
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

MadFS: Per-File Virtualization for
Userspace Persistent Memory Filesystems

Shawn Zhong, Chenhao Ye, Guanzhou Hu, Suyan Qu, Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau, and Michael Swift, University of Wisconsin–Madison

https://www.usenix.org/conference/fast23/presentation/zhong

https://www.usenix.org/conference/fast23/presentation/zhong

MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems

Shawn Zhong∗ Chenhao Ye∗ Guanzhou Hu Suyan Qu
Andrea Arpaci-Dusseau Remzi Arpaci-Dusseau Michael Swift

University of Wisconsin–Madison

Abstract
Persistent memory (PM) can be accessed directly from
userspace without kernel involvement, but most PM filesys-
tems still perform metadata operations in the kernel for secu-
rity and rely on the kernel for cross-process synchronization.

We present per-file virtualization, where a virtualization
layer implements a complete set of file functionalities, in-
cluding metadata management, crash consistency, and con-
currency control, in userspace. We observe that not all file
metadata need to be maintained by the kernel and propose
embedding insensitive metadata into the file for userspace
management. For crash consistency, copy-on-write (CoW)
benefits from the embedding of the block mapping since the
mapping can be efficiently updated without kernel involve-
ment. For cross-process synchronization, we introduce lock-
free optimistic concurrency control (OCC) at user level, which
tolerates process crashes and provides better scalability.

Based on per-file virtualization, we implement MadFS, a
library PM filesystem that maintains the embedded metadata
as a compact log. Experimental results show that on concur-
rent workloads, MadFS achieves up to 3.6× the throughput of
ext4-DAX. For real-world applications, MadFS provides up
to 48% speedup for YCSB on LevelDB and 85% for TPC-C
on SQLite compared to NOVA.

1 Introduction

Persistent memory (PM) is a promising candidate for next-
generation storage devices. PM DIMMs are connected on the
memory bus and deliver near-DRAM performance while per-
sisting data across power-offs. They create new opportunities
for building storage systems.

With revolutionary hardware available, the software stack
needs to evolve accordingly. Traditional kernel filesystems
require I/O operations to cross the user-kernel boundary and
go through layers of the storage stack, introducing signif-
icant software overhead. In response to this observation,

*Both authors contributed equally to this work.

many PM filesystems have been proposed to perform I/O
in userspace [5, 8, 12, 25, 30, 41, 43]. The challenge is that a
userspace process is untrusted and unreliable: it could cor-
rupt metadata and threaten filesystem integrity; it could crash
in a shared critical section, blocking other processes. These
realities impose challenges for metadata operations and shar-
ing. Existing userspace filesystems bypass the kernel for data
operations, but typically still rely on the kernel for metadata
management [5, 8, 25, 30] with its inefficient storage stack.
In terms of sharing, most userspace filesystems either do not
support cross-process sharing [8] or rely on a kernel-granted
lease [5, 12, 30].

To address these challenges, we introduce per-file virtual-
ization, where a complete set of file functionalities, including
metadata management, crash consistency, and concurrency
control, are implemented in a userspace virtualization layer
and managed on a per-file basis for regular files. For userspace
metadata management, we observe that some metadata are pri-
vate to each file and have a similar trust model to the file data.
Thus, we propose metadata embedding, where insensitive
metadata (e.g., block mapping and file size) are embedded
in the file. This enables efficient metadata management in
userspace without sacrificing permission enforcement. In par-
ticular, embedding block mapping provides additional benefits
when copy-on-write (CoW) is used for data crash consistency.
For a process with memory-mapped files, existing kernel-
level CoW requires updating the page table on file writes,
causing expensive TLB shootdowns. With metadata embed-
ding, the block mapping can be changed entirely in userspace
without kernel involvement. To support cross-process concur-
rency control, we use the file data itself as the communication
medium and implement non-blocking synchronization. This
design simplifies the failure model and provides better con-
currency than locks.

Based on per-file virtualization, we present MadFS1, a li-
brary filesystem for persistent memory that provides strong
data crash consistency and linearizable concurrency control

1MadFS stands for metadata embedded filesystem.

USENIX Association 21st USENIX Conference on File and Storage Technologies 265

in userspace. MadFS requires no modification to the kernel
or application and can run on top of any direct access (DAX)
filesystem with mmap support (e.g., ext4-DAX). To provide
strong data crash consistency, MadFS performs CoW on data
updates. MadFS introduces a level of indirection that maps
virtual blocks seen by applications to logical blocks backed
by the underlying kernel filesystem. This block mapping is
embedded in the file for efficient userspace CoW and main-
tained as a log for crash consistency. We implement lock-free
optimistic concurrency control (OCC) to support concurrent
access to the same file cross processes. Specifically, a writer
tentatively makes changes in a private workspace. Before
committing to the log, the writer detects conflicts by checking
the movement of the log tail, and partially redoes the changes
if necessary. Compared to lock-based approaches, concurrent
readers and writers would not block each other even with
overlapping ranges, thus achieving better scalability.

We evaluate MadFS using a variety of microbenchmarks
and macrobenchmarks. MadFS achieves up to 3.6× through-
put for ext4-DAX on concurrent microbenchmarks. For Lev-
elDB running YCSB workload, MadFS provides up to 48%
improvement over NOVA. TPC-C workloads over SQLite on
MadFS outperform NOVA by 85%.

This paper makes the following contributions:
• We present per-file virtualization, where a virtualization

layer implements a complete set of file functionalities, in-
cluding metadata management, crash consistency, and con-
currency control, entirely in userspace.

• We introduce metadata embedding as a novel metadata man-
agement technique for userspace filesystems. Embedding
insensitive metadata in the file enables efficient modifica-
tion in userspace.

• In particular, when CoW is used for data crash consistency,
we propose embedding the block mapping, which allows it
to be updated without the kernel modifying the page table.

• We introduce lock-free optimistic concurrency control
(OCC) for userspace cross-process synchronization, which
tolerates process crashes and achieves better scalability.

• Based on per-file virtualization, we present MadFS, a library
PM filesystem that maintains the embedded metadata as
a compact log. The source code of MadFS is available at
https://github.com/WiscADSL/MadFS.

• We evaluate MadFS using microbenchmarks and mac-
robenchmarks to show that it provides high throughput for
both single-threaded and multi-threaded workloads.

2 Background and Motivation

Persistent memory (PM) is an emerging hardware technol-
ogy that provides durability with DRAM-like latency. PM is
considered both a new generation of denser memory and a

high-performance storage device. In this paper, we explore
the storage aspect of PM.

The byte-addressability of PM, like DRAM, enables CPUs
to directly read/write data through load/store instructions.
After data is stored in a memory location, it may still reside in
the CPU cache, so one needs to flush the cache line explicitly
(e.g., via clwb or clfushopt) for persistence. Alternatively,
non-temporal stores (e.g., movnti) can be used to persist data
directly, bypassing the CPU cache. For ordering constraints,
a memory fence (e.g., sfence) is needed to serialize memory
instructions.

One of the commercially available PM products is Intel
Optane Persistent Memory [1]. Intel announced the winding
down of the Optane business in Q2 2022 [10]. This work is
not specific to Intel Optane PM. We only require that the PM
is byte-addressable and applications can directly access the
data stored on the PM via memory-mapped I/O.

There has been a rich set of work on building more efficient
filesystems for PM. In this section, we broadly classify them
into userspace and kernel filesystems and then discuss their
challenges in metadata management, crash consistency, and
concurrency control.

2.1 Filesystems for Persistent Memory
Kernel filesystems. Mature Linux filesystems such as ext4
and XFS introduce direct access (DAX) mode [7, 42], which
bypasses the page cache and allows applications to directly
access file data stored on PM via memory-mapped I/O. These
DAX filesystems only ensure metadata consistency in the
presence of failures, while the responsibility of maintaining
data consistency on memory-mapped regions falls on the ap-
plications. There are also research kernel filesystems designed
for PM. BPFS [9] uses a tree layout similar to WAFL [23]
and avoids cascading CoW via short-circuit shadow paging.
PMFS [14] combines atomic in-place updates, journaling, and
CoW to support efficient crash consistency, and also advocates
the use of huge pages to reduce paging costs. NOVA [45] im-
plements log-structured metadata for each file and CoW data
crash consistency.

