
PROJECT REPORT

A study of Matchings in Graphs

Submitted in partial fulfilment of
the requirements for the award of the degree of

Bachelor of Technology
in

Computer Science & Engineering

Submitted by

Chetan S
B070170CS

Nithin M Varma
B070025CS

Under the guidance of

Dr. K. Murali Krishnan

Department of Computer Science & Engineering

National Institute of Technology Calicut
Kerala - 673601

April 2011

Acknowledgements

We would like to sincerely thank our guide, Dr. K. Murali Krishnan (Assistant Professor, Dept.
of Computer Science & Engineering, NIT Calicut), for his invaluable support and guidance
towards this project. His motivation has always left us spellbound. We would also like to
express our sincere thanks to Mrs. Lijiya A (Assistant Professor, Dept. of Computer Science
& Engineering, NIT Calicut) for co-ordinating the project. We are grateful to Ms. Jasine
Babu (PhD scholar, Indian Institute of Science, Bangalore) for going through the report and
providing valuable suggestions. We also thank our friends and family for their help and support
throughout.

Chetan S Nithin M Varma

B070170CS B070025CS

Declaration

We declare that the thesis entitled “A study of Matchings in Graphs” and the work presented
in the thesis are both our own, and have been generated by us as the result of our own original
research. We confirm that:

• this work was done wholly or mainly while in candidature for a Bachelors degree at this
University;

• where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated;

• where we have consulted the published work of others, this is always clearly attributed;

• where we have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely our own work;

• We have acknowledged all main sources of help.

Place : Calicut
Date :

Chetan S Nithin M Varma
B070170CS B070025CS

Certificate

This is to certify that the project work entitled “A study of Matchings in Graphs”, sub-
mitted by Chetan S (Roll No: B070170CS) and Nithin M Varma (Roll No: B070025CS), as the
record of work carried out by them is accepted in partial fulfillment of the requirement for the
award of degree of Bachelor of Technology in Computer Science and Engineering at National
Institute of Technology Calicut.

Guide
Dr. K. Murali Krishnan
Assistant Professor

Place : Calicut
Date :

Head of Department

Office Seal

Abstract

Matching in graphs and associated problems have been of great interest to theoretical com-
puter scientists and mathematicians over decades. One of the celebrated results by Jack Ed-
monds showed that the matching problem in any general graphs yields itself to a polynomial
time algorithm. Attempts have been made to analyse and bring down both the time and space
complexities of this simple, yet intriguing problem.

In this report, we give a detailed description of the matching problem in graphs. We outline
the techniques adopted to find the maximum matching and also analyse the complexity of the
algorithms. Finally, we conclude with our observations on the complexity of the decision version
of maximum matching i.e. deciding whether the given matching is maximum or not.

ii

Contents

Abstract i

1 Introduction 2

1.1 Preliminaries . 3

2 Maximum Matching 5

2.1 Maximum Matching in Bipartite Graphs . 5

2.2 Maximum Matching in general graphs . 7

3 Perfect Matching 10

3.1 Hall’s Theorem for Bipartite Graphs . 10

3.2 Tutte’s Theorem for general graphs . 10

3.2.1 Preliminaries . 10

3.2.2 Statement of the Theorem and Proof . 11

4 Observations 14

4.1 Main Observations . 15

4.2 A direction towards logspace solution . 16

5 Conclusions & Future Work 19

Bibliography 20

iii

List of Figures

1.1 Matching in graphs; dotted lines indicate matched edges 3

1.2 Augmenting path from free vertex a to b . 3

2.1 A bipartite graph with partitions A and B . 5

2.2 Flow graph for bipartite matching . 5

2.3 A matched graph with odd cycle . 7

2.4 Odd cycle shrunk to a blossom - {c, d, e, f, g} . 7

2.5 Odd cycles shrunk to a blossom - {e, f, {g, h, i}} 8

2.6 Finding the augmenting path in G . 8

2.7 Unrolling the blossom in G . 8

2.8 Modifying the augmenting path . 9

4.1 Path in G′ labelled using blue edges . 17

4.2 Pseudo alternating path (a− b− c) in G′ . 17

1

Chapter 1

Introduction

Jack Edmonds in his paper [4, 3] gave the first polynomial time algorithm to find a maximum
matching in a general graph. This celebrated result, put the problem of finding the maximum
matching in a general graph in P. Edmond’s O(n4) algorithm for maximum matching was
subsequently improved by Hopcroft et al. [5] and Micali et al. [9], independently, to a run-time
of O(

√
n ·m).

