e.g. Textract, a
transcription service). We classify 28 services as compute,
the most popular being Lambda, EC2, and EKS.

• Storage: Services that store data for future retrieval. We
also treat in-memory caches, e.g. ElastiCache, as storage
services. We classify 14 services as storage and find S3,
DynamoDB, and RDS to be most frequently used.

• Network: Services that route traffic from external users to
otherAWS services. We classify 20 services as network, the
most popular being APIGateway, CloudFront, and ALB.

• Integration: Services that act as message-passing buses
or generally enhance the interoperability between different
AWS services. We classify 15 services as integration, the
most popular being SQS, SNS, and Glue.

• AWS Control Plane: These 27 services deal with
infrastructure administration, monitoring, security,
identity, or compliance. The most common services were
CloudWatch, Cognito, and CloudFormation.

• Others: The remaining 30 services cover various use
cases. Some services are platforms for specific business
cases (e.g., Connect), some are developer tools (e.g.,
XRay), and some are code/media repositories (e.g., Model
Registry), among other use cases.

Figure 3a shows the popularity of different capabilities of
services across Cloudscape. Storage and compute services
appear far more frequently than the rest of the service types,
together constituting more than half of all the nodes. This
figure also includes User and ThirdParty nodes; vaguely
described nodes (ThirdParty) are a small part of Cloudscape.

Figure 3b presents the ten most popular AWS services.
This reveals that multiple storage and compute services are
popular enough to appear in the top ten services. In addition,
we find that APIGateway, a network service, and SQS and
SNS, both integration services, are present in more than 10%
of the architectures.

Services used in each architecture We now analyze the
capabilities of services used in each architecture. Figure 3c
shows that compute and storage services are used in almost
all architectures. Further, almost ~60% of the architectures
use network and integration services. More than 20% of archi-
tectures use at least one service categorized as ControlPlane
or Others even though they collectively constitute less than
10% of the dataset (Figure 3a).

Adoption of S3 and Lambda S3 and Lambda are the most
common AWS services, both being utilized in over 60% of
architectures. While this wide adoption can be attributed to
their flexibility, they are also functionally sufficient for many
architectures: 22% of architectures employ S3 as their sole
storage service, and 19% of architectures use only serverless
services (Lambda, StepFunctions and LambdaAtEdge) for
their compute layer.

Summary Modern cloud architectures are constructed using
multiple specialized services; Cloudscape captures the use
of 134 unique AWS services. Across the dataset, storage and
compute services are most common and are used in more
than 80% of the architectures. The deployment of S3 and
Lambda across hundreds of architectures grounds ongoing
research [1, 51, 74] and motivates the need for more work.

3.2 Functional Goals of Architectures

The architectures in Cloudscape are built to support a diverse
set of business needs e.g. finance, games, ads, and medical
research. Two architectures within the same business domain
may have different computational and storage needs, making
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Figure 3: Composition of Architectures.

their comparison impractical. To better contextualize our anal-
ysis, we categorize architectures on the core functionalities
they serve. An architecture may be classified under one or
more of the following functional goals:

1. Data Ingestion: These architectures often perform ETL
(Extract, Transform, Load) operations on a data stream.
This involves processing the data stream and pushing it
to different data stores. e.g. streaming pipelines built to
handle analytics events, sensor data from edge devices, or
access logs. Figure 2b shows one such architecture.

2. Interactive: These architectures are latency-sensitive and
have an agent (human or otherwise) waiting for a response
in real-time. e.g. video streaming, or a mobile app triggering
a backend API. Figure 2a shows one such architecture.

3. Compute Intensive: These architectures are built to handle
compute-intensive batch jobs. Their workload typically
cares more about throughput and less about latency. e.g.
video rendering, ML training, and simulation frameworks.
Figure 2c shows one such architecture.

4. Control Plane: Most architectures in this category
provision new AWS resources e.g. CI/CD pipelines. Many
architectures also describe policies (e.g. security policies
on S3 and VPC) and discuss how they manage AWS
account resources. Architectures in this category stress
AWS’ control plane.

5. Other: All other architectures fall in this category.

Table 2 presents the distribution of goals across archi-
tectures. Our first observation is that almost 80% of the
architectures in the dataset have one functional goal. The most
prevalent goal in our dataset is Data Ingestion (45%), followed
by Interactive (35%). 15% (51) architectures have two goals.
Most of such architectures were tagged as Interactive and Data
Ingestion. Only 2 architectures in our dataset span three goals.
Both these architectures are tagged as Data Ingest, Interactive,

Data Ing. Interactive Compute Control

Data Ing. 34% (116) 8% (28) 3% (9) 0% (0)
Interactive 8% (28) 23% (78) 2% (6) 2% (7)
Compute 3% (9) 2% (6) 10% (35) 0% (1)
Control 0% (0) 2% (7) 0% (1) 12% (41)

Total 45% (153) 35% (119) 15% (51) 14% (49)

Table 2: Symmetric co-occurrence matrix of the number
of architectures built for each functionality. A cell at (x,
y) shows the count of architectures with goals x and y. The
diagonal cells show the architectures with a single function.
Each cell is presented as the percentage of the dataset (number
of architectures in brackets).