Userspace filesystems. With ultra-fast hardware, software
overhead becomes non-trivial. Thus, many PM filesystems
have proposed to bypass the kernel [5, 8, 12, 25, 30, 41, 43].
FLEX [43] calls mmap after open and intercepts data opera-
tions to handle them in userspace via memory instructions.
SplitFS [25] similarly handles data operations in userspace
with memory-mapped I/O but relies on a modified ext4-DAX
for metadata operations. It introduces a new system call
relink, which reassigns data blocks from one file to another.
For append operations, SplitFS redirects data to a temporary
staging file and invokes relink on fsync to publish the
newly written data to the target file. Libnvmmio [8] builds on
memory-mapped I/O and equips each block with a journal to
provide scalable crash-consistent I/O.

266 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/WiscADSL/MadFS

2.2 Challenges in Metadata Management

Metadata safety is critical to filesystem integrity. In kernel
filesystems, metadata is managed exclusively by the kernel for
security reasons. A major challenge of userspace filesystems
comes from untrusted libraries. Thus, many of them still rely
on the kernel for metadata management (e.g., SplitFS [25],
Strata [30], and KucoFS [5]). Unfortunately, data operations
can be tightly coupled with metadata operations, defeating the
purpose of kernel bypassing and leading to lower performance.
For example, SplitFS appends data to a staging file, but still
requires the relink system call to swap the data blocks from
the staging file to the target one on each fsync.

A few filesystems also bypass the kernel for metadata op-
erations. Aerie [41] provides applications with direct access
to PM for reading/writing data and reading metadata, while
metadata updates are handled by a trusted filesystem service
via socket-based remote-procedure call (RPC). One draw-
back of this approach is that RPCs are expensive and incur
the overhead of context switches. Aerie uses batching to re-
duce the number of RPCs at the cost of visibility. ZoFS [12]
introduces a new abstraction called coffer. The dentries, in-
odes, and data blocks for a directory subtree are stored in a
coffer if they share the same permission. ZoFS relaxes the
protection domain from file to coffer and relies on the Intel
Memory Protection Key (MPK) hardware for security. Due to
hardware limitations of MPK, the number of simultaneously
memory-mapped coffers cannot exceed 15.

2.3 Challenges in Crash Consistency

Crash consistency is critical to filesystems. PM only guaran-
tees the atomicity of a single 64-bit store, so filesystems need
to build their own constructs for crash consistency.

To ensure metadata crash consistency, PM filesystems com-
monly use journaling [5,14,25,30,41,42]. Kernel filesystems
adapted for PM, such as ext4-DAX, rely on Linux journaling
block device (JBD) [28] for metadata journaling. However,
JBD was designed with block devices in mind and writes in
whole blocks, causing write amplification [4,43]. SplitFS also
uses JBD for the crash consistency of relink and suffers the
same problem. Many filesystems tailored for PM leverage
the byte-addressability to persist journal/log entries with a
finer granularity [14, 45]. NOVA equips each inode with a
private log. Cross-file updates are implemented via journaling
to update multiple log tails. BPFS [9] uses CoW for metadata
updates. SoapFS [13] and ZoFS [12] employ soft update [15]
for metadata crash consistency.

For data crash consistency, CoW is commonly used [5, 9,
14, 25, 45]. However, CoW has two major drawbacks when
used with memory-mapped I/O. First, huge pages have been
shown to have significant performance improvements for PM
filesystems due to fewer page faults, less TLB shootdown,
and shorter page table walk [14, 24, 25]. However, an open

issue brought out by PMFS is that CoW does not work well
with huge pages: the granularity of CoW is coupled with the
page size, which for huge pages is 2 MB or 1 GB on x86-
64. Writing to a sub-page results in copying the entire page,
causing significant write amplification [14]. SplitFS’s relink
changes the block mapping at the granularity of 4 KB blocks.
This breaks the contiguity of the file on the physical PM and
thus prevents the use of huge pages [24].

Second, in addition to huge pages, kernel-level CoW causes
expensive TLB shootdowns [2,3,8,40]. During CoW, the page
table should be updated so that the virtual address region is
backed by the new pages. The kernel needs to flush the TLB
on the local core, send an inter-processor interrupt (IPI) to the
other cores to flush the remote TLB, and wait for all cores
to finish. The whole process can take several microseconds
to complete [40], which is expensive for PM devices with
sub-microsecond latency [47].

Another option for data crash consistency is data journal-
ing. Strata [30] allows applications to write to a private log in
PM and relies on the kernel to digest the data to a slower stor-
age device. Libnvmmio [8] equips each block with a journal
and implements background checkpointing. In general, data
journaling faces the issue of double writes. Both Strata and
Libnvmmio make the digestion/checkpointing asynchronous
to remove it from the critical path at the cost of visibility.

Some PM filesystems do not provide data crash consistency,
including ext4-DAX, FLEX, PMFS, Aerie, and ZoFS. In this
case, applications have to detect and react to inconsistent file
data upon failures. Previous studies [35, 36] have shown that
many applications fail to handle inconsistent data correctly.
Data crash consistency is a desirable property for filesystems
if the overhead is acceptably low.

2.4 Challenges in Concurrency Control

For kernel filesystems, the kernel itself acts as a single cen-
tralized entity for synchronization. The inode lock ensures
that only one thread is operating on the same file at a time.
For userspace filesystems, however, concurrency control is
challenging, especially in cross-process cases. For example,
a process could crash while holding a lock, blocking other
processes. To prevent this situation, the lock must be visible
to the kernel so that the kernel can release it after a crash
(e.g., robust mutex [27]). This introduces additional kernel
involvement and can cause processes to sleep on the critical
path of data operations.

As a result, most userspace PM filesystems either do not
support cross-process synchronization [8] or use lease-based
locking [5, 12, 30, 41]. Aerie implements a lock service in the
filesystem service. Each application process is equipped with
an additional clerk thread to communicate with the lock ser-
vice and synchronize with others. In Strata and ZoFS, leases
are granted by the kernel. KucoFS uses a two-level locking
scheme with kernel-granted leases for inter-process synchro-

USENIX Association 21st USENIX Conference on File and Storage Technologies 267

nization and userspace range locks for intra-process synchro-
nization. In all these cases, there exists a centralized coordi-
nator to manage leases. This adds communication overhead
when multiple processes access the same file concurrently.

The lease timeout is another source of complexity. Timeout
relies on the assumption about the maximum completion time
of an operation, which could be unsafe. For example, a writer
starting with a valid lease can finish with the lease expired. In
this case, other threads will see partial data. A write operation
can take an arbitrarily long time to complete due to kernel
CPU scheduling or large I/O sizes. This will cause correctness
issues with lease-based locking.

3 Per-File Virtualization

To address these challenges, we propose per-file virtualization,
where a userspace virtualization layer implements a complete
set of file functionalities, including metadata management,
crash consistency, and concurrency control, on a per-file basis
for regular files.

Kernel-bypassing with metadata embedding. We observe
that some of the file metadata (e.g., block mapping and file
size) are private to each file, and share the same protection
domain as the file data. This allows us to embed a subset of
the metadata directly into the file to avoid the slow kernel I/O
stack for certain metadata operations, especially those that
are tightly coupled with data operations (e.g., CoW changing
block mapping). Compared to other techniques for userspace
metadata management, this method neither relies on a trusted
entity as in Aerie nor expands the protection domain beyond
a file as in ZoFS. Permission-related metadata (e.g., access
mode, owner, and group) must not be embedded. The kernel
filesystem shall still manage the permission and enforce ac-
cess control when a file is opened. Metadata embedding does
not apply to directories since the hierarchical structure must
be visible to the kernel to enforce access control. We leverage
the mature constructs of the kernel to handle directory opera-
tions, while the virtualization layer manages the embedded
file metadata and ensures its crash consistency.

Decoupling of block- and memory-mapping for CoW.
Embedding block mapping, in particular, enables efficient
userspace block management since the embedded block map-
ping can be modified independently from the memory map-
ping. This provides two major benefits when using CoW for
data crash consistency. First, the granularity for CoW is no
longer associated with huge page sizes. CoW can operate at
block granularity within the file, while the kernel still sees the
file as a contiguous region on the PM. This allows the usage
of huge pages during mmap. Second, block mapping updates
can be done in userspace via store instructions. The kernel no
longer needs to modify the page table. The nanosecond-level
cache coherence protocol [18, 33] ensures cross-core consis-
tency as opposed to microsecond-level TLB shootdown [40].