Efforts were also made on parallelising this problem, as the problem was not shown to be P-
complete. The parallelisability of this problem comes from a theorem by Tutte [12] which says
that a graph has a perfect matching if and only if a certain matrix of indeterminates, known as
the Tutte matrix, is non-singular. The first algorithm to make use of this result was given by
Lóvasz [8] who gave an RNC algorithm for the problem of deciding whether or not a graph has
got a perfect matching. Borodin et al. also shows a similar result in [2]. Later, Karp et al. [6]
showed that the problems of finding a perfect matching and a maximum matching in a graph
are in RNC3. Their results were improved by Mulmulay, Vazirani and Vazirani to RNC2 in
[10]. A long standing open problem in the area is to find out whether any or all of the above
problems are in NC.

2

1.1. Preliminaries 3

1.1 Preliminaries

A graph G = (V,E) is a tuple consisting of a set of vertices V and a set of edges E. Let the
sizes of the vertex set be |V | = n and the edge set be |E| = m.

Definition 1. (Matching) A matching of graph G = (V,E) is a subset of the edges M ⊆ E
such that no two edges in M are adjacent.

A vertex is said to be covered by matching M if any edge e ∈M is incident on it. A matching
M is perfect if it covers all vertices. A perfect matching has a size of n

2
. Figure 1.1 shows the

maximal and maximum matching.

(a) Maximal matching (b) Maximum matching

Figure 1.1: Matching in graphs; dotted lines indicate matched edges

A matching M is maximal if the size of the matching (|M |) cannot be incremented by the
addition of an edge e ∈ E\M (Figure 1.1(a)). A matching M is maximum if no other matching
M ′ ⊆ E has a higher cardinality (|M ′| > |M |) (Figure 1.1(b)).

Definition 2. (Augmenting path) A path P with alternating free and matched edges that
begins and ends with free vertices.

Figure 1.2 shows an augmenting path.

Figure 1.2: Augmenting path from free vertex a to b

Theorem 3. (Berge) A matching M is maximum if and only if it has no augmenting path.

Proof. We prove by considering both forward and backward directions separately.

(=⇒) M is maximum ⇒ M has no augmenting path.

Let P be the augmenting path in a graph G = (V,E) with matching M . Flip the edges in path
P (unmatched to matched and vice-versa). The resultant matching M ′ has higher cardinality
than matching M .

4 Chapter 1. Introduction

|M ′| = |(M ⊕ P)\E(P)| = |M |+ 1

(⇐=) No augmenting path ⇒ M is maximum.

Let M ′ be a matching with |M ′| > |M |. The symmetric difference M ′ ⊕M yields a new graph
with the following elements -

• Alternating paths of varying length.

• Cycles of even length.

Let C1, C2, . . . , Ck be the even cycles obtained in M ′ ⊕M . Then, we have -

|M ⊕ C1 ⊕ C2 ⊕ · · · ⊕ Ck| = |M |

Since |M ′| > |M |, there must be at least one alternating path in the symmetric difference
(M ′⊕M). This alternating path originates and terminates at vertices covered by matching M ′

thereby constituting an augmenting path in the original graph. �

Algorithm 1 Maximum Matching(G)

1: M = φ
2: repeat
3: M ←M ⊕ P
4: until augmenting path P exists
5: return M

Thus, as shown in Algorithm 1, the problem of finding a maximum matching reduces to a
problem of finding augmenting paths efficiently.