.

and Compute. 17 architectures do not fit our classification; we
tag them as Others and do not show them in the table.

Summary We group architectures based on their core
functionalities. Most architectures are built to do one thing
well. Most of our dataset comprises architectures built to
ingest a large volume of data or serve latency-sensitive clients.

4 Analysis of Storage Services

To understand the usage of the 14 storage services present
in Cloudscape, we first analyze them from an architecture’s
perspective: how common are these services (§4.1), does the
functional goal impact which service is used (§4.2), and how
many services are used in an architecture (§4.3)? Next, we
take a storage service’s perspective and ask: which services
interact with the storage layer (§4.4), how is S3, the most
common storage service, used (§4.5), and what data is stored
across different storage services (§4.6)? Finally, we consider
how different specialized cloud services use storage implicitly:
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ML services in §4.7, analytics engines in §4.8, and caching
and queueing services in §4.9.

4.1 Popularity of Storage Services
Uncovering the popularity of different storage services can
guide the efforts of the research community toward more
impactful services. We group services with similar interfaces
to allow comparison both across and within groupings.
Services are categorized as one of:
1. File System: We group these services because they provide

storage at the file level. We place EFS (Elastic File System)
and FSX (File Server) in this bucket.

2. SQL: These services require the data to be structured in
a relational model. We place RDS (Relational Database
Service) and Aurora [84] in this bucket. RDS is a database
service that lets the customer select their database engine
(e.g. MySQL, PostgreSQL) and manages the infrastructure
layer. Aurora is a proprietary database engine that is part of
RDS but is often mentioned explicitly by the architectures.

3. NoSQL: These services store unstructured data. Dy-
namoDB [35] is a key-value store and DocumentDB
is a proprietary document store, similar to MongoDB.
MemoryDB is a propriety Redis-compatible data store.
ElastiCache is a caching service that uses the open-source
versions of Redis and Memcached.

4. Specialized: These services are built for specific work-
loads: RedShift is a data-warehouse service with querying
and storage capabilities, Neptune is a graph database, and
Timestream is a timeseries database.

5. Object: These services (S3 and MediaStore) provide reads
and writes to data on a per-object basis, often with a flat
namespace. MediaStore is an object store that handles
storing and streaming live media content.

Figure 4 shows the percentage of architectures that use a
particular storage service. Most architectures use object stores,
specifically S3. The figure also reveals that more than 40%
architectures use NoSQL data stores, while fewer (~30%)
use SQL services. Specialized services built for graphs and
data warehousing are used in ~11% of the architectures.
Surprisingly, a very small number of architectures (~4%) use
distributed file-system services. We further observe a clear
preference for services in each category: S3 among object
stores, DynamoDB among NoSQL services, and RDS among
SQL services. Consequently, these three services are the most
commonly used storage services across all architectures.

One storage service missing from this analysis is Elastic
Block Store (EBS). Cloudscape is unable to accurately capture
EBS usage because developers rarely interface with it directly
and, as a result, seldom mention it. Consequently, it appears in
only 2% of architectures. This low usage is deceptive because
EBS is tacitly used by other AWS services, such as EC2 [34],
EKS [32], and RDS [33]. Notably, 60% of architectures make
use of at least one of these services, thereby indirectly using
EBS. This widespread reliance highlights the significant po-
tential impact of ongoing advancements in block stores [92].

Implications Cloud architectures rarely interface with
distributed filesystems directly, with most product-focused
data being offloaded to more specialized storage services.
In the face of these changing requirements, the community
would benefit from revisiting the workloads faced by the
filesystems deployed in the cloud. Further, it would be fruitful
to distinguish between filesystem workloads generated by
end-user applications (e.g. binaries on EC2 and Lambda) and
those generated by overlying storage services like databases.
Future filesystems can limit their scope to a few workloads
instead of optimizing for everything [48, 72, 83], while still
providing significant impact.

S3 should be considered the new default storage system
for cloud architectures, playing the same role in cloud
computing as the local filesystem does in an operating
system [5]. The research community would greatly benefit
from repeating the filesystem characterization studies for
object stores [22,44,75,76,85]. Due to a lack of representative
traces, new object stores are forced to use arbitrary, and
differing, synthetic benchmarks [3, 86]. Other studies find
that synthetic benchmarks do not fully capture all aspects of
production traces [23,28]. While Faa$T [74] provides a dataset
of object accesses made in the wild, it lacks API parameters
like RangeGet and MultiPartUpload, which could differ across
use cases and have considerable performance impact.

