é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Using Tratr to tame Adversarial Synchronization

Yuvraj Patel, Chenhao Ye, Akshat Sinha, Abigail Matthews,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Michael M. Swift, University of Wisconsin-Madison

https://www.usenix.org/conference/usenixsecurity22/presentation/patel

This paper is included in the Proceedings of the
31st USENIX Security Symposium.
August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is
sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »

Using Tratr * to tame Adversarial Synchronization

Yuvraj Patel, Chenhao Ye, Akshat Sinha, Abigail Matthews,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift

Computer Sciences Department, University of Wisconsin—-Madison

Abstract

We show that Linux containers are vulnerable to a new
class of attacks — synchronization attacks — that exploit ker-
nel synchronization to harm application performance, where
an unprivileged attacker can control the duration of kernel
critical sections to stall victims running in other containers
on the same operating system. Furthermore, a subset of these
attacks — framing attacks — persistently harm performance by
expanding data structures even after the attacker quiesces. We
demonstrate three such attacks on the Linux kernel involving
the inode cache, the directory cache, and the futex table.

We design Tratr, a Linux kernel extension, to detect and mit-
igate synchronization and framing attacks with low overhead,
prevent attacks from worsening, and recover by repairing data
structures to their pre-attack state. Using microbenchmarks
and real-world workloads, we show that Tratr can detect an
attack within seconds and recover instantaneously, guarantee-
ing similar performance to baseline. Our experiments show
that Tratr can detect simultaneous attacks and mitigate them
with minimal overhead.

1 Introduction

Shared infrastructure, where multiple tenants run on the same
physical hardware, is common in data centers and cloud com-
puting environments. As anyone can be a tenant, including
competitors or malicious actors, such installations place a
heavy burden on system software to isolate mutually distrust-
ing tenants. Without strong performance isolation, the behav-
ior of one tenant can harm the performance of other tenants,
such as by monopolizing a resource. Past work has focused on
isolating CPU usage [17,23,30, 68], memory usage [40,67]
storage traffic [2,36,60], and network traffic [33,62] to reduce
the effect of sharing the resources.

It is challenging to build a perfectly isolating system plat-
form that is efficient. Virtual machines (VMs) per tenant on a
shared physical platform are more efficient, but they share lit-

*Tratr (pronounced Tra true) in Sanskrit means guardian or protector.

tle content in memory and duplicate OS functionality for each
VM. Containers, as used by Docker [42] and Kubernetes [55],
are highly efficient as they cost little more than an operating
system process but rely on a shared operating system kernel
between tenants with internally shared data structures.

Our work observes that this high degree of sharing across
tenants through operating system data structures creates an
avenue for performance interference in two ways. First, to
handle concurrent accesses, shared data structures must rely
on synchronization mechanisms such as locks or RCU [39]. If
one tenant makes heavy use of a data structure, that tenant may
monopolize locks and cause victims to stall waiting for access
to the structure. We term this a synchronization attack. This
attack is also possible with other synchronization mechanisms
such as RCU.

Second, a tenant can manipulate a shared data structure
by adding elements to make all tenants spend more time
traversing the structure. For example, suppose an attacker
adds thousands of elements to a linked list that other tenants
traverse as part of ordinary system calls. In this case, all
tenants will experience a substantial slowdown from spending
extra time in the list. Worse, tenants will increase contention
when they hold locks for long periods to traverse the shared
structure. We term this a framing attack, as after extending the
shared structure, the attacker may stop accessing the structure,
but the lock appears to be held by innocent victims.

These new attacks are related to algorithmic complexity at-
tacks (ACA) [22] that exploit data structures without strong
complexity guarantees [22,37]. When applied to shared struc-
tures protected by synchronization mechanisms, such attacks
stall tenants waiting to access the structure or make them
run longer, leading to poor performance. While ACAs target
preemptable resources, synchronization and framing attacks
target non-preemptable resources.