Definition 4. (Perfect Matching) A matching M in a graph G is said to be a perfect matching
if and only if it is a maximum matching that matches every vertex in the graph.

An obvious requirement for the existence of a perfect matching in a graph is that the number
of vertices in it has to be even.

Chapter 2

Maximum Matching

2.1 Maximum Matching in Bipartite Graphs

Definition 5. (Bipartite graph) A graph G = (V,E) is bipartite if the set of vertices V can
be partitioned into two disjoint sets, V1 and V2, such that there are no edges between any two
vertices in the same partition Vi (i ∈ {1, 2}).

The key property in a bipartite graph is that it does not contain cycles of odd length. This is
straightforward to realise since the vertices forming the odd-cycle cannot be partitioned into
two independent sets.

Figure 2.1: A bipartite graph with partitions A and B

A maximal matching of bipartite graphs can be found easily - adding edges to the matching until
no more can be added. Also, a maximal matching M satisfies the property that |M | ≥ 1

2
|M ′|

where M ′ is the maximum matching of the bipartite graph. Thus, we can obtain a naive
“2-factor approximation” to the maximum matching.

The maximum matching problem in bipartite graphs can be reduced to that of a flow problem.
Let G = (V,E) be a bipartite graph with partitions A and B. A directed graph G′(V ′, E ′) is
constructed from the original graph G(V,E) by adding vertices and edges. The vertex set V ′

includes the vertices in V along with two special vertices - source vertex s and sink vertex t.

5

6 Chapter 2. Maximum Matching

The edge set E ′ includes the edges in E directed from partition A to partition B. The source
node s is connected to all the vertices in partition A and all the vertices in B are connected to
the sink node t using directed edges. Each edge in E ′ has unit capacity.

Figure 2.2: Flow graph for bipartite matching

A maximum flow f in the graph obeys the following properties -

1. All nodes in A have flows in at most one outgoing edge.

2. All nodes in B have flows in at most one incoming edge.

From these properties, we can conclude that the set of edges carrying the flow in f forms
a maximum matching for the given graph G. Thus, solving a maximum flow in G′ given a
maximum matching for G. Any maximum flow algorithm like Ford-Fulkerson can be used to
find the integral max-flows.

This algorithm runs in polynomial-time for any instance of bipartite graphs. The running time
of Ford-Fulkerson is O(m′F) where m′ is the number of edges |E ′| and F is the maximum
possible value of flow (F < |V |). Thus, the total run-time of the algorithm is O(m′ · n) =
O((m+ n) · n).

The maximum matching problem in bipartite graphs is also related to the vertex cover problem
which is known to be NP-Complete.

Theorem 6. (König-Egerváry) In a bipartite graph G, the maximum size of a matching is
equal to the minimum size of a vertex cover.

2.2. Maximum Matching in general graphs 7

2.2 Maximum Matching in general graphs

The problem of finding a maximum matching depends on efficiently finding the augmenting
paths. In odd-cycle free graphs or bipartite graphs, this is easy as we explore from each vertex
only once while finding the augmenting path. However, this approach fails when there are
odd-cycles in the graph.

Figure 2.3: A matched graph with odd cycle

An alternating path from a free vertex a can reach vertex g either through a matched (fg) or
unmatched edge (cg). A search for the shortest augmenting path from a will miss the longer
augmenting path - a, b, c, d, e, f, g, h.

In 1965, Edmonds in his famous paper Paths, trees and flowers [4], found a way to overcome
the problem of odd-cycles. The odd-cycles were handled by shrinking them into a super-vertex
called ‘blossom’.

Figure 2.4: Odd cycle shrunk to a blossom - {c, d, e, f, g}

Definition 7. (Flower, stem and blossom) A flower is the union of two alternating paths from a
start vertex to a common vertex in the odd-cycle. A stem of the flower is the maximal common
initial path. A blossom of the flower is the odd-cycle obtained by deleting the stem. The base
of the blossom is defined as the common vertex of the blossom and the stem.

In figure 2.3, a, b, c, d, e, f, g is the flower, a, b, c is the stem and c, d, e, f, g is the blossom.