Non-blocking concurrency control. The embedding of meta-
data brings new opportunities for concurrency control in
userspace. As a file is now a self-contained entity with both
metadata and data stored in it, processes that memory-map
the same file can use the shared PM region for cross-process
synchronization, without relying on external entities. We ar-
gue that locking is not a good candidate for cross-process
synchronization, as the lock owner can crash in the middle of
a critical section. Detecting the lock owner’s crash without
the kernel is difficult if not impossible. Instead, we propose
to use atomic primitives (e.g., compare-and-swap) to imple-
ment non-blocking synchronization, where the suspension or
crash of a single process does not prevent others from making
progress [19–21]. In this way, inter- and intra-process concur-
rency control is handled uniformly, and the failure model is
greatly simplified. Non-blocking synchronization also brings
better concurrency, since operations do not block each other,
even with overlapping ranges.

Summary. With per-file virtualization, we aim to push file
functionalities into userspace as much as possible. Metadata
embedding bypasses the kernel for metadata management.
Embedding block mapping enables efficient userspace CoW
for crash consistency. Non-blocking synchronization allows
cross-process concurrency control to be enforced without
kernel involvement. All the techniques are applied on a per-
file basis and there is no global data structure.

4 MadFS: Design and Implementation

Based on per-file virtualization, we implement MadFS, a
userspace library filesystem overlaid on top of any DAX ker-
nel filesystem supporting mmap (e.g., ext4-DAX). It intercepts
POSIX I/O calls and requires no modifications to the applica-
tion. MadFS memory-maps the file on open, so subsequent
data operations (e.g., read and write) can be handled in
userspace via load and store. MadFS provides data crash
consistency through CoW. It embeds metadata in the file to
avoid kernel crossing for block mapping updates and delivers
instant visibility. MadFS employs lock-free optimistic concur-
rency control to provide high concurrency with cross-process
linearizability.

The architecture of MadFS is shown in Figure 2. A MadFS
file is a self-contained file on the underlying DAX filesys-
tem. Upon file creation, MadFS creates the file on the kernel
filesystem and initializes the basic structure to identify itself
as a MadFS file. The following discussion assumes operations
on the same file.

Embedded block map (§4.1). We introduce a level of indirec-
tion that maps virtual blocks seen by applications to logical
blocks managed by the underlying kernel filesystem. We call
this indirection the block map. The block map is embedded
in the file, which allows MadFS to efficiently handle CoW
operations in userspace.

268 21st USENIX Conference on File and Storage Technologies USENIX Association

Bitmap Data BlocksBlock Map &
Virtual File Size

Logical Blocks 2 - 1023Logical Block 0 Logical Block 1
Figure 1: A naive approach for metadata embedding (§4.1)

Compact log-structured metadata (§4.3). To ensure the
metadata crash consistency, we maintain the block map as a
log persisted in the file. Each block map update is described
by a compact 8-byte log entry. For a write operation, MadFS
writes to pre-allocated blocks and copies unaligned parts from
existing blocks if necessary. MadFS then generates a log entry
describing the block map update and finally commits the write
by appending the entry to the log. The word-sized (8-byte)
log entry ensures the atomicity of the log append and allows
for a lock-free concurrency control algorithm.
Lock-free optimistic concurrency control (§4.4). MadFS
supports concurrent access to the same file across threads
and processes. To achieve high scalability, MadFS employs
lock-free optimistic concurrency control (OCC). Concurrent
writers do not block each other and are linearized during the
log commit. In the case of range overlap, the later writer will
detect the conflict during the commit, partially redo the write
as needed, and retry the commit. The reader similarly detects
overlap and guarantees that it never returns half-written data.
Security. In MadFS, access permission is still enforced by
the underlying kernel filesystem during open. To launch an
attack, a malicious actor must have permission to write to
the file. In this case, the actor could alter the block map,
causing others to read the wrong blocks, but this is no different
from a traditional filesystem where the actor can directly
overwrite file data. For metadata integrity, MadFS treats files
as untrusted input and gracefully returns an error on ill-formed
files. Furthermore, due to per-file virtualization, the effect of
metadata corruption is contained within the file. Similar to
other filesystems [12], MadFS does not prevent denial-of-
service attacks if the attacker keeps writing to the file.

4.1 Metadata Embedding
To illustrate how metadata embedding allows MadFS to by-
pass the kernel I/O stack for metadata management, consider
a naive design shown in Figure 1. We will later build on this
design to add more functionalities.

We denote the blocks backed by the underlying kernel
filesystem as logical blocks. In this example, the file contains
1024 logical blocks. The first two blocks store metadata; the
rest are data blocks, some of which can be unused. We intro-
duce a level of indirection that maps the virtual blocks seen by
applications to logical data blocks: an application reading the
first 4 KB gets the data in the first virtual block, which resides
in some logical block. This indirection is maintained in the
block map as an array of integers. If the virtual block index
i maps to logical block index j, then the i-th element of the
array is j. The virtual file size is the size seen by the applica-
tions, and the logical file size is the size occupied on the kernel

File on a DAX FSFile on a DAX FSA Single File on a Kernel DAX-Filesystem

POSIX Application

open [p]read [p]write

open mmap fstatfallocate

[f]stat

MadFS
Virtual Blocks:

Logical Blocks:

Block Mapping:

A’ B C D

A B C D A’Sb Lg

E

EEx ?
Userspace

Kernel

close

 Superblock Log Extended Log Data UnusedSb ExLg D ?

Shared
Memory

close

Figure 2: The architecture of MadFS. The application sees
virtual blocks, which are mapped to the logical blocks backed
by the kernel filesystem.

filesystem, which is 4 MB in this example. The bitmap indi-
cates whether a data block is in use or not. Security-sensitive
metadata is not embedded and is still managed by the kernel.

The embedding of the block map enables MadFS to per-
form CoW efficiently in userspace. A write operation pro-
ceeds in the following steps: 1 allocate blocks from the
bitmap, 2 write the user buffer to the allocated blocks and
copy unaligned parts of existing blocks if any, 3 update the
block map along with the virtual file size, and 4 return the
old blocks to the bitmap.

In this example, we bypass the kernel I/O stack for write
and avoid changing the memory mapping for CoW. How-
ever, it only considers a file with fixed logical size (§4.2) and
does not ensure metadata crash consistency (§4.3) or enforce
concurrency control (§4.4).

4.2 Block Management

To facilitate the dynamic growth of the logical file size, we
allow the metadata to be stored anywhere in the file. Figure 2
shows the layout of a MadFS file. The metadata is maintained
as a log. We will discuss the log structure in detail in §4.3.
For the block layout, there are 5 types of logical blocks:

Sb Superblock is the first block, which contains a magic
number that identifies MadFS files and a pointer to the
first log block.

Lg Log blocks consist of an array of fixed-size log entries,
each corresponding to a metadata update (§4.3). Each
log block also carries a pointer to the next one, forming
a linked list (Fig. 3).

Ex Extended log blocks store extended log entries, which
contain additional information about a metadata update
that does not fit into the fixed-size log entry (§4.3).

D Data blocks contain the user data. Each virtual block
seen by the application is backed by a logical data block.

? Unused blocks are blocks that are not referenced by the
block map. They appear due to pre-allocation from the
kernel filesystem and garbage collection (§4.5).

USENIX Association 21st USENIX Conference on File and Storage Technologies 269

The rest of this section explains the block allocation mecha-
nism. MadFS stores a per-file bitmap in shared memory for
coarse-grained coordination. Each thread maintains a local
free list as a cache to avoid frequent accesses to the bitmap. To
grow the underlying file from the kernel filesystem, hugepage-
aware pre-allocation is used to reduce kernel involvement and
minimize page faults.

Per-file bitmap in shared memory. Unlike the example in the
previous section (Fig. 1), we no longer persist the bitmap on
PM, since we can derive from the log whether a logical block
is in use or not. Keeping the bitmap as a soft state is common
in log-structured filesystems [37, 45] to simplify crash consis-
tency. We maintain the per-file bitmap information in shared
memory to coordinate block allocation across processes. If a
process opens a file without a bitmap, it constructs the bitmap
according to the log. More details about the shared memory
initialization are explained in Section 4.6. Blocks are allo-
cated from the bitmap using atomic compare-and-swap (CAS)
instructions for lock-free concurrent operations. This implies
that the maximum number of contiguous logical blocks we
can allocate at a time is 64.