In this paper, we examine synchronization and framing at-
tacks on the Linux kernel when using containers for isolation.
We demonstrate several kernel data structures accessed by
common system calls — the inode cache and directory cache
used by file systems and the futex hash table used for syn-

USENIX Association

31st USENIX Security Symposium 3897

chronization — are vulnerable to synchronization and framing
attacks. Furthermore, we demonstrate how an unprivileged
attacker can cause throughput reduction (nearly 3-12x) to
real-world applications in a container-based environment.

Based on our experience with these attacks, we observe
two conditions common to all the attacks: long critical sec-
tions and many kernel object allocations. We develop Tratr,
a Linux kernel extension to defend against synchronization
and framing attacks. As the problem is distributed across ker-
nel data structures, Tratr provides a general framework for
addressing these attacks using four mechanisms. Tratr tracks
the contributions to data structure size per tenant to identify
an attack, uses two conditions to detect attacks and identify
attackers, mitigates the attack by blocking the attacker, and
performs data structure specific actions to recover to baseline
performance.

Using microbenchmarks and real-world applications, we
show the effectiveness, efficiency, and responsiveness of Tratr.
Tratr can detect attacks within seconds of launch, preventing
the attack from worsening and recovering performance to
baseline (no attack) levels. We conduct a thorough study of
overhead incurred by Tratr, showing that at steady state, Tratr
causes only 0-5% overhead for tracking; other mechanisms
have negligible cost in the absence of an attack. We conduct a
false-positives study to show that for a variety of applications
and benchmarks, Tratr does not implicate victims as attack-
ers. Lastly, we conduct a false-negative experiment, where a
defense-aware attacker can launch an attack without getting
detected. We find that randomness in the detection mechanism
makes it challenging for the attacker to cause much damage.

The contributions of our work are threefold: (1) We de-
scribe two new classes of attacks on shared synchronization
primitives — synchronization and framing attacks that lead to
large denials of service; (2) We demonstrate Linux kernel vul-
nerabilities exposing tenants to synchronization and framing
attacks from other unprivileged tenants; and (3) We describe
Tratr that defends against these attacks with low-overhead
tracking and detection mechanisms for in-progress attacks,
and prevention and recovery mechanisms for restoring perfor-
mance to pre-attack levels.

2 Synchronization under attack

In this section, we discuss how shared infrastructure in data
centers rely on shared data structures protected by a variety
of synchronization mechanisms, and how exploiting these
synchronization mechanisms can lead to denial-of-service
attacks.

2.1 Concurrent Shared Infrastructure

Shared infrastructure is common in the data center compris-
ing the CPU, memory, disk, and network. System software
such as a virtual machine monitor or operating system allows

multiple tenants to concurrently share the hardware creating
concurrent shared infrastructure. The most common tenant
environments for shared infrastructure are virtual machines
(VMs) and containers. With VMs, each tenant runs their oper-
ating system over virtual hardware resources provided by a
virtual machine monitor, which space- or time-shares physical
resources across virtual machines.

Container isolation is based on a combination of mech-
anisms. Containers rely on schedulers to fairly share pre-
emptable resources such as CPU, disk, or network between
containers. For memory, accounting and allocation limits
prevent containers from overusing memory. The operating
system provides private namespaces for each container that
prevents them from accessing resources of other contain-
ers such as private file system directory trees and private
sets of process IDs. An operating system kernel provides
virtual software resources (files, sockets, processes) to each
container. Substantial effort has gone into isolation so that
one container or VM has minimal performance impact on
others [23, 30, 33, 36,40, 60, 67] and each container or VM
obtains a fair share of the resources. However, these isola-
tion controls are built atop shared kernel data structures; in
many cases, the kernel maintains global data structures shared
by all containers and relies on scheduling, accounting, and
namespaces to prevent interference. Our work focuses on
container-based isolation, as its higher-level interfaces create
more opportunities for performance interference.