Summary Architectures use object stores, NoSQL stores,
and SQL stores, in that order. The most popular storage services
are S3, DynamoDB, and RDS. Roughly 4% architectures ex-
plicitly mention using distributed file services. Future research
should focus on understanding S3 workload and the APIs used.
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4.2 Storage Usage Across Functional Goals

Next, we investigate how strongly an architecture’s functional
goal (§3.2) influences the storage services used. We capture
this service preference in Figure 5. We observe that object
stores are the most common storage type across functional
goals, followed by SQL and NoSQL stores. However, their
relative occurrences differ.

Data Ingestion architectures prefer NoSQL and SQL
services equally. These architectures often perform ETL
operations on data streams and distribute the transformed
data to downstream services. The choice of these downstream
storage services is driven by the nature of the queries that will
be run on the transformed data, rather than the pipeline itself.
SQL and NoSQL services are both used to answer downstream
queries. We also find that the enriched dataset is often stored
in S3 for future retrieval. Specialized data services such as
Redshift, a data warehouse service, are more prevalent in Data
Ingestion architectures.

Interactive architectures are less likely to use object stores.
Though S3 is still used to serve static content like SPAs [66]
and media content to users, architectures tend to use SQL
and NoSQL services as they are better suited for transactional
user-specific data.

Among the architectures that use file services, they are
mostly tagged Compute. Thus, architectures that are built for
compute-intensive batch jobs (e.g. simulations) are more likely
to consider lower-level storage primitives like file services.

Implications Object stores are widely used across archi-
tectures regardless of functional goals. As a result, they
must perform well under all workloads [3]. Optimizing
either latency (for Interactive architectures) or throughput
(for Data Ingestion architectures), while keeping the other
stable, will have a significant impact. We find that NoSQL

≤ Services 0 1 2 3 4 5

Percentage (%) 10 47.65 86.76 98.24 99.71 100

(a) Number of unique storage services used in each architecture.

SQL NoSQL Object

SQL 6% (19) 6% (21) 13% (45)
NoSQL 6% (21) 9% (30) 21% (70)
Object 13% (45) 21% (70) 28% (96)

Total 25% (85) 36% (121) 62% (211)

(b) Symmetric co-occurrence matrix of the number of architec-
tures using a combination of storage services. Each cell (x, y) shows
the number of architectures that use a service from both type x and y.

Flow interacts with ≥ storage 1 2 3 4

Percentage of arch. (%) 89.1 35.3 4.7 0.9

(c) Percentage of architectures with one workflow interacting
with multiple storage services.

Table 3: Combination of Storage Services

services are preferred over SQL services; this finding supports
ongoing research into caching systems [24, 25, 58] and
key-value stores [27, 56, 59]. The popularity of SQL services
for Interactive architectures provides more evidence for the
well-understood latency constraints imposed on such services.

Summary The functional goal of an architecture influences
the storage services used. Filesystem services are more
commonly used by architectures marked Compute Intensive,
e.g. for video rendering.

4.3 Combination of Storage Services

We now consider whether architectures use one storage service
as their primary data store or whether they spread their data
across multiple services. In doing so, we wish to learn whether
one data store is sufficient to model and service the data
requirements of the architecture.

Table 3a shows the number of unique storage services used
in an architecture. Most architectures use up to three different
storage services. 10% architectures use no storage services,
and few (~2%) use four or five.

We use Table 3b to understand which combinations of
services are used across architectures. We limit our analysis
to the three most common schema types. We observe that
object services are often used in conjunction with NoSQL
(21%) and SQL (13%) services. Similarly, SQL and NoSQL
services are rarely used in isolation and are paired with another
complementary service. 6% (20) architectures use services
across all three types (not depicted in the table).

We also report that all architectures, except eight, used
only one storage service per type. Of these eight exceptions,
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seven used ElastiCache in the presence of DynamoDB or
DocumentDB. One architecture used both S3 and MediaStore.

Servicing a single workflow With the presence of multiple
storage services in an overarching architecture, learning how
many are actively involved for a particular task would be useful.
Such storage services are, in effect, loosely coupled, and find-
ing common occurrences provides a deeper understanding of
how the storage layer is used collectively. We analyze this using
workflows provided by Cloudscape: we ask how many unique
storage services are read from or written to during 1 workflow.