Thread-local free list. The bitmap is accessed by multi-
ple threads, possibly from different processes. To avoid con-
tention, each thread reserves a free list of blocks. They are not
referenced by the block map but are still marked as “taken”
in the bitmap. When a thread attempts to allocate new blocks,
it first allocates from the local free list; if unavailable, it falls
back to the bitmap. When a block is freed, instead of immedi-
ately returning it to the bitmap, the block is temporarily kept
in the free list. This way, an overwrite-intensive thread keeps
reusing the blocks in the local free list and rarely allocates
from the shared bitmap. The reserved blocks are returned to
the bitmap when the file is closed. In rare cases, a process may
crash before the reserved blocks are returned. This results in
a temporary leak and the blocks can be reclaimed the next
time the bitmap is constructed (§4.6).

Hugepage-aware pre-allocation. So far, the allocation mech-
anism only guarantees that two threads do not get the same
block, but the blocks may not actually be backed by the ker-
nel filesystem. When a block is allocated, the logical block
index is returned. Later, when the logical index needs to be
converted to a memory address for writing, MadFS checks to
see if the block is backed. If not, MadFS calls the fallocate
syscall to grow the file to a multiple of 2 MB and memory-
maps the newly allocated region2. The same technique is also
used during file creation. Pre-allocation amortizes the cost of
kernel involvement, and the choice of 2 MB takes advantage
of the huge page support in Linux to reduce page faults and
TLB misses. Note that CoW does not break the contiguity
of the huge page since it only changes the virtual mapping,
which is agnostic to the kernel filesystem.

2fallocate and mmap are safe to race. fallocate is idempotent and
commutative. mapp supports multiple mappings of the same physical region.

LE LE LE

8B Log Entry

LE···LELELE

4KB Log Block

LE

Blocks Unaligned SizeVirtual Idx Logical IndicesNext
0 16 48 60 96 variable length

≥16B Extended Log Entry

LE

Log Tail

1 # Blocks Virtual Idx Logical Idx
0 631 7 35

❶ Inline Entry
0 Block Idx Offset Unused

0 631 33 41

❷ Indirect Entry

Figure 3: Layout of the log-structured metadata (§4.3). A
metadata update is described as either an inline log entry or
an indirect log entry pointing to an extended log entry.

4.3 Compact Log-Structured Metadata

In MadFS, a write triggers a block map update, which may
span multiple blocks. A write may also expand the virtual file
size, which must be modified along with the block map. There-
fore, some mechanism is needed to ensure metadata crash
consistency. One common choice is journaling. However,
journaling is not suitable for non-blocking synchronization
because checkpointing requires mutual exclusion. Instead, we
structure the metadata as a sequence of log entries, each cor-
responding to a metadata update. We designed the log entry
to be the size of a CPU word (8 bytes) to ensure atomicity
and to allow lock-free concurrency control (§4.4).
Log entry layout. As shown in Figure 3, there are two types
of 8-byte log entries: 1 An inline log entry is used to rep-
resent updates of less than or equal to 64 blocks, which is
the maximum number of contiguous logical blocks that the
allocator can provide (§4.2). Each inline entry has three fields:
a starting virtual block index, a starting logical block index,
and the number of blocks the write spans. The three fields
together describe a range of virtual blocks mapped to a range
of contiguous logical blocks. 2 An indirect log entry is for
more complex updates. It carries a pointer to a variable-length
extended log entry that contains a virtual block range and an
array of logical block indices. A write operation with more
than 64 blocks will be broken down into multiple allocations,
each with a logical index in the extended entry. The unaligned
size describes the number of bytes in the last block, which is
used to compute the virtual file size. The next field makes it
possible to chain multiple extended entries together.

In-memory block table. Because the metadata is now struc-
tured as a log, we can no longer directly query the block
map and the virtual file size. We use a per-process DRAM
data structure called the block table to maintain this informa-
tion. The block table is constructed when a file is opened by
scanning through all the log entries. During a read or write,
it is queried to obtain the virtual file size and to translate a
virtual block index to a logical one. After a new log entry
is appended to the log, block table is updated to reflect the
metadata update. In the event of a failure, MadFS does not
require an explicit recovery phase: the atomicity of the log

270 21st USENIX Conference on File and Storage Technologies USENIX Association

commit is guaranteed by the CPU’s 8-byte atomic store, and
the log replay during open always puts the block table in a
consistent state. We will discuss the concurrency model of
the block table later in Section 4.4.

Example. A write operation proceeds in MadFS as fol-
lows: 1 Allocate new data blocks from the local free list
or the bitmap. The writer thread also ensures that the allo-
cated blocks are backed by the underlying filesystem and
mapped to memory. 2 Copy the user buffer and unaligned
portions to the newly allocated blocks. 3 Prepare a log entry
describing the block map changes. 4 Append the entry to the
log to publish this write. 5 For overwrites, return the old data
blocks to the local free list for recycling.

4.4 Lock-Free Concurrency Control
MadFS supports cross-process sharing with immediate visi-
bility and guarantees linearizability under concurrent access.
To achieve these goals, MadFS uses optimistic concurrency
control (OCC) [29]. In this section, we explain the concur-
rency model of the block table, introduce our lock-free OCC
protocol, and then discuss the benefits of OCC.

Concurrency model of the block table. The block table is
shared across threads within the same process and operates in
a single-writer multi-reader manner. For cross-process visi-
bility, before any data operations, MadFS first checks if the
log tail has been moved by other processes. If so, it applies
newly committed entries to the block table to keep it up-to-
date. Within a single process, only one thread can apply new
entries at a time, since this procedure would not benefit from
having multiple threads doing the same job. Querying the
block table is non-blocking, but the thread may see an incon-
sistent block table if another thread is concurrently updating it.
This is not a problem, since such inconsistency can be caught
by our OCC protocol described below.

Lock-free OCC. In database literature [29, 48], an OCC pro-
tocol typically takes place in the following four phases:
1. Begin: Record the begin timestamp for later validation.
2. Execute: Read and modify data in a private workspace.
3. Validate: Check if data read have been modified by others.
4. Commit: Publish the modified data to make them visible.
Compared to lock-based concurrency control, OCC avoids
locking the data during the execution phase. However, the
last two phases must be executed in a critical section to avoid
race conditions, and locks are still used to protect the critical
section [29,31,39,48]. In MadFS, the log-structured metadata
makes it a good fit with OCC. The monotonically increasing
log tail naturally serves as a timestamp. The word-sized log
entry can be committed atomically to the tail via compare-
and-swap (CAS), ensuring the atomicity of the validate and
commit phases and making the OCC protocol lock-free.

Concurrent writers. A writer first updates the block table
and records the current log tail for later validation. It then

❺ ··· LE1 LE2LE LE3

 Tail

❸ ··· LE1 LE2LE

 New Tail

❶ ··· LE

 Recorded Tail

A B

A2 B2

Virtual
Logical

❹

buf B2

A B

A1 B1

Virtual
Logical

❷

buf B1 Old Tail❌

Figure 4: Concurrent writers example (§4.4). Each rep-
resents an 8-byte log entry. Extended log entries are omitted.
Each represents a 4 KB data block.

performs CoW and generates an 8-byte log entry. The writer
thread attempts to commit the entry to the recorded tail via
CAS. If the recorded tail still points to an empty entry, then
the CAS can successfully commit the entry. Otherwise, the
tail has been moved, and the current thread needs to check
for conflicts. A log entry conflicts with the current one if it
modifies the unaligned parts copied during CoW. If there is
no conflict, the thread simply recommits the log entry to the
new tail. Otherwise, the writer recopies the unaligned parts
modified by the conflicting log entry and recommits. Note
that the unaligned parts copied do not exceed two blocks.

Concurrent readers. A reader also starts by updating the
block table and recording the log tail. The reader then copies
these blocks to the user buffer. After the copy, if the tail has
moved and the added log entries overlap with the range the
current thread is reading, the current thread needs to copy the
data again. Since the old data blocks are immediately recycled
during write (§4.2), the reader must validate up to the latest
log tail, so that the blocks read holds valid data.