The blossom does not hinder the search for an augmenting path. Any vertex in the blossom
can be reached via a matched or unmatched edge and hence contracting the odd-cycle into a
blossom helps in avoiding the various search paths.

The consolidation of the vertices into a blossom is done by contracting the edges whenever we
encounter an odd-cycle. Once an augmenting path is found, the contractions are unrolled back
to get an augmenting path in the original graph.

8 Chapter 2. Maximum Matching

(a) Initial (b) Contraction 1 (c) Contraction 2

Figure 2.5: Odd cycles shrunk to a blossom - {e, f, {g, h, i}}

Example

The augmenting path can be determined as - a, b, c, d, {e, f, {g, h, i}}, j from the figure 2.5(c).

(a) Augmenting path in G′

(b) Unrolled augmenting path in G

Figure 2.6: Finding the augmenting path in G

Lemma 8. Let G = (V,E) be a graph, M be any matching and B be a blossom. Let G′ and
M ′ be the new graph and matching obtained by shrinking V (B) to the blossom B. Then, M
is the maximum matching in G iff M ′ is the maximum matching in G′.

Proof. By contradiction. We prove by considering both forward and backward directions
separately.

(=⇒) Suppose that M ′ is not a maximum matching in G′. Then, we prove that M is not a
maximum matching in G.

Let Q be any augmenting path in G′ whose length is k. Let Bb be the super vertex obtained
from shrinking blossom B. If the vertices of the augmenting path Q do not touch the super
vertex Bb, then unrolling the blossom will not affect the augmenting path in G. However, if Q
touches Bb, then there are two vertices u and v in the unrolled blossom B which are unmatched
and matched externally as shown in figure 2.7.

In the blossom B, the cardinality of unmatched edges ((V (B) + 1)/2) is one more than the
cardinality of matched edges ((V (B) − 1)/2). There is only one vertex (v) in the blossom B
having both unmatched edges. Hence, both the paths from u to v are alternating paths and Q
can be extended to an augmenting path Q′ in G. Thus, M is not a maximum matching in G.

2.2. Maximum Matching in general graphs 9

(a) Supervertex Bb in G′ (b) Unrolled blossom B in G

Figure 2.7: Unrolling the blossom in G

(⇐=) Suppose, M is not a maximum matching in G. Then, from Berge’s theorem (Theorem
3), we have an augmenting path Q in G. Let q1, q2, . . . , qk be the vertices of Q where |Q| = k.
Then, there arises two cases -

• Both the end-points of path Q - q1 and qk - terminate outside the blossom.

• The end-point qk terminates in the blossom.

In the first case, since both the end points terminate outside the blossom B, shrinking the graph
will not affect the augmenting path. In the second case, given a matching M , we can always
construct a matching N that switches the unmatched and matched edges in the alternating
path q2, q3, . . . , qk and |M | = |N |. This results in a graph where the base b of the blossom is
unmatched. Hence, the new augmenting path is q1, q2, . . . , b and the problem is reduced to the
first case. Figure 2.8 illustrates the proof.

(a) Augmenting path q1, q2, . . . , qk (b) Augmenting path q1, q2, . . . , b

Figure 2.8: Modifying the augmenting path

Thus, M ′ is not a maximum matching in G′. �

Chapter 3

Perfect Matching

3.1 Hall’s Theorem for Bipartite Graphs

A necessary condition for perfect matching in a bipartite graph is the equal size of partitions
A and B. Otherwise, the flow value (maximum matching) of the graph will be limited by the
quantity min(|A|, |B|) ≤ |V |/2. A necessary and sufficient condition for the perfect matching
in bipartite graphs was given by Hall.

Theorem 9. (Hall) A Bipartite graph G = (V,E) has a perfect matching iff |A| = |B| and for
every subset S ⊆ A, the size of it’s neighbors in B is atleast as large as |S|, i.e. |N(S)| ≥ |S|.