From Table 3c, 35% of the architectures in our dataset have
at least one workflow that interacts with two different storage
services. 5% architectures have a workflow that interacts with
three or four. In the case of two storage interactions in a flow,
in 75% of the occurrences S3 is touched with either a SQL or
NoSQL store, while in 14% of the occurrences, the workflow
calls a SQL and a NoSQL service.

Implications Cloud architectures use multiple storage ser-
vices. While storage services do not directly interact with each
other, they share the same fate because they often participate in
the same workflow. This implicitly forces similar performance
constraints on both services, e.g. from the perspective of an end-
to-end task latency, a sluggish storage access could nullify any
performance improvement made by a different latency-aware
datastore. On the bright side, this finding motivates the need for
understanding correlated workload patterns. Uncovering corre-
lated patterns across storage systems can enable optimizations
like shared-fate caching. Having one-third of the architec-
tures in our dataset interact with different data stores across the
same conceptual task further strengthens the need for providing
cross-service consistency, an active area of research [36, 81].

Summary Most architectures use up to three storage
services. SQL and NoSQL services are often paired with
complementary storage services. A large number of workflows
interact with multiple storage services.

4.4 Common Writers and Readers
We now analyze which services most frequently interact with
storage services. In doing so, our goal is to find the common
service pairs to optimize for. Using the direction of data
edges provided by Cloudscape, Figure 6 shows the percentage
of architectures in which an AWS service writes to or reads
data from any storage service. This figure lets us draw three
important conclusions.

First, the set of frequent writers has a high overlap with
the set of frequent readers. Thus, these services would benefit
from optimizations that improve both read/write performance.

Second, the most common interacting services are compute
services, followed by integration services and S3. Of the eight
compute services that appear in the top ten, five of them are
general-purpose compute platforms (Lambda, EC2, EKS, ECS,
Fargate); this indicates that recent cloud architectures decouple
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Figure 6: Services writing and reading from storage ser-
vices. This shows the top ten services writing and reading to
storage services. The services are sorted by write percentage.

their compute layer from the storage layer and have fully
embraced managed data services. Besides general-purpose
compute services, purpose-built analytics services like EMR
and Athena also directly interface with storage services. Fi-
nally, SageMaker, an ML platform, uses existing AWS storage
services (primarily S3) for both, storing models and reading
data for training and inference. S3 appears in this figure
because customers often describe cross-account transfers or
cross-region data duplication inside S3, which results in edges
between different S3 nodes. Additionally, we find that expos-
ing data publicly to users via networking services is relatively
uncommon, though some architectures, e.g. SundaySky [8], do
serve SPAs [66] and media content from S3 via CloudFront.

Third, Lambda is the most common user of storage
services by far, interacting almost twice as often as the next
service. While it is natural for a stateless service to rely on
external storage to provide state, this is the first work that
provides a sense of the relative pressure stateless compute
frameworks will place on storage services, as opposed to
existing well-understood workloads from EC2 and EMR.

Implications Given the number of AWS-proprietary services
frequently interacting with storage services (namely Sage-
Maker, Glue, Firehose and Athena), there is ample opportunity
to co-design these frameworks with storage services for better
performance [79, 89]. Ongoing research in improving inter-
actions between serverless compute and storage [1, 51] should
significantly impact cloud architectures deployed in the wild.

Summary Storage services primarily interface with com-
pute, networking, and other storage services. Lambda, EC2
and Athena are the most common services interacting with
storage services. High usage of storage by other proprietary
services like Athena, Firehose, and Glue highlights the
opportunity for co-designing them.
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Figure 7: Comparison of uploads and downloads to S3.
This shows the ratio of upload edges to download edges.
Architectures falling on the left side of (x=1) have more
services that download from S3 than those uploading to S3,
while the ones on the right have more services that upload.

4.5 How Is S3 Used?

We attempt to better understand the usage of S3 given its
widespread adoption. Our goal is to understand whether S3
is the dumping ground of data, or if it is intricately involved
in workflows.

Within an architecture, S3 is more connected than other
storage services. We report that on average, the number of
unique services that upload to S3 is more than the services
that upload to any other storage service that might be present
in an architecture. This is true for the number of services that
download from it as well. Additionally, on average, S3 is
involved in more workflows than other storage services. This
highlights a rich ecosystem of services interfacing with S3,
likely due to significant efforts in ensuring compatibility [63].