Example. Figure 4 shows an example of concurrent writers.
Suppose a file starts with two virtual blocks A and B with
initial contents A1 and B1. A writer wants to pwrite 6 KB of
data at offset 0 while other threads are concurrently writing
to the same file. 1 We first update the block table and record
the current log tail. 2 The writer does a CoW and generates
a log entry to commit. 3 When the thread tries to commit to
the recorded log tail via CAS, it finds that the tail has been
moved. 4 Suppose LE1 remaps block A to A2 and LE2 remaps
B to B2. Although both log entries overlap with the current
write, the thread only needs to recopy the unaligned part of B2.
There is no need to recopy block A since it will be completely
overwritten. 5 The current thread successfully commits the
log entry to the latest tail at LE3 . 6 Later, the block table will
be updated to reflect the changes in the block map.

Discussion. The non-blocking design ensures that a halted
process will not prevent other processes from making
progress [19, 20]. This simplifies error handling and elim-
inates the need to detect process crashes. In addition, this
design can provide better concurrency than fine-grained lock-
ing because it allows concurrent writers to be non-blocking

USENIX Association 21st USENIX Conference on File and Storage Technologies 271

even if their ranges overlap. Multiple writers can operate on
their private blocks in parallel. The order of the operations
is linearized during CAS, and conflicts are resolved at the
bounded cost of copying 2 blocks. On the other hand, the
most fine-grained byte-range locks would not allow them to
execute concurrently. Note that the OCC protocol also guar-
antees system-wide progress, and is thus lock-free [21].

Offset-dependent operations. For concurrent I/O operations,
offset-independent calls (e.g., pread/pwrite) are preferred
over offset-dependent ones (e.g., read/write). However,
MadFS still guarantees linearization for offset-dependent op-
erations. MadFS uses a per-process ordered queue: a thread
performing an offset-dependent operation adds itself to the
queue before proceeding to read/modify the file offset. The
order in this queue represents a serial order. When the thread
finishes reading or writing the data, it must wait for the pre-
vious thread in the queue to finish before committing itself.
The whole operation is still optimistic, and the CoW is done
in parallel.

4.5 Non-Blocking Garbage Collection

To prevent the log from growing indefinitely, we designed a
garbage collector (GC) program to clean up the log. MadFS
supports non-blocking GC, which does not block concurrent
readers or writers.

Creating a new log. Recall that the log blocks are organized
as a linked list with the superblock pointing to the head. This
design allows us to use the read-copy update (RCU) [32] tech-
nique for non-blocking GC. GC replays the log up to before
the currently active block and constructs another linked list
of log blocks along with the associated extended log entries.
The last block in the new linked list points to the currently
active block. Finally, we publish the new log by a CAS on the
log head stored in the superblock. A later process that opens
the file will use the new log.

Reclaiming the old log. GC cannot recycle the old log im-
mediately because some threads may still be using it. One
possible solution is to wait until the next time the bitmap is
rebuilt and the space for the old blocks is reclaimed. However,
this does not work for long-running processes, which prevents
the shared bitmap from being rebuilt. Reference counting the
log block is not safe because a process can crash without
decrementing the counter.

Our solution is to let each thread report the log block it
is currently reading to the shared memory. GC can safely
recycle a log block if it is not referenced by any reported log
blocks since the block will never be accessed in the future. The
reported log blocks and their (direct and indirect) successors
cannot be immediately recycled. We call them “orphans” as
they no longer have a reference from the log head. To free
them in the future, we chain the orphans into a new linked list
by adding a next_orphan field to each log block in addition

T1

Head

T2

Shared Mem:
T1: Block 5
T2: Block 3

1 3 542

Head

Orphan

❶

❸
1 3

5
42

1’❷

❹

Figure 5: Garbage collection example (§4.5). Each repre-
sents a 4 KB log block. The next pointer is represented by→,
and the next_orphan pointer is represented by⇢. Extended
log blocks are omitted.

to the existing next pointer. The head of the orphan linked
list is persisted in the superblock. The next time the GC runs,
it checks to see if any of the orphan log blocks can be freed
following the same rule above.

Handling thread crashes. The logical index published in the
shared memory is expected to be removed when a thread exits,
but a thread may crash before clearing it. We solve this by
associating each index with a robust mutex [27] to detect the
liveness of the thread. The mutex is locked when the thread is
created and unlocked when the process exits or crashes. The
GC will try to lock the mutex before accessing the index. Note
that the use of the mutex here is only for liveness detection,
not mutual exclusion, and no thread is blocked. If GC sees
that no thread is currently accessing the file, it can also free
the shared memory.

Example. Figure 5 shows an example of garbage collection.
There are two I/O threads before GC: T1 is working on the
log tail at log block 5 , while T2 is behind at 3 . 1 GC
reads the current log and creates a new linked list of log
blocks 1’ → 5 with the last block untouched. 2 The log
head pointer is atomically changed to point to the new one. 3
Blocks 1 and 2 are immediately recycled since all threads
have read beyond them. 4 For the other log blocks up to
the tail block, we organize them into an orphan linked list:
Orphan⇢ 3 ⇢ 4 . GC can free the orphans next time when
thread T1 moves on to later log blocks.

Discussion. Concurrent readers and writers are never blocked
by the garbage collector. An I/O thread only needs to infre-
quently update a value in the shared memory when it moves
to the next log block. Therefore, the impact on the tail latency
is minimal. With the compact log format, we expect the log
growth to be slow as a single 4 KB log block can store 510
log entries. As a result, GC runs infrequently.

4.6 Implementation

MadFS is implemented in 4.2K lines of C++ code. It sup-
ports 24 POSIX functions, including [f]open, [f]close,
[p]read, [p]write, mmap, fsync, lseek, stat, unlink,
and rename. The rest of this section presents implementa-
tion details of MadFS.

272 21st USENIX Conference on File and Storage Technologies USENIX Association

Shared Memory. The per-file shared memory is created with
the same permission as the file. Its name consists of the in-
ode number and the file creation timestamp for uniqueness.
The shared memory stores the bitmap (§4.2) and the current-
reading log block index (§4.5). When a process opens a file,
it tries to memory map the shared memory. If it does not exist,
the process reconstructs the bitmap from the log. The shared
memory is removed when the file is removed, the garbage
collector cleans up, or the operating system cleans up after
the user logs out.

Persistence and ordering. We use the non-temporal memcpy
from PMDK to copy data to persistent memory, bypassing the
CPU cache. We use clwb to write the log back to PM without
flushing the cache, as they may soon be read by other threads.
Memory fences are used to ensure that the data blocks are
made persistent before log entries, and that extended entries
are persisted before indirect entries.

Decoupling of persistence and ordering. Since each log
entry only takes 8 bytes, flushing the entire cache line on each
log commit is costly. Instead, MadFS only flushes a cache
line when a writer attempts to write to the first log entry of
the next line3. With an explicit fsync call, the last cache
line written is flushed to ensure durability, which is similar
to dsync proposed in OptFS [6]. The ordering of writes is
always guaranteed by the memory fence of CAS. Note that at
most 8 writes are not persistent without any fsync.

Handling mmap calls. We support mmap using a sequence of
mremap calls to map the data blocks to a contiguous region
of memory. This implementation is not optimized for perfor-
mance and does not provide a crash consistency guarantee.

Correctness. We use continuous integration for correctness
testing on a per-pull-request basis. MadFS passes all 209 test
cases in the LevelDB test suites, which make extensive use
of checksums and put a heavy load on the filesystem. We
use Intel’s pmemcheck [38], a fork of Valgrind [34] for PM,
to validate the durability of stores made to the PM. We also
compile MadFS with Clang Sanitizers [16] to check for data
races, memory problems, and undefined behavior.

Conversion tool. We implement a tool to convert files be-
tween the MadFS format and the normal file format. Convert-
ing a file to a MadFS format is fast. The tool allocates some
unused blocks, relocates the first data block to make space
for the superblock, and then initializes the superblock. It then
commits two log entries to describe the block map: one for the
relocated data block and one for the rest. To convert a MadFS
file to a normal file, the tool grows the file by the virtual file
size, dumps the data blocks in their virtual order, and then calls
fallocate with the FALLOC_FL_COLLAPSE_RANGE flag to
deallocate all the blocks previously occupied by MadFS.

3The time to the flush cannot be after the last slot of a cache line has been
written, since a writer could crash after CAS but before a flush is called.