3.2 Tutte’s Theorem for general graphs

3.2.1 Preliminaries

Before going into the statement of Tutte’s theorem, we need to get ourselves acquainted with
some preliminary ideas related to the same.

Definition 10. (Connected Component) A connected component in an undirected graph is a
maximal subset of its vertices, maximal w.r.t inclusion, such that every vertex in the subset is
connected to every other vertex in it.

Definition 11. (Odd component) A connected component in a graph is an odd component if
it has an odd number of vertices in it. The number of odd components in a graph G is denoted
by o(G).

10

3.2. Tutte’s Theorem for general graphs 11

Lemma 12. If M1 and M2 are two perfect matchings in a graph G, then the subgraph M1⊕M2

of G consists entirely of even cycles and isolated vertices.

Proof. The operation ⊕ stands for symmetric difference, i.e M1 ⊕M2 is a subgraph that
consists of all the edges in the graph that belong to either of the matchings but not both. Since
both M1 and M2 are perfect matchings, every vertex in the graph is saturated by both of them.
If for a particular vertex, both the M1 edge and the M2 edge incident on it are same, that
edge will not be included in the subgraph M1 ⊕M2. Hence the vertex will have degree 0 in
M1⊕M2. If, on the other hand, the M1 edge and the M2 edge incident are not the same, then
both of them will be included in M1 ⊕M2, and the vertex will have degree exactly 2. So, all
the vertices in M1 ⊕M2 has degree wither 0 or 2. The degree 0 vertices are isolated vertices.
Other than that, there are only degree 2 vertices. With a little thought, one can see that the
remaining components can only be cycles. All such cycles will be of even cardinality. This is
also trivial to see, as none of the vertices can have more than one edge belonging to the same
matching incident on them. �

Tutte’s theorem gives a necessary and sufficient condition for a perfect matching to exist in a
given graph. The Tutte’s condition is that for any subset S of the vertex set of G, number
of odd components in G - S should be at most the cardinality of S. Tutte’s theorem can be
proved in a number of ways. In this report we’ll present the proof as given by Lovasz[7]. The
proof organisation and notations follow from [13].

3.2.2 Statement of the Theorem and Proof

Theorem 13. [12] Any graph G has a perfect matching if and only if G satisfies o(G−S) ≤ |S|
for every S ⊆ V (G).

Proof. [13, 7]

Necessity

Consider a perfect matching M in G and take any subset S of V(G). For every odd component
in G − S, there exists at least one vertex which is connected via a matched edge to a vertex
in S, for otherwise, M will not be a perfect matching. So, Tutte’s condition holds for S and so
does it for every subset of the vertex set.
Sufficiency

This is the tougher part of the proof. Before going into the proof, let us make and prove the
following claim.

Claim 14. Adding an edge to a graph which already satisfies Tutte’s condition does not violate
Tutte’s condition.

Proof. This is because, addition of an edge can in no way increase the number of odd
components of G - S, for any subset S considered. This becomes evident from the fact that
two odd components getting connected by a new edge becomes an even component and an
odd component and an even component getting connected via a new edge fuses into an odd

12 Chapter 3. Perfect Matching

component. Finally, an edge added in between vertices of S as well as between a vertex in S
and a vertex in G-S does not affect the number of odd components in G-S in any way. So, if
G′ is the graph obtained after adding an edge e to G, we have o(G′ − S) ≤ o(G− S) ≤ |S| for
any S ⊆ V (G) = V (G′). �

Returning to the main proof, let us assume that there is a graph which satisfies Tutte’s condi-
tion, has no perfect matching and the addition of any edge to it induces a perfect macthing. Let
G be such an extremal graph. We obtain a contradiction by proving that G actually contains
a perfect matching.

Define

U = {v ∈ V (G)|d(v) = n− 1}

We divide the proof into two cases based upon the structure of the connected components in
G - U.

Case 1: G - U is a collection of disjoint cliques

The vertices in each of the even order cliques in G - U can be perfectly matched with the
vertices in itself and all the odd order components have one extra vertex unmatched. Match
this extra vertex with some vertex in U. There are enough vertices in U for this operation
because G is assumed to satisfy Tutte’s condition. It is easy to see that an even number of
unmatched vertices remain in U which can be matched among themselves since d(v) = n − 1
for any v ∈ U . This gives a perfect matching in it.