2.2 Synchronization and Framing Attacks

Container isolation mechanisms do not directly isolate ac-
cesses to the operating system’s global data structures. Operat-
ing system kernels contain hundreds of data structures global
to the kernel and shared across containers. These structures
rely on synchronization primitives such as mutual exclusion
locks, read copy update (RCU), and reader-writer locks to al-
low concurrent access. Multiple containers make unprivileged
system calls to access the same kernel data structures using
these synchronization primitives in a shared environment. We
focus on mutual exclusion locks and RCU as they are heavily
used in the kernel.

Synchronization primitives do not control how long one
tenant can spend in a critical section accessing a data structure.
Locks are mutually exclusive such that once held, they prevent
any other process trying to acquire the lock from making
progress. Likewise, RCU allows multiple readers to access
the data structure, but updaters wanting to free objects must
wait until all prior read critical sections complete [39]. We
call the time spent waiting to acquire a lock or to let all the
prior read critical sections complete synchronization stalls.

Consider a linked list in Listing | that supports insertion
(insert()) and search (find()) operations. An attacker can
cause lock contention by repeatedly accessing the list. If the
list is short, the synchronization stalls will not be long, but if

3898 31st USENIX Security Symposium

USENIX Association

struct node {
int data;
struct node #*next;

1

void insert(struct node *xlist ,
lock ();
n->next = *list; x=list = n;
unlock () ;

struct node #n) {

}

struct node =find(struct node ==list, int data) {
lock ();
struct node *n = xlist;
while (n) {
if (n->data == data) {
unlock () ;
return n;
}
n
}
unlock () ;
return NULL;

= n—->next;

Listing 1: Simple linked list example

an attacker can vastly expand the list, then the time spent in
search operations will increase, and victims may stall waiting
to access the list. We term this a synchronization attack, in
which an attacker increases the critical section size to deny
victims access to one or more shared data structures. Such an
attack occurs when:

* Condition S1: A shared kernel data structure is protected
by a synchronization primitive that can block such as a
mutual exclusion lock or RCU.

* Condition S2: Unprivileged code can control the dura-
tion of the critical section by either

— 82iupus: providing inputs that cause more work to
happen within the critical section
OR

= 82,ear: accessing a shared kernel data structure
with weak complexity guarantees e.g., linear.

AND

— 82¢xpana: expanding the shared kernel data struc-
ture to trigger the worst-case performance.

We term the case when an attacker targets a synchronization
primitive (condition S1) and uses input parameters (condition
S2inpur) to increase critical section size an input parameter at-
tack. One known example of an input parameter attack occurs
when a rename operation is performed on a large directory,
holding a shared per-filesystem lock while traversing the en-
tire directory [48]. We also found that AppArmor [1] holds a
shared namespace root lock while loading profiles, so loading
a large profile can hold the lock for tens of seconds. Existing
solutions can address input parameter attacks by ensuring
lock usage fairness (fixing condition S1) with Scheduler Co-
operative Locks (SCLs) [48] or by using regression-based
analysis [34] (breaking condition $2;,,,). Given these solu-
tions, input parameter attacks are not the focus of this paper.

In this paper, we focus on the more challenging synchro-
nization attacks that exercise conditions $2,.q and S2.xpand-
For the linked list example, the lock protecting the critical
section meets condition S1, the list exhibits weak properties
meeting condition $2,,.4, and elongating the list meets con-
dition $2,ypanq- Even if RCU replaces the lock, the expanded
list leads to a lengthy read-side critical section, stalling the
victims who want to delete from the list.

Synchronization attacks are active attacks if the attacker
itself executes the long critical section. However, in some
cases, the attack can continue without the further participation
of the attacker. For example, consider what can happen if
other tenants traverse the elongated list. After an attacker adds
millions of entries to the list, other processes will continue to
traverse the longer list, leading to more time traversing the
list and more time stalling on the lock.