5 Evaluation

In this section, we present the experimental results of mi-
crobenchmarks and macrobenchmarks. We demonstrate the
completeness, performance, and scalability of MadFS by an-
swering the following questions:
• What is the single-thread performance of MadFS? (§5.1)
• Does MadFS scale to multiple threads? (§5.2)
• What is the overhead of open in MadFS? (§5.3)
• Does garbage collection affect tail latency? (§5.3)
• How does MadFS perform on real-world applications (§5.4)

Setup. Our experiments are performed on an Intel x86 ma-
chine with a 128 GB Optane DC persistent memory DIMM.
The machine is equipped with two Intel Xeon Silver 8-core
4215R CPUs at 3.20 GHz (with 2 hyper-threads for each phys-
ical core) and 32 GB of DDR4 memory. We use Ubuntu 22.04
with custom-built Linux kernel 5.1 with NOVA [44, 45] and
SplitFS [25] included. For all experiments, we pin threads to
the core, disable CPU frequency scaling, and drop the kernel
cache before each run.

We compare MadFS (on ext4-DAX) to ext4-DAX, SplitFS,
and NOVA. Ext4-DAX does not provide data crash consis-
tency. We run SplitFS in the default POSIX mode, which
provides a similar crash consistency guarantee as ext4-DAX.
In this mode, SplitFS performs overwrites in-place; for ap-
pends, it redirects data to a staging file and invokes relink
system call to update the block mapping on fsync. NOVA
is a kernel filesystem that uses CoW for data and maintains
log-structured metadata. Among the four filesystems, only
NOVA and MadFS provide strong data crash consistency.

5.1 Single-Threaded Microbenchmark
To evaluate the baseline performance of MadFS, we designed
six microbenchmarks to measure single-threaded throughput
under different I/O sizes and access patterns. All operations
are repeated 10,000 times, and all writes are followed by
fsync. Figure 6 shows the results.
Read. For the read experiment, we measure how long it takes
to read data under different I/O sizes. MadFS and SplitFS
achieve the best performance since the data is served directly
from userspace, with most of the time spent on the memory
copy. NOVA and ext4-DAX are slower since they need to
go through the kernel storage stack. For large read sizes, the
difference between NOVA and MadFS becomes small as the
kernel overhead is amortized.
Block-aligned overwrite. In both sequential and random
cases, MadFS sustains a stable throughput of 2 GB/s for all
I/O sizes. ext4-DAX and NOVA do not saturate the device
bandwidth due to software stack overhead. ext4-DAX spends
non-trivial time on locks (dax_read_unlock) and metadata
journaling (called in ext4_iomap_begin/end). NOVA per-
forms block allocation during CoW with metadata journaling.

USENIX Association 21st USENIX Conference on File and Storage Technologies 273

MadFS ext4-DAX NOVA SplitFS

0.5 2 8 32 128
Size (KB)

 0
 1
 2
 3
 4

Th
ro

ug
hp

ut
 (G

B/
s) Sequential Read

0.5 2 8 32 128
Size (KB)

 0
 1
 2
 3
 4

Th
ro

ug
hp

ut
 (G

B/
s) Random Read

4 8 16 32 64 128
Size (KB)

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (G

B/
s) Sequential Overwrite

4 8 16 32 64 128
Size (KB)

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (G

B/
s) Random Overwrite

128 1408 2688 3968
Size (Bytes)

0.0
0.2
0.4
0.6
0.8
1.0

Th
ro

ug
hp

ut
 (M

op
s/

s) Sub-Block Overwrite

4 8 16 32 64 128
Size (KB)

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (G

B/
s) Append

Figure 6: Single-threaded performance. Note for sub-block
overwrite, we report throughput in Mops/s instead of GB/s.

SplitFS performs in-place overwrites and does not call the
relink system call in this experiment.

Sub-block overwrite. For this experiment, we issue sub-
block overwrites and report the throughput in Mops/s. MadFS
and NOVA employ CoW for data crash consistency and both
show an increase in throughput as the write size increases.
This is because with a total of 4 KB to be written to the PM,
when the size is larger, more data are copied from the user
buffer and fewer from the slower PM. Compared with NOVA,
MadFS is 30% to 60% faster in terms of throughput with a
1.5µs latency margin. SplitFS and ext4-DAX perform in-place
overwrites and do not provide a strong data crash consistency
guarantee.

Append. For MadFS and SplitFS, the two userspace filesys-
tems running on ext4-DAX, the peak performance does not
exceed 1 GB/s, which is half of the throughput for over-
writes. This is due to the block allocation zero-out in ext4-
DAX. When the userspace filesystem expands the file size
via fallocate, ext4-DAX reserves the blocks to the file.
With memory-mapped I/O, the first access triggers a page
fault, which causes the kernel to zero out the blocks [26].
These blocks will soon be overwritten by the user data, which
halves the effective bandwidth. This is a fundamental issue
for userspace filesystems since un-zeroed blocks cannot be
exposed directly to the user for security reasons.

NOVA as a kernel filesystem designed for PM does not have
this issue and exhibits similar performance to the overwrite

Block Table Copy Page Fault Commit Others

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (μs)

Append

Overwrite

Figure 7: Latency breakdown for 4 KB overwrite and append.

experiment. ext4-DAX should not have this issue. However, it
reuses a similar code path with the page fault handler and still
zeroed out the blocks (called in ext4_map_blocks) before
writing to them (in dax_copy_from_iter). For small I/O
sizes, SplitFS exhibits similar low throughput as ext4-DAX,
since each fsync triggers a relink system call to change
the file extent, which involves expensive metadata journaling
and inode locking.

Latency breakdown. Figure 7 shows the time breakdown
for 4 KB overwrite and append. Updating the block table
involves reading the log entry and applying the changes to
the block table. Both overwrite and append take 250 ns on
the block table, which is about the same as the latency of
accessing 8 bytes from PM. It takes about 1 µs to copy the
data from DRAM to PM via non-temporal stores. For append,
58% (2.3 µs) is spent on the kernel zeroing out. Log commit
is as quick as 33 ns, which is about the same latency as a CAS.
Others include block allocation, offset calculation, address
translation, and block deallocation.

5.2 Multi-Threaded Microbenchmark

In this section, we aim to measure how well MadFS scales
when multiple threads access the same file concurrently. We
pre-fill a 1 GB file and launch a varying number of threads to
read/write the file with offset given by a uniform or Zipfian
distribution.

Mixed reads/writes with uniform offset. In this experiment,
each thread reads or writes 4 KB at block-aligned offset sam-
pled uniformly at random. With a file size of 1 GB, the proba-
bility of two threads operating on the same block is relatively
low. Figure 8 shows the result of this experiment. MadFS
surpasses other filesystems in all four read-write mixes. Most
notably for pure writes, MadFS saturates the device band-
width at a single thread and sustains the high throughput with
more threads. Other filesystems use lock-based concurrency
control at inode granularity. SplitFS incurs a performance
drop from 1 thread to 2 threads and gradually decreases with
more threads. For 95% read, MadFS scales well. It reaches
its peak at 11 threads, which matches the device characteris-
tic of the Optane DIMM [47]. SplitFS scales until 6 threads.
With more threads, the contention becomes more severe and
the throughput drops. With pure read, all filesystems perform
well since read operations do not conflict with each other.

274 21st USENIX Conference on File and Storage Technologies USENIX Association

MadFS ext4-DAX NOVA SplitFS

1 4 8 12 16
Threads

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (G

B/
s) 100% Write

1 4 8 12 16
Threads

 0
 1
 2
 3
 4

Th
ro

ug
hp

ut
 (G

B/
s) 50% Read + 50% Write

1 4 8 12 16
Threads

 0
 2
 4
 6
 8

Th
ro

ug
hp

ut
 (G

B/
s) 95% Read + 5% Write

1 4 8 12 16
Threads

 0
 2
 4
 6
 8

Th
ro

ug
hp

ut
 (G

B/
s) 100% Read

Figure 8: Councurrent 4 KB read/write with uniform offset.

MadFS ext4-DAX NOVA SplitFS

1 4 8 12 16
Threads

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (G

B/
s) 4 KB Write w/ Zipf

1 4 8 12 16
Threads

0.0
0.3
0.6
0.9
1.2

Th
ro

ug
hp

ut
 (G

B/
s) 2 KB Write w/ Zipf

Figure 9: Councurrent pure write with Zipfian offset (θ = 0.9).