Case 2: G - U is not a disjoint union of cliques

Since G - U is not a disjoint union of cliques, it is not tough to see that, there are at least two
vertices v and w at a distance of at least 2 from each other. Therefore, we can assume that v
and w are two vertices at a distance of exactly 2 (Why ?).Let y /∈ U be a common neighbour
of v and w. In addition, ∃x /∈ U and x not a neighbor of y, since y /∈ U . Since, from our earlier
assumption, we know that, adding any edge to G creates a perfect matching in G, let M1 and
M2 denote the matchings formed in G + vw and G + xy, respectively. It is sufficient to show
that ∃ a perfect matching in G avoiding both vw and xy. Consider F = M1 ⊕M2. Clearly, F
does not contain any edge which is common to both matchings and the degree of every vertex
in F is either 0 or 2. Put differently, F contains only even cycles and isolated vertices. Both
vw and xy belongs to F . Let C be the cycle in F containing vw.

If xy also belongs to C, then the desired perfect matching which avoids these two edges consist
of all those M1 edges in the path from x to w or v (whichever is the nearer one) not through
xy, the edge wy or vy as the case may be and all the M2 edges from y to v or w (whichever
is the nearer one) not through xy. To complete the perfect matching, add the remaining M1

edges which are not in C, as well.

Now, if xy does not belong to C, the desired perfect matching consists of all the M2 edges from
C and all the M1 edges not in C.

In both cases, we have shown a perfect matching in G. �

3.2. Tutte’s Theorem for general graphs 13

Perfect Matching is in NP∩co-NP

Tutte’s Theorem gives a good characterisation for the existence of perfect matchings in a given
graph G. A Yes certificate for the existence of perfect matchings is a set of edges which form
a perfect matching of the graph. A Tutte set which violates the Tutte’s condition would serve
as an easily verifiable No certificate, indicating the absence of a perfect matching. This shows
that the problem of finding a perfect matching is in NP∩co-NP.

Finding a perfect matching which would serve as a Yes certificate can be done in polynomial
time by a run of the Edmond’s algorithm[4, 3] which we already mentioned before. Exhibiting
a No certificate, ie, a Tutte Set, is an NP-hard problem, as has been recently been shown in
[1].

Chapter 4

Observations

Before going into the results, we’ll review some basic complexity terminology which will be
frequently referred to in the coming results and proofs.

Definition 15. NL is the complexity class of all decision problems which can be solved by a
nondeterministic TM using space logarithmic in the size of input.

Definition 16. L is the complexity class consisting of all the decision problems which are
solvable by a deterministic TM using space logarithmic in the size of input.

Definition 17. A problem is said to be NL-complete, if every problem in the class NL can
be reduced into it via log-space reductions.

Definition 18. A reduction is said to be log-space, if it is computable by a deterministic TM
using logarithmic space.

The problems we have examined in our work are

• DECISION-MM : Given an undirected graph G along with a matching M , check whether
the matching is maximum or not.

• AUG-PATH : Given an undirected graph G along with a matching M , check whether there
exists an augmenting path between two free vertices s and t.

The key result of this report makes use of the following theorem due to Omer Reingold[11].

Theorem 19. USTCON ∈ L

Here, USTCON is the problem of checking whether there exists a path between two vertices s
and t in a given graph G.

14

4.1. Main Observations 15

4.1 Main Observations

The important observations which arose from this study are presented below.

Theorem 20. AUG-PATH ∈ NL

Proof. Given a graph G with a matching M , the existence of an augmenting path between
two free vertices s and t can be determined using the Algorithm 2.