To understand how an architecture uses S3, we consider the
ratio of data-upload edges to data-download edges. We clarify
that an upload edge means that a service is writing data to S3.
Figure 7 shows that at one end (x=0), ~10% architectures do
not explain how data reached S3; they simply download from
it. Conversely, ~20% architectures dump information into
S3 (x=∞) and do not interact with it further, often to enable
additional workflows outside the architecture or for archival
purposes. The remaining 70% of the architectures interact
more meaningfully by both downloading and uploading data
(note that Cloudscape is unable to capture the volume of data
or track if the same object is moved across workflows). 10%
of the architectures are skewed towards downloads, with the
download-to-upload ratio ranging from (1,4], presented as
(0.25,1) in the graph. Around 20% of architectures upload
more often than they download, with the upload-to-download
ratio ranging from (1,4], presented as (1,4) in the graph. The
remaining 40% of the architectures have the same number of
upload and download edges from S3 (x=1).

Implications S3 participates in multiple workflows in most
architectures. While we could not objectively capture it, we ob-
served during our data collection phase that S3 was often used

as a staging area to pass objects across services and workflows.
This trend would see considerable benefits from the recently
launched S3 Express One Zone [11] that trades availability for
performance by storing data in a single availability zone. We
believe more research on end-to-end object tracing as objects
get transferred across workflows will provide the community
with a better understanding of how S3 is used, and therefore
must be improved. Future research can consider allowing users
to sacrifice high redundancy in favor of performance and cost if
the workload permits. Generally, more progress on how best to
present tradeoffs between performance, cost, and availability
with a simple API, would be useful to practitioners.

Summary S3 is used across multiple workflows to both
read and write objects from multiple services; it facilitates
data movement across workflows. Future research on object
tracking across workflows is necessary to get an accurate
picture of the lifecycle of objects [76].

4.6 What Data Is Stored Where?

We now present a qualitative analysis (§2.2) on what types
of data are stored in these services. Our goal is to identify the
semantic meaning of the data stored, making it an independent
factor to optimize for. Our analysis focuses on clearly
identifiable use cases, skipping vague or general descriptions
like “user data.”

Among identifiable use cases, S3 is used for a wide
spectrum of purposes: logs (16 cases), images (16 cases), web
(11 cases), videos (11 cases), executable code or ML models
(9 cases), metadata (7 cases) and database backup or data
archival (6 cases).We also observe that S3 is widely used in
the data processing pipeline: it stores the raw input data in 24
cases and post-processed data in 18 cases.

Other than storing general data, DynamoDB is also com-
monly used to store metadata (16 cases), e.g., configuration
files, and pointers to data on S3. Interestingly, we also found it
is used in 12 cases to store the system state (e.g., job status) for
orchestration and coordination purposes. Such functionality
is dominated by DynamoDB: there are only 3 use cases in
ElastiCache, 1 in RDS, and 1 in Aurora.

Implications Storage services are used to store data not only
of varying types and sizes but also of different importance.
For example, we found that S3 stores analytics files (e.g. log
files) as well as configuration files. Downstream systems
fetching them might respond to transient failures differently;
failure to fetch a log file can be rescheduled in the context
of a larger batch operation [90], while failure to fetch a
configuration file might halt an infrastructure setup. Crucially,
storage services are forced to treat each datum with the same
strict constraints; future research should consider whether
encoding expectations of availability can improve the effective
reliability of storage services. Studies that compare the usage
of different MIME types on object stores will also be useful.
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(a) Presence of ML services in architectures. The bar graph shows
the percentage of architectures that use the five most common ML
services. The grayed larger bar shows the percentage of architectures
that use at least one of the 11 ML services.
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(b) Popularity of storage services that interact with ML services.
The distribution is normalized against the number of architectures
having at least one ML service interacting with any storage service.
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(c) Breakdown distribution of ML services that interact with S3.
The distribution is normalized against the number of architectures
having at least one ML service interacting with S3.

Figure 8: The role of storage in ML services.

Summary S3 stores a wide spectrum of data, ranging from
logs to executable code. Outside customer data, DynamoDB
is often used for tracking metadata of the rest of the system.
Future work should categorize popular data formats and re-
quirements to better understand use-cases.

4.7 The Role of Storage in ML Services
The demand for intelligent products has risen dramatically over
the past decade, and cloud operators have answered that call
by spinning up multiple dedicated ML services. Cloudscape
captures 11 ML services used across all architectures (we
categorize a service to be ML using AWS’ classification [16]).
Figure 8a captures the presence of the five most popular ML
services. It is of note that 18% of all architectures use some ML
service. It is therefore important to study how such services
fit in the larger context of architectures, and how they interact

with the storage layer.
From Figure 8b, we observe that ML services prefer to read

from and write to S3 compared to other storage services. Given
this strong preference, Figure 8c focuses on the ML services
that interact with S3. SageMaker is a general-purpose model
training and inference platform, which provides some intuition
to its popularity and its use of S3 for reading training data and
storing models. Most of the other ML services are specialized
for language and video processing, e.g. Transcribe, Rekogni-
tion, and Textract. Such services often require their input data
to reside in S3 and store their output back in S3 as well [15].