Writes with Zipfian offset. To investigate how block-level
contention affects scalability, we designed the Zipfian experi-
ments. Each thread writes 4 KB or 2 KB at a block-aligned
offset sampled from a Zipfian distribution of θ = 0.9, which
results in an access pattern skewed to the first few blocks.
Figure 9 shows the result. With 4 KB block-aligned write, the
result is similar to the 100% uniform write (Figure 8). The
OCC algorithm used by MadFS does not block concurrent
threads even if they write to the same block. The order of
concurrent writers is linearized during the commit. Since the
write is block-aligned, when the commit failed, MadFS only
needs to recommit the 8-byte log entry to the new tail and
never recopies data (§4.4). Other filesystems use locks at in-
ode granularity, so they do not show significant performance
differences between uniform access and Zipfian access. For
2 KB writes, MadFS and NOVA uses CoW and the thread
needs to recopy the 2 KB unaligned portion from the new
block if newly committed writes overlap with the current
one. Nevertheless, MadFS still achieves better performance
compared to NOVA. ext4-DAX shows contention with more
threads and performs worse than MadFS after 8 threads. Note
that only NOVA provides the same strong crash consistency
guarantee as MadFS.

Concurrency control. In addition to OCC (§4.4), we ex-
periment with three lock-based concurrency control meth-
ods for MadFS and compare their performance under mixed

OCC Spinlock Mutex Rwlock

1 4 8 12 16
Threads

 0
 1
 2
 3
 4

Th
ro

ug
hp

ut
 (G

B/
s) 50% Read + 50% Write

1 4 8 12 16
Threads

 0
 2
 4
 6
 8

Th
ro

ug
hp

ut
 (G

B/
s) 95% Read + 5% Write

Figure 10: MadFS with different concurrency control methods
under uniform 4 KB read/write.

0 1000 2000 3000 4000 5000 6000
Time (μs)

256
64
16
4

Fil
e

Si
ze

 (M
B)

Mmap Block Table Others

Figure 11: Open latency breakdown. The file size is logical.

read-write 4 KB workload with uniform block-aligned offset.
Spinlock is completely in userspace and cannot handle lock-
owner crashes in the cross-process scenario. Mutex is set to
be robust so the kernel will release it when the owner dies.
Reader-writer lock does not support the robustness feature.
Only mutex provides the same robustness guarantees as OCC.

Figure 10 shows the result of this experiment. In both work-
loads, all four concurrency control methods start at the same
throughput with a single thread, and OCC surpasses the lock-
based concurrency control methods with more threads by a
wide margin. With OCC, multiple writers can write to thread-
private blocks concurrently without blocking other readers or
writers, thus yielding better scalability. The performance of
mutex drops from one thread to two threads since mutex puts
threads in sleep under contention. Spinlock performs better
than mutex as it busy-waits for the lock owner. Reader-writer
lock is at the bottom for the 50% read workload due to its
operation complexity, but it outperforms spinlock and mutex
for the 95% read workload as readers do not block each other.

5.3 Metadata Operations
Open. During file open, in addition to the open system call,
MadFS need to memory-map the file and replay the log to
build the block table. Memory mapping a file takes a fixed
cost of 1616 µs plus 17 µs per 2 MB huge page. The same
overhead applies to other userspace PM filesystems as well.
The log replay is efficient due to the compact log format,
taking only 15 ns for an inline entry and 21 ns for an indirect
one (with a 16-byte extended entry).

Figure 11 shows the time breakdown to open a file cre-
ated by repeated 4 KB appends. The majority of the time is
spent on memory-mapping the file, especially for small and
medium-sized files. Other times include the open system call.
Due to the open overhead, MadFS may not be suitable for
workloads with frequent file opens.

USENIX Association 21st USENIX Conference on File and Storage Technologies 275

A-load A B C D E-load E F
Workload

0

100

200

300

400

Th
ro

ug
hp

ut
 (K

op
s/

s)

MadFS
ext4-DAX
NOVA
SplitFS

Figure 12: Throughput YCSB workloads on LevelDB.

Garbage Collection. In this experiment, we aim to measure
the effect of the GC on tail latency. We have a writer thread
repeatedly doing 4 KB overwrite to a 1 GB file. A GC thread
runs every 30 seconds to collect old log entries. The average
runtime for GC is 9.1 ms, which is 0.03% of the writer’s run-
time. With GC, the 99.9%, 99.99%, and 99.999% tail latencies
for the writer are 5.06 µs, 6.46 µs, and 20.77 µs respectively,
compared to 5.05 µs, 6.12 µs, and 20.18 µs without GC. Over-
all, the GC finishes quickly and imposes negligible overhead
on the I/O thread.

5.4 Real-World Applications

LevelDB with YCSB. To show the completeness of MadFS
implementation, we run LevelDB [17], a key-value store
based on log-structured merge (LSM) trees. We run the YCSB
benchmark [46], a common cloud benchmark for database ap-
plications. The benchmark includes 6 workloads: A (50% read
+ 50% update), B (95% read + 5% update), C (100% read),
D (95% read + 5% insert), E (5% insert + 95% scan), and
F (50% read + 50% read-modify-write). We issue 1 million
operations with a value size of 1 KB.

Figure 12 shows the throughput of all YCSB workloads on
LevelDB across four filesystems. The overall trend is MadFS
> SplitFS > ext4-DAX > NOVA. For read workload C, MadFS
outperforms SplitFS, ext4-DAX, and NOVA by 5%, 12%, and
28% respectively. For write-heavy workloads F, the improve-
ments of MadFS over the other three 4%, 7%, and 22% in the
same order. All four filesystems perform similarly on work-
load E as it has most of the data cached in the memory and is
not I/O intensive.

SQLite with TPC-C. SQLite is a widely-used relational
database management system [22]. It is used as a library
embedded into the end program and stores the entire database
as a single file on the filesystem. We drive SQLite with TPC-
C, an online transaction processing (OLTP) benchmark that
simulates order processing in a multi-warehouse wholesale
system [11]. TPC-C includes a mix of 5 transaction types:
new order, payment, order status, delivery, and stock level.
Each transaction involves a series of SQL statements. We

New
Order

Payment Order
Status

Delivery Stock
Level

Mix

Transaction Type

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (K

op
s/

s)

MadFS
ext4-DAX
NOVA
SplitFS

Figure 13: Throughput of TPC-C workloads on SQLite.

run the TPC-C benchmark using the default configuration: 4
warehouses, 1 district, and 200,000 transactions. The size of
the resulting database is 444 MB. The implementation of this
benchmark is adopted from SplitFS.

Figure 13 shows the throughput for each of the individual
transaction types and the mixed workload. MadFS outper-
forms other filesystems for all types of transactions since
writes in SQLite are mostly block-aligned and do not incur
CoW for MadFS. On the mixed workload, MadFS is 26%
faster than SplitFS, 58% faster than ext4-DAX, and 85% faster
than NOVA.

6 Conclusion

In this paper, we present per-file virtualization which aims to
push file functionalities into userspace as much as possible.
Metadata embedding allows kernel-bypassing for metadata
management. In particular, embedding the block mapping
enables efficient userspace CoW for crash consistency. Non-
blocking synchronization enables scalable, crash-safe concur-
rency control without kernel involvement. Based on per-file
virtualization, we implement MadFS, a library PM filesystem
that maintains embedded metadata as a sequence of compact
log entries and employs optimistic concurrency control for
linearizability. Our evaluation shows that MadFS yields better
performance than ext4-DAX, NOVA, and SplitFS.

Acknowledgments

We are grateful to our shepherd Randal Burns and the anony-
mous reviewers for their valuable feedback and comments.
This material was funded by NSF grants CNS-1838733, CNS-
1815656, and CNS-1900758, and supported by gifts from
Google, PingCAP, Seagate, and VMware. Any opinions, find-
ings, conclusions, or recommendations expressed in this ma-
terial are those of the authors and may not reflect the views
of NSF or any other institutions.

276 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Intel® optane™ persistent memory.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[2] Nadav Amit. Optimizing the TLB shootdown algorithm
with page access tracking. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 27–39,
2017.

[3] Nadav Amit, Amy Tai, and Michael Wei. Don’t shoot
down TLB shootdowns! In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–
14, 2020.

[4] Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang,
and Mingdi Xue. Fine-grained metadata journaling on
nvm. In 2016 32nd Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–13. IEEE, 2016.

[5] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu
Shu. Scalable persistent memory file system with kernel-
userspace collaboration. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), pages 81–95.
USENIX Association, February 2021.

[6] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Optimistic crash consistency. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 228–243, 2013.

[7] Dave Chinner. xfs: DAX support. https://lwn.net/
Articles/635514/. Accessed: 2021-01-13.