We term this a framing attack because an inspection of who
holds the lock will incorrectly frame innocent victim threads
rather than identifying the attacker that expanded the data
structure. Like a criminal framing someone innocent for a
crime, this attack directs blame at other victims. This is a
passive attack, as the attacker needs to do nothing to continue
the performance degradation. More precisely, a framing attack
is an extension of a synchronization attack and occurs when:

* Condition S1+ 82,04k + S2¢xpana: An attacker expands
a shared kernel data structure with weak complexity
guarantees, i.e., a synchronization attack is in progress
or was launched earlier.

* Condition F'1: Victim tenants access the affected portion
of the shared data structure with worst-case behavior.

In framing attacks, for mutual exclusion locks, the excessive
stalls are attributed to other victims traversing the list rather
than the attacker that grew the list. RCU relies on the grace
period to ensure that existing readers finish their access before
a delete operation starts. For expanded data structures, the
longer read-side critical section leads to a longer grace period
impacting performance. Thus, the victims continue to observe
poor performance due to the past actions of the attacker.

Synchronization attacks make the victims stall longer;
framing attacks additionally make them spend more time
in the critical section. Framing and synchronization attacks
can happen at the same time. Consider a situation where a
hash table uses the protected list to build hash buckets. The
attacker may target a single hash bucket by adding many
entries leading to a synchronization attack on that bucket. The
victims will have to wait longer to acquire the lock. If one of
these starved victims access the target hash bucket, they will
traverse the elongated list and hold the lock longer, leading
to a framing attack. Addressing framing attacks requires
additional steps to repair the shared data structures even after
the attacker stops executing to ensure condition F'1 is not met.
Merely preventing the continuation of an attack does not stop
victims from accessing the expanded data structure.

USENIX Association

31st USENIX Security Symposium 3899

Algorithmic Complexity Attacks vs. Adversarial Syn-
chronization. Even though adversarial synchronization looks
similar to algorithmic complexity attacks, they are funda-
mentally different. While the algorithmic complexity attacks
target preemptable resources, synchronization and framing at-
tacks target non-preemptable resources like mutual exclusion
locks.

There have been numerous algorithmic complexity at-
tacks that end up exhausting one or more CPUs in the sys-
tem [4-12,61]. As the CPUs are exhausted, they cannot exe-
cute the regular user workload leading to denial-of-services.
As container isolation guarantees proper isolation of preempt-
able resources, such attacks may not impact all the containers
running on the host.

On the other hand, synchronization attacks make victims
stall longer, and framing attacks stall the victims and make
them execute longer. As these attacks target shared synchro-
nization primitives, more than one container that needs to
access the shared synchronization primitive and the kernel
services are impacted, leading to poor performance. Existing
container isolation mechanisms do not treat synchronization
as a resource and hence cannot handle the monopolization of
the shared synchronization primitives.

3 Real-World Problems

In this section, we present the threat model and show how
locks and RCU can turn adversarial in the Linux kernel.

3.1 Threat Model

We assume the following about the adversary and environ-
ment. One or more containers run on a single physical ma-
chine. All containers, including the one that plays the role
of an adversary, hereafter called an attacker, run arbitrary
workloads that can access OS services via system calls. We
assume there is a 1-1 mapping between tenants to users, and
each container is associated with a user. No container, includ-
ing the attacker, has special privileges. Due to random cloud
scheduling, we assume a single attacker, thereby removing the
possibility of collusion. We place no limit on the number of
containers a single user can run on a single physical machine.

The attacker targets one or more synchronization primitive
in an operating system making other containers accessing the
same primitives starve or waste CPU time, leading to poor
performance or denial-of-service. The attacker can use either
a single container or multiple containers to launch an attack.

3.2 Synchronization and Framing Attacks on
Linux kernel

We describe three Linux kernel data structures that are vul-
nerable to Algorithmic Complexity Attacks (ACAs) and can

be used to launch synchronization and framing attacks. The
setup is the same as used in Section 5.