Implications Understanding how ML services integrate
into larger cloud architectures is critical, as their adoption is
expected to increase significantly. S3 has become the de-facto
layer for holding training data. While research has mostly
focused on improving training performance by building
systems on top of object stores [53,69], future work that targets
object stores directly and selectively enables workload-aware
optimizations would have a considerable impact on platforms
like SageMaker and opensource alternatives [62]. Conversely,
it is also important to consider if popular formats used to store
training data (e.g. CSV, JSON, Parquet [4] and TFRecord [50])
fully exploit the properties of S3.

In the context of specialized ML services, S3 has also
become the layer for exchanging data between asynchronous
ML inference operations. As Cloudscape shows, cloud
architectures stitch together specialized compute, networking,
and storage services; we similarly expect more specialized ML
services to be included in the mix, instead of a single service
that handles all types of ML queries. Getting the interaction
layer right for these services is crucial for the next decade as
the adoption grows. Future research should question when this
interoperability layer requires replication or even durability.

Summary Object stores are used for storing training data,
models, and also the input and output for ML inference
services. Future research should study how to best design
cloud native storage formats, and question whether S3 is the
right API for providing interoperability between ML services.

4.8 Storage for Analytics Frameworks

Analytics is important for most architectures; indeed, Figure
9a shows that 42% of the architectures use some analytics
service. We define a service to provide analytics using AWS’
categorization [16]. Third-party services like Snowflake [29]
appear only in a few architectures, so we do not include them.
Understanding the current deployment practices of cloud
analytics services will help focus future efforts. For this, we
split the services into ones that provide batch or ad-hoc queries
and those that enable streaming analytics.

Athena, Glue, RedShift, OpenSearch and QuickSight
are the most popular analytics services that enable batch
and ad-hoc queries. We found that compute services often
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(a) Presence of analytics services in architectures. The bar graph
shows the percentage of architectures that use the most common
analytics services. The grayed larger bar shows the percentage of
architectures that use at least one of the 12 analytics services
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(b) Popularity of storage services read by analytics services. The
distribution is normalized against the number of architectures with
at least one batch service.
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(c) Popularity of storage services written by streaming services.
The distribution is normalized against the number of architectures
with at least one streaming service.

Figure 9: Storage for analytics frameworks.

directly write to RedShift and OpenSearch as these services
have dedicated data stores. However, the rest of the services
primarily read from storage services. Figure 9b shows these
batch analytics services mostly read from object stores instead
of pulling in data from other storage services.

Kinesis, Firehose, EMR, and MSK are the most popular
streaming analytics services. We found that these services
primarily receive data from compute services and write to
storage services. Figure 9c shows that services predominately
write to object stores instead of specialized data services.

Implications We found two broad classes of analytics stor-
age engines: vertically integrated analytics engines (Redshift,
and OpenSearch) that ingest the data, and remote-storage
centric analytics engines (e.g. Glue and Athena). Vertically
integrated analytics engines impose product-lockin; future
research focusing on narrowing the performance gap between
them and remote-storage engines is necessary to remedy this.
Open source file formats often used by remote-storage engines
lack rich tooling [43] that prevents data analysts from quickly

groking data. Future research that discusses how to provide a
rich library of thin tools similar to coreutils [41] would provide
a flexible alternative to frameworks.

Given the popularity of object stores as the data lake, it has
become important to consider cloud-native file formats. e.g.
many architectures use the Parquet [4] format which tightly
couples the data and metadata (e.g. minimum and maximum
values of columns) in a single file. As analytics engines read
metadata to prevent scanning the full data, this still results in
object accesses, which will interfere with S3 auto-tiering [9]
mechanisms that operate at a coarser object-level granularity.

Finally, writing processed data to object stores instead of spe-
cialized storage services suggests an underlying challenge de-
velopers face in effectively modeling their processed data. This
also often results in data duplicated in SQL/NoSQL services
for interactive querying and object stores for future analytics.

Summary Analytics services are used in almost half the
architectures. Services read primarily from S3, future work
should focus on minimizing data duplication and building
S3-specific file formats.

4.9 Storage-Adjacent Services
Cloud architectures often rely on services that are closely re-
lated to the storage layer. In this section, we examine three such
families of services: caches, queues, and container registries.
Caches improve the performance of the storage layer, queues
provide durable buffers between workflows, and container reg-
istries power containerized deployments by serving images.

ElastiCache is the sole caching service in Cloudscape.
Caches appear to be most suited for web systems, with over
70% of ElastiCache usage observed in Interactive architectures.
Among storage services, ElastiCache is primarily used to cache
responses from RDS. Overall, caching is more commonly em-
ployed by generalized compute services such as EC2, EKS, Far-
gate, and ECS, rather than stateless applications like Lambda.