Algorithm 2 AUGPATH(G, u, v)

1: parity := 0
2: Start from u
3: repeat
4: if parity = 0 then
5: Nondeterministically choose a neighbor w of u via an unmatched edge
6: else
7: Nondeterministically choose a neighbor w of u via a matched edge
8: end if
9: parity := 1− parity
10: u := w
11: if u = v AND parity = 1 then
12: return Yes
13: end if
14: until all vertices have been examined
15: return No

�

Theorem 21. DECISION-MM ∈ NL

Proof. Given a graph G with a matching M , checking whether it is maximum or not can
be done using the Algorithm 3.

Algorithm 3 Maximum Matching(G)

1: for ∀(u, v) ∈ V × V do
2: check := AUGPATH(G, u, v)
3: if check = Yes then
4: return No
5: end if
6: end for
7: return Yes

The algorithm presented here invokes Algorithm 2 in its run. �

16 Chapter 4. Observations

4.2 A direction towards logspace solution

Proposition 22. AUG-PATH ∈ L

Attempt at Proof. To prove this result, we give a reduction from this problem to USTCONSET
which we show to be in L.

Lemma 23. USTCONSET ∈ L

Proof. Given a graph G, a vertex s and a set of vertices T , the problem of USTCONSET is
to check whether there exists a path from vertex s to any of the vertices in T . This can be done
in logspace using the logspace transducer for USTCON with slight modifications. The input to
the machine is the three tuple < G, s, T >. This is written on the read-only input tape. For
each vertex in t ∈ T , the machine checks for the existence of a path from s to t in successive
iterations. The first time it finds a path, it halts by writing Y es on the output tape. Once all
the vertices in T have been examined without any success, it halts by writing No on the output
tape. Each of these iterations use only logarithmic space on the work tape. We can reuse the
work tape for all iterations. Thus the machine uses no more than space logarithmic in the size
of the input. �

Returning to the main proof, we will now show a logspace reduction from AUG-PATH to
USTCONSET which will prove that AUG-PATH ∈ L.

Given an instance< G, s, t > of AUG-PATH, we output an instance< G′, s, T > of USTCONSET,
such that an augmenting path exists between s and t in G iff there is a path connecting some
vertex in T with s in G′. The working of the logspace transducer for the reduction is as
illustrated by ??.

Algorithm 4 Reduction(G, s, t)

1: if matching M is not proper then
2: return Reject
3: end if
4: if either s or t is not a free vertex then
5: return Reject
6: end if
7: E ′ := φ
8: for ∀(u, v) ∈ V × V such that u 6= v do
9: if ∃w such that ((u,w) /∈M) and ((w, v) ∈M) then
10: E ′ := E ′ ∪ (u, v)
11: end if
12: end for
13: G′ := (V,E ′)
14: T := N(t)1

15: return < G′, s, T >

It is easy to see that the reduction takes only space logarithmic in the size of input. For the
iteration, we just need to keep two vertices u and v in the memory. In the execution of step

4.2. A direction towards logspace solution 17

9, we need to check the specified conditions for each vertex in the graph. That again requires
storing a single vertex at a time in memory.

The last part of the proof is to show that an augmenting path exists between s and t in G iff
there is a path connecting some vertex in T with s in G′.

Claim 24. There is a path in G′ from s to some vertex v ∈ T iff there is an augmenting path
between s and t them in G.

Proof. We prove both the forward and backward directions.

(=⇒) Suppose there exists an augmenting path from s to t in G. The path starts and ends
with unmatched edges. Let s be labelled u1, t be labelled un and the intermediate vertices be
labelled with u2 to un−1. Clearly, edges (u1, u3),(u3, u5),. . . and (un−3, un−1) will be present in
G′ and hence there exists a path in G′ connecting s and un−1 ∈ T .