[8] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-
soo Han. Libnvmmio: Reconstructing software IO path
with failure-atomic memory-mapped interface. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 1–16. USENIX Association, July 2020.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, persis-
tent memory. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09,
page 133–146, New York, NY, USA, 2009. Association
for Computing Machinery.

[10] Intel Corporation. Intel Reports Second-Quarter
2022 Financial Results. https://www.intc.com/
news-events/press-releases/detail/1563/.

[11] Transaction Processing Performance Council. TPC-C:
an On-Line Transaction Processing Benchmark. http:
//www.tpc.org/tpcc/. Accessed: 2021-01-12.

[12] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the
27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, page 478–493, New York, NY, USA,
2019. Association for Computing Machinery.

[13] Mingkai Dong and Haibo Chen. Soft updates made sim-
ple and fast on non-volatile memory. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
719–731, 2017.

[14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Confer-
ence on Computer Systems, EuroSys ’14, New York,
NY, USA, 2014. Association for Computing Machinery.

[15] Gregory R Ganger and Yale N Patt. Metadata update
performance in file systems. In OSDI, volume 94, pages
148–159, 1994.

[16] Google. Google Sanitizers: AddressSanitizer, Memo-
rySanitizer, ThreadSanitizer, LeakSanitizer, and more.
https://github.com/google/sanitizers. Ac-
cessed: 2021-01-12.

[17] Google. google/leveldb: LevelDB is a fast key-value
storage library written at Google that provides an or-
dered mapping from string keys to string values. https:
//github.com/google/leveldb, 2011.

[18] Daniel Hackenberg, Daniel Molka, and Wolfgang E
Nagel. Comparing Cache Architectures and Coherency
Protocols on x86-64 Multicore SMP Systems. In Pro-
ceedings of the 42Nd Annual IEEE/ACM International
Symposium on microarchitecture, pages 413–422, 2009.

[19] Maurice Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 13(1):124–149, 1991.

[20] Maurice Herlihy. A methodology for implementing
highly concurrent data objects. ACM Transactions
on Programming Languages and Systems (TOPLAS),
15(5):745–770, 1993.

[21] Maurice Herlihy, Victor Luchangco, and Mark Moir.
Obstruction-free synchronization: Double-ended queues
as an example. In 23rd International Conference on Dis-
tributed Computing Systems, 2003. Proceedings., pages
522–529. IEEE, 2003.

[22] D. Richard Hipp. SQLite Home Page. https://www.
sqlite.org/index.html. Accessed: 2021-01-12.

USENIX Association 21st USENIX Conference on File and Storage Technologies 277

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://lwn.net/Articles/635514/
https://lwn.net/Articles/635514/
https://www.intc.com/news-events/press-releases/detail/1563/
https://www.intc.com/news-events/press-releases/detail/1563/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://github.com/google/sanitizers
https://github.com/google/leveldb
https://github.com/google/leveldb
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html

[23] Dave Hitz, James Lau, and Michael A Malcolm. File sys-
tem design for an nfs file server appliance. In USENIX
winter, volume 94, pages 10–5555, 1994.

[24] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponna-
palli, Harshad Shirwadkar, Gregory R Ganger, Aasheesh
Kolli, and Vijay Chidambaram. Winefs: a hugepage-
aware file system for persistent memory that ages grace-
fully. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 804–818,
2021.

[25] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 494–508, New York, NY, USA, 2019. Association
for Computing Machinery.

[26] Linux kernel development community.
ext4_issue_zeroout identifier - Linux source code -
Bootlin. https://elixir.bootlin.com/linux/
v5.18.14/source/fs/ext4/inode.c#L417. Ac-
cessed: 2021-01-13.

[27] Linux kernel development community.
Pthread_mutexattr_setrobust(3) - linux manual
page. https://man7.org/linux/man-pages/
man3/pthread_mutexattr_setrobust.3.html.
Accessed: 2021-01-12.

[28] Linux kernel development community. The Linux Jour-
nalling API. https://www.kernel.org/doc/html/
latest/filesystems/journalling.html.

[29] H. T. Kung and John T. Robinson. On optimistic meth-
ods for concurrency control. ACM Trans. Database
Syst., 6(2):213–226, jun 1981.

[30] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 460–477, New York, NY, USA, 2017. Association
for Computing Machinery.

[31] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden.
Epoch-based commit and replication in distributed
OLTP databases. 2021.

[32] Paul E McKenney and John D Slingwine. Read-copy
update: Using execution history to solve concurrency
problems. In Parallel and Distributed Computing and
Systems, volume 509518, 1998.

[33] Daniel Molka, Daniel Hackenberg, Robert Schöne, and
Wolfgang E Nagel. Cache Coherence Protocol and
Memory Performance of the Intel Haswell-EP Architec-
ture. In 2015 44th International Conference on Parallel
Processing, pages 739–748. IEEE, 2015.

[34] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. ACM Sigplan notices, 42(6):89–100, 2007.

[35] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’14,
page 433–448, USA, 2014. USENIX Association.

[36] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagap-
pan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Can applications recover from fsync failures?
In The 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association, July 2020.

[37] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10(1):26–52, February 1992.

[38] PMDK team at Intel Corporation. Pmemcheck - persis-
tent memory analyzer. https://pmem.io/valgrind/
generated/pmc-manual.html. Accessed: 2021-01-
12.

[39] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[40] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova,
Yoav Etsion, Alex Ramirez, Avi Mendelson, Nacho
Navarro, Adrian Cristal, and Osman S Unsal. Didi: Mit-
igating the performance impact of tlb shootdowns using
a shared tlb directory. In 2011 International Conference
on Parallel Architectures and Compilation Techniques,
pages 340–349. IEEE, 2011.

[41] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael Swift. Aerie: Flexible file-system interfaces
to storage-class memory. Proceedings of the 9th Euro-
pean Conference on Computer Systems, EuroSys 2014,
04 2014.

[42] Matthew Wilcox. DAX: Page cache bypass for
filesystems on memory storage. https://lwn.net/
Articles/618064/, 10 2014. Accessed: 2021-10-22.

278 21st USENIX Conference on File and Storage Technologies USENIX Association

https://elixir.bootlin.com/linux/v5.18.14/source/fs/ext4/inode.c#L417
https://elixir.bootlin.com/linux/v5.18.14/source/fs/ext4/inode.c#L417
https://man7.org/linux/man-pages/man3/pthread_mutexattr_setrobust.3.html
https://man7.org/linux/man-pages/man3/pthread_mutexattr_setrobust.3.html
https://www.kernel.org/doc/html/latest/filesystems/journalling.html
https://www.kernel.org/doc/html/latest/filesystems/journalling.html
https://pmem.io/valgrind/generated/pmc-manual.html
https://pmem.io/valgrind/generated/pmc-manual.html
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/

[43] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven
Swanson. Finding and fixing performance pathologies
in persistent memory software stacks. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 427–439, 2019.

[44] Jian Xu and Steven Swanson. NOVA is a log-structured
file system designed for byte-addressable non-volatile
memories, developed at the University of California, San
Diego. https://github.com/NVSL/linux-nova.
Accessed: 2021-01-12.

[45] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016. USENIX Association.

[46] Yahoo. Yahoo! cloud serving benchmark. https://
github.com/brianfrankcooper/YCSB/, 2010.

[47] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th {USENIX} Conference on File and Storage Tech-
nologies ({FAST} 20), pages 169–182, 2020.

[48] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. Tictoc: Time traveling optimistic concur-
rency control. In Proceedings of the 2016 International
Conference on Management of Data, pages 1629–1642,
2016.

USENIX Association 21st USENIX Conference on File and Storage Technologies 279

https://github.com/NVSL/linux-nova
https://github.com/brianfrankcooper/YCSB/
https://github.com/brianfrankcooper/YCSB/

	Introduction
	Background and Motivation
	Filesystems for Persistent Memory
	Challenges in Metadata Management
	Challenges in Crash Consistency
	Challenges in Concurrency Control

	Per-File Virtualization
	MadFS: Design and Implementation
	Metadata Embedding
	Block Management
	Compact Log-Structured Metadata
	Lock-Free Concurrency Control
	Non-Blocking Garbage Collection
	Implementation

	Evaluation
	Single-Threaded Microbenchmark
	Multi-Threaded Microbenchmark
	Metadata Operations
	Real-World Applications

	Conclusion