For queuing, architectures use SQS, SNS, EventBridge, and
MSK. These services provide temporal yet durable storage for
messages and are designed for latency-sensitive production
and consumption patterns. We now analyze the prevalence
of these services and the common producers and consumers.

36% architectures use at least one messaging service.
SQS and SNS are the most popular ones, used in 67 and 46
architectures, respectively. Note that a single architecture
might utilize the same service multiple times, e.g. SQS
appears 87 times across 67 architectures. The fan-out of these
services is generally small: 53/87 cases of SQS, 19/47 cases
of SNS, 6/17 cases of EventBridge, and 5/12 cases of MSK
are single-producer-single-consumer. Among these 83 single-
producer-single-consumer use cases, there is a relatively flat
distribution of producer/consumer service pairs,with a long tail.
42 unique producer/consumer combinations were observed.
The most common pair is Lambda→Lambda with only 9 cases,
followed by S3→Lambda (6 cases) and EC2→EC2 (4 cases).
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In AWS, container images are hosted on the Elastic
Container Registry (ECR) service. Similar to the case of
EBS (§4.1), developers seldom mention ECR explicitly,
resulting in it being referenced in fewer than 5% architectures.
However, we can better estimate its usage by identifying
architectures that use ECS, EKS, or Fargate – all of which
involve running containers. Using this method, we find that
35% of architectures rely on ECR, making it an attractive
candidate for future research.

Implications We observe that Lambda rarely interacts with
caching services. Despite recent work demonstrating the
benefit of caching for serverless workloads [1, 65], traditional
caching services do not seem to be deployed. This likely
reflects the limitations of general-purpose caching services
in the context of serverless workloads, and motivates the need
for caching services integrated with serverless platforms [74].

On the other hand, Lambda is the most common consumer
for queueing services, used in 38% of SQS cases. Serverless
platforms must therefore optimize their invocation strategy
when triggered by queues. However, queues must balance
these optimizations, ensuring they do not favour Lambda at the
expense of other services. The diversity of producer/consumer
pairs highlights the broad range of usecases queues must serve;
indeed this shows that they are highly effective at combining
different types of asynchronous workflows.

Summary Caching services are primarily placed in front of
relational datastores. Most messaging services are operated in
a single-producer-single-consumer manner, but there is a large
distribution of services acting as producers or consumers. Con-
tainer registries power more than one-third of the architectures.

5 Discussion

From our study of cloud deployments, we now discuss the
future directions for research.

Open-source storage services and testbeds for the research
community Most cloud services are based on proprietary
closed-source software, which becomes an obstacle for system
researchers to conduct in-depth studies; as a result, the re-
searchers often need to build prototypes atop some open-source
alternatives. The major alternatives for S3 include MinIO [60],
Ceph [86], and SeaweedFS [55]. Among them, MinIO [60]
is the only system designed with S3-compatibility as its
primary goal, while Ceph [86] and SeaweedFS [55] expose S3-
compatible APIs despite different internal architectures. Given
the dominance of S3, the research community must pay more
attention to these object stores. Any functionality and reliabil-
ity discrepancy between S3 and these alternatives must also be
studied, as this impacts the transferability of new techniques
from open-source systems to real production systems like S3.

Alongside systems, the research community requires
representative testbeds. The popular microservice testbed

DeathStarBench [39] closely aligns with our findings. It uses
three different storage services: Redis, MongoDB, and Mem-
cached. Additionally, some workflows read from more than
one storage service, e.g. the ReadMovieReviews API reads
from MongoDB and Redis, consistent with our findings in
§4.3. However, DeathStarBench surprisingly does not use any
object store. Instead, static content is served via instances using
Lua scripts within nginx. We believe that a more representative
setup should instead use an open-source object store like
MinIO. Other serverless testbeds like vhive-serverless [82]
and FunctionBench [49] use object stores but do not use any
other storage service; researchers must therefore be careful
not to treat any single testbed as completely representative.

Developer rationale Cloudscape shows that S3 and Lambda
have seen strong adoption. Both services share several advan-
tages compared to their counterparts: they are cost-effective, re-
quire minimal developer oversight, and enjoy deep integration
with a host of other cloud services. However, as alternative stor-
age and compute services offer better performance for specific
use-cases, a qualitative study understanding developers’ rea-
sons for choosing particular services would be highly valuable.
As services vary in performance, price, and ease of use, under-
standing developers’ priorities would guide future research.