Synchronization attack on inode cache. The Virtual
File System maintains the inode cache to avoid expensive
disk accesses to read file metadata [14]. A global lock
inode_hash_lock protects the inode cache (meets S1). The
inode cache is implemented as a hash table meeting S2,,¢4 as
collisions in a hash bucket are handled with a linked list of
inodes with the same hash value. The number of buckets in
the hash table is decided at boot time based on memory size.'

The inode cache hash function combines the inode num-
ber, unique to each file, and the address of the file system
superblock data structure in memory. This address is set when
a volume is mounted but varies across systems and boots.
While the inode number for a file is visible to unprivileged
users, the superblock address is not, and without that address,
it is hard to predict which hash bucket an inode will reside in.

We have found a way to break this function, which we de-
scribe in detail in the Appendix. By creating files with specific
inode numbers, a user can probe for the superblock address,
allowing them to create files in a single hash bucket that
grows and is slow to traverse. Although users cannot gen-
erally specify the inode number for a file, this is possible
with a FUSE unprivileged file system in user-space [66]. For
Docker, mounting needs CAP_SYS_ADMIN, which is privi-
leged [32]. Linux supports unprivileged FUSE mounts [35],
although Docker disables this by default. > As a workaround,
we use the idea of Linux user namespaces [43] discussed by
NetFlix [27] and elsewhere” to mount the FUSE file system
in an unprivileged environment.

After mounting the FUSE filesystem, a user can create files
with arbitrary inode numbers and create collisions in the in-
ode hash, leading to long lists in some hash bucket (meets
82.xpana)- Because of the large number of hash buckets, it
is difficult for the attacker to target a specific file for con-
tention. Instead, the attacker continues to access the same
bucket, elongating critical sections.

To show the impact on the victim’s performance, we run
an Exim mail server container as a victim and launch an
inode cache attack from a separate container. We run MOS-
BENCH [16] scripts as the client from another machine to
send messages to the Exim server.

Figure 1a shows the timeline of the throughput and average
latency for the duration of the attack. Once the attack starts,
the performance reduces significantly. The attacker initiates
probing the inode cache to determine the superblock address.
Around 100 seconds, the attacker finds the superblock ad-
dress and then targets a random hash bucket. The lock is held
while adding entries to this bucket, starving the Exim mail
server and reducing its throughput by 92% (12x). The attacker

For a system having 128 GB DRAM, the inode cache has 222 =
4,194,304 hash buckets.

2A bug is already filed to allow FUSE functionality by default -
https://github.com/docker/for-linux/issues/321.

3900 31st USENIX Security Symposium

USENIX Association

100 60K

— Latency

—— Throughput 0 50K

40K
60
30K
Prepare for
attack

Latency (ms)

40
20K

Throughput (ops)
Throughput (ops)

@ Attack started
20 10K

Prepare for attack

10

—— Latency 12009 @ Attack started

g

~ [Throughput
ehput | o

=3

Latency (ms)
Throughput (ops)
Grace Period sizev(jseconds)

&

—— Grace Period

@ Attack started ~—— Throughput

0 1
0 50 100 150 200 300 0 50 100

Time (seconds)

250

(a) Inode cache attack

150
Time (seconds)

(b) Futex table attack

0 0
200 250 300 0 1500 2000

Time (seconds)

500 1000 2500 3000 3500

(c) Directory cache attack

Figure 1: Performance of applications under attack. (a) Throughput and Average Latency timeline of Exim Mail Server when under inode cache attack. (b)
Throughput and Average Latency timeline of UpScaleDB when under futex table attack. (c) Throughput and grace period timeline of Exim Mail Server when
under directory cache attack. Prepare to attack means that the attacker starts to launch the attack and initiates probing and identify a target hash bucket. Once a

target hash bucket is identified, the attack is launched.

continues to add more entries to the hash bucket, increasing
the lock hold time further. In comparison, when we run two
other applications — DBENCH and UpScaleDB instead of the
attacker to generate interference, we observe a 15% reduction
in the performance.

Moreover, an economic impact is also associated as the
victims spin while waiting to acquire the lock. We observe
that around 33% of the total CPU used by the victim threads is
spent on waiting to acquire the lock. Given enough resources
and time, an attacker can further increase the wait times by
adding more threads leading to even worse performance.
Framing attack on futex table. The Linux kernel supports
futexes, a light-weight method to support thread synchroniza-
tion in user-space [28]. A futex provides the ability to wait
on a futex variable, which is any location in memory until
another thread signals the thread to wake up. Futexes are
used to build synchronization abstractions such as POSIX
mutexes and condition variables. The futex () syscall lets
the user-space code wait and signal futex variables.

Rather than maintain a wait queue for each futex variable,
the kernel maintains a futex table, and each bucket in the table
is a shared wait queue (meets S2,,.4¢). The kernel hashes the
futex variable address to identify the wait queue for a futex
variable. When a thread waits on a futex, the kernel adds the
thread to the wait queue dictated by the hash of the futex
variable. Similarly, when waking a thread, the kernel must
walk the shared wait queue looking for multiple threads wait-
ing on that futex variable. As a result, several futex variables
belonging to the same or different applications can share a
single wait queue. A separate lock protects each hash bucket
(meets S1). The number of buckets is decided at boot time
and is a multiple of the number of CPUs in the system.’

As the number of hash buckets is small, the attacker uses
bucket probing to identify a target hash bucket instead of
breaking the hash function. The attack starts by allocating a
few thousand futex variables to map them to different wait
queues. The attacker then probes the wait queues by calling
futex() to wake a thread for each variable while measuring

3For a 32 CPU system, the hash table comprises 256 % 32 = 8,192 hash
buckets.

the time it takes to complete the syscall. The syscall will take
measurably longer to complete if victim processes are already
using a wait queue, allowing the attacker to attack these wait
queues.

After identifying a busy-wait queue, the attacker spawns
thousands of threads that wait on the target futex variable,
thereby expanding the wait queue (meets S2.ypanq). Upon
expansion, any victims sharing the queue must walk the elon-
gated queue to wake up their threads, leading to longer lock
hold times, longer stalls, and poor performance.

We conduct an experiment by running UpscaleDB, an em-
bedded key-value database [65], within a container as a victim
to show the performance impact. We use the built-in bench-
marking tool ups_bench to run an in-memory insert-only
workload. Figure 1b shows the throughput and average la-
tency timeline. Before the attack starts, UpscaleDB observes
high throughput while the average latency remains constant.
During the first part of the attack, the attacker probes the fu-
tex table, and around time 54 seconds, identify a busy-wait
queue and starts creating threads to lengthen the queue. This
leads to highly variable performance for UpScaleDB, reduc-
ing throughput between 65 to 80% (3x-5x). We also observe
that the tail latency increases from around 10-15 milliseconds
to 0.7-1.2 seconds, an increase of 45x to 100x. We observe a
10% reduction in the performance if we run DBENCH and
Exim mail server instead of the attacker.

Unlike the inode cache attack, in this scenario, the attacker
becomes passive and sits idle after creating the waiting
threads, which demonstrates a framing attack — there is lock
contention, but the attacker is not actively acquiring the lock.
When the victim access the target hash bucket, the condition
F1 is met. From an economic impact perspective, the victim
spends around 40% of the total CPU time waiting to acquire
the lock. Moreover, as the victim is forced to traverse an
expanded list, we observe that the victim’s total CPU usage
increases by 2.3x times compared to baseline and may end up
paying more for the extra CPU usage.

Synchronization attack on Directory cache. Lastly, we
show a vulnerability that can be exploited by an attacker
that can break the dcache hash function. The Linux directory

USENIX Association

31st USENIX Security Symposium 3901

cache (dcache) stores dentry structures to support filename
lookups [64]. The dcache is implemented as a hash table
where each bucket stores a linked list of dentries with the
same hash value. The hash function uses the parent dentry
address and the filename to calculate the hash value.

For efficiency, the dcache relies on RCU to allow concur-
rent read access, but freeing entries must wait for all con-
current readers to leave the read critical section. This wait,
called a grace period, ensures that no reader is holding a
reference to the deleted object. RCU provides synchronous
(synchronize_rcu()) or asynchronous (call_rcu()) APIs
for this purpose. While the synchronous API makes the user
wait until the grace period ends, the asynchronous API reg-
isters a call back that the RCU subsystem executes after the
grace period is over. As RCU is shared across the Linux
kernel, any increase in the grace period stalls the victims.

The attack exploits the dcache’s support for negative entries.
These entries record that no such file exists. By breaking
the hash function, an attacker can create millions of negative
entries mapping to a single hash bucket, thereby meeting
condition S1+82,,¢ax + S2expana- Before creating a negative
entry, the lookup operation first walks through the hash bucket
to check if the entry exists or not. The hash bucket walk
is part of the RCU read-side critical section. Walking an
expanded hash bucket increases the read-side critical section,
thereby increasing the grace period size too. Victims using the
synchronize_rcu () will stall until the grace period is over.
In the case of call_rcu(), freeing objects will be delayed,
and more work will pile up for the RCU background thread
to execute the callbacks leading to lower performance or out
of memory conditions [38,51,52,58].

To demonstrate the attack and the impact on the victim’s per-
formance, we run an Exim mail server container as a victim
and launch the dcache attack from a separate container. We
modify the kernel to simulate an attacker targeting any hash
bucket. Figure 1c shows the throughput (averaged over 10
seconds) for the duration of the attack. Once the attack starts,
as the hash bucket size increases, the read-critical section size
increases, increasing the grace period size. Towards the end of
the experiment, the performance drops more than 90% (10x)
for a few instances. The grace period size increases from
20-30 milliseconds to 2 seconds. The mail server generates
hundreds of thousands of callbacks every second overwhelm-
ing the RCU background thread.

An attacker can launch the same attack without breaking the
hash function by randomly creating hundreds of millions of
negative entries instead of targeting a single hash bucket.
Existing Solutions. Attacks on synchronization primitives
can be addressed by interrupting one of the criteria neces-
sary for an attack by using lock-free data structures; or using
universal hashing, balanced trees or randomized data struc-
tures [22] to break condition $2,,.4x and S2.xpanq. However,
randomized data structures are vulnerable to ACAs [15] and
rewriting the kernel to use balanced trees is tedious [20,49].

Relying on strong hash functions is not enough as an attacker
can launch attacks without breaking the hash function. More-
over, it is not easy to convince developers to use secure hash
functions such as SipHash due to performance concerns [21].
We observe around 5-6% performance reduction when we
replace the existing hash function in the inode cache with
SipHash while running a simple file create workload confirm-
ing developer concerns. Another approach of rehashing all
the entries into a new hash table is possible but is invasive to
the code and may cause long delays during rehashing.

SCLs can prevent lock usage dominance during a synchro-
nization attack by guaranteeing lock usage fairness. However,
they fail to handle the framing attacks as they are not aware
of the cause of the longer lock hold times; they may treat the
victims like the one dominating the lock usage and penalize
the victims instead of the attacker. More details about SCLs
performance can be found elsewhere [46].

Summary. In all these three attacks, the common piece is
that the attacker can run arbitrary code to target the synchro-
nization primitives. Using containers is one way to launch
attacks by executing any user workload, especially as the con-
tainer isolation techniques do not directly isolate accesses to
the shared layers such as kernel, thereby becoming an easy
target for such attacks. Other environments, such as multiple
containers running within a single virtual machine, multiple
virtual machines running on a shared hypervisor,