(⇐=) Consider one such path from s to a vertex v ∈ T in G′. Figure 4.1 shows such a path
with s and v labelled p1 and pn. For the sake of clarity, we’ll henceforth refer to edges in G′

Figure 4.1: Path in G′ labelled using blue edges

as blue edges and the edges in G as red edges. Since p1 is a free vertex and p1 is connected
to p2 via a blue edge, there should exist a vertex q1 which is adjacent to both p1 and p2
through edges in G such that (p1, q1) is an unmatched edge and (q1, p2) is a matched edge.
Similarly, for each i ∈ {2, 3, . . . n − 1}, there exists qi that is adjacent to both pi and pi+1

through edges in G such that (pi, qi) is an unmatched edge and (qi, pi+1) is a matched edge.
All qi’s are unique because no vertex can have more than one matched edge going out of it.
So, the path (p1, q1, . . . , pi, qi, pi+1, . . . , qn−1, pn) is an even length alternating path in G. Hence,
(p1, q1, . . . , pi, qi, pi+1, . . . , qn−1, pn, t) is an augmenting path in G. �

However, the proof is incomplete as it does not consider the following case (as illustrated in
figure 4.2) -

• A vertex with two adjacent unmatched edges and a matched edge.

From figure 4.2, in certain cases, the reduced graph G′ includes a false alternating path (from
a to c). Clearly, such cases should be avoided in the reduction. If this case can be patched, the
above reduction proves that AUG-PATH ∈ L �

1Neighbours of t in G

18 Chapter 4. Observations

Figure 4.2: Pseudo alternating path (a− b− c) in G′

If the above result can be satisfactorily proved for all cases, the following result comes as a
consequence.

Corollary 25. Claim 24 =⇒ DECISION-MM ∈ L

Proof. This can be done in logspace using the logspace transducer for AUGPATH with slight
modifications. The input to the machine is < G >. This is written on the read-only input tape.
For each pair of free vertices in G, the machine checks for the existence of an augmenting path
between them in successive iterations. The first time it finds a path, it halts by writing No on
the output tape. Once all possible pairs have been examined without finding any augmenting
path, it halts by writing Y es on the output tape. Each of these iterations use only logarithmic
space on the work tape. We can reuse the work tape for all iterations. Thus the machine uses
no more than space logarithmic in the size of the input. �

Chapter 5

Conclusions & Future Work

In this work, we have examined the space complexity of checking whether a given matching in
a graph is maximum or not. We have shown that this problem belongs to the non-deterministic
logspace complexity class (NL). We have also made an attempt at proving that the same
problem is in L. But the proof fails to work for a particular case which we have illustrated in
the report. We suggest patching the same as a potential problem to work on in the future.

19

Bibliography

[1] D. Bauer, H.J. Broersma, N. Kahl, A. Morgana, E. Schmeichel, and T. Surowiec. Tutte sets
in graphs ii: The complexity of finding maximum tutte sets. Discrete Applied Mathematics,
155(10):1336–1343, May 2007.

[2] Allan Borodin, Joachim von zur Gathen, and John E. Hopcroft. Fast parallel matrix and
gcd computations. Information and Control, 52(3):241–256, 1982.

[3] Jack Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. J. of Res. the
Nat. Bureau of Standards, 69 B:125–130, 1965.

[4] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[5] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[6] R M Karp, E Upfal, and A Wigderson. Constructing a perfect matching is in random nc.
In Proceedings of the seventeenth annual ACM symposium on Theory of computing, STOC
’85, pages 22–32, New York, NY, USA, 1985. ACM.

[7] L. Lovasz. Three short proofs in graph theory. J. Comb. Theory, 19:269–271, 1975.

[8] László Lovász. On determinants, matchings, and random algorithms. In FCT, pages
565–574, 1979.

[9] Silvio Micali and Vijay V. Vazirani. An o(
√
|V ||e|) algoithm for finding maximum matching

in general graphs. Foundations of Computer Science, Annual IEEE Symposium on, 0:17–
27, 1980.

[10] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, STOC ’87, pages 345–354, New York, NY, USA, 1987. ACM.

[11] Omer Reingold. Undirected st-connectivity in log-space. In Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, STOC ’05, pages 376–385, New
York, NY, USA, 2005. ACM.

[12] W.T. Tutte. The factorisation of linear graphs. J. Lond. Math. Soc., 22:107–111, 1947.

[13] Douglas B. West. Introduction to Graph Theory