Simplifying seemingly simple APIs To effectively store
data at scale in S3, a developer must consider versioning,
storage classes, cross-region replication, permissions, lifecycle
rules, and more. Notably, we found several studies devoted
subsections of their architecture to ensuring proper manage-
ment policies were applied. Thus, while the S3 data access API
appears straightforward, much of its complexity lies within
the management API. Middleware and library solutions that
understand common needs and offer easily selectable policy
profiles for various workloads would benefit practitioners.

Optimal architectures in the face of ever-changing
infrastructure Modern cloud architectures are built on an
ever-changing wave of services built by cloud operators. The
high number of cloud services to learn about and select from
makes designing an optimal system exponentially harder. This
problem is exacerbated by the inability to pin cloud services
to specific versions. As cloud services constantly improve,
it results in gradual software rot even though the code and
product goals have not changed, e.g. S3 recently introduced
conditional writes [14], which would obviate key decisions
made by architectures built before this feature existed. Future
research that constantly evaluates workloads and changing
service capabilities and suggests surgical changes to the
architecture would be useful. Such models can unearth
cross-service optimizations that would otherwise require a
developer to be up-to-date about all services.

As the usage of specialized services increases, data
increasingly hops through multiple systems before com-
pleting a logical workflow. This exposes the need to enable
cross-service consistency, which the community has started
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considering actively [36, 81]. Further, having data cross
multiple service boundaries raises security and compliance
concerns, which need to be tackled per service. While systems
exist that enable security for individual cloud services [2, 46],
we lack systematic cross-service integration. Thus, future
research should evaluate the benefit of having services
describe consistency and security SLAs in their API.

6 Related Work

Previous work has studied real-world systems with different
focuses. Google [71] published an analysis of their clusters
in 2012, revealing the highly dynamic and heterogeneous
nature of workloads. More recently, Guo et al. [42] and Liu
and Yu [54] analyzed production traces from Alibaba data
centers to understand resource utilization and characterize
workload colocation. These studies focus on the overall
resource consumption pattern instead of how these systems
are used and interact with each other.

The interaction among large-scale production systems has
been studied but on the lower stack of the infrastructure and
mostly from cloud service providers’ perspective. Huye et
al. [45] studied the microservice architectures within Meta’s
data center, analyzing the topology and flows of microservices,
as did Luo et al. [57] for Alibaba. Google released a character-
ization of RPCs in their infrastructures [77]. Many distributed
storage systems, e.g., GFS [40], F4 [64], Haystack [23],
Tectonic [68], were built based on the company-internal
observation of usage patterns but are primarily used for private
cloud with internal customers, not for public cloud.

Earlier studies examining public cloud usage patterns
primarily focus on compute services, such as serverless com-
puting [70, 78] and MLaaS [87]. In contrast, our work studies
the usage of public cloud storage services from the users’
perspective. A related dataset that provides insights into cloud
service usage is the StackOverflow dataset [80], although it
does not easily allow an understanding of service interactions.
On analyzing the AWS tags in this dataset, we found S3, EC2,
and Lambda tags to be the most common, significantly more
popular than the rest. This observation aligns with our findings
(Figure 3b) and reinforces the validity of our dataset.

7 Conclusion

We present Cloudscape, a large-scale dataset describing
real-world architectures deployed on AWS. Our analysis of
deployed storage services reveals a high adoption of S3 and
the use of multiple services to meet the storage needs of an
architecture. We find that storage services are used for a wide
range of semantically distinct data and play a crucial role in
specialized ML and analytics services.

The research community would benefit from understanding
object store workloads and tracking the lifecycle and move-

ment of objects. As architectures become more heterogeneous
and storage services become loosely tied with both storage
and non-storage services, it is worth exploring how storage
services can adapt to this evolving landscape.

We hope our analysis informs future storage research
and that our dataset enables future studies on other crit-
ical classes of services. The dataset is made available at
https://github.com/WiscADSL/Cloudscape.
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A Artifact Appendix

Abstract
Cloudscape is a dataset of 396 publicly described cloud
architectures, capturing the usage and interaction of services
in each architecture.

Scope
The artifact includes a Jupyter notebook that reproduces the
claims of this paper and is useful for understanding how to
query the dataset. We hope the dataset will facilitate future
studies on the composition of cloud architectures and other
services not covered in our paper.

Contents
The dataset is a collection of GraphML files. Each architecture
is encoded in the GraphML format as a MultiDiGraph.
The nodes of the graph correspond to services, and edges
indicate service interaction. The artifact package contains
a README.md file which describes the additional attributes
associated with each graph, node, and edge.

Apart from a Jupyter notebook that replicates results
presented in this paper, the artifact includes an interactive
web-based explorer for the architecture diagrams.

Hosting
The artifact is available at https://github.com/wiscADSL/
Cloudscape on the master branch (#572a151).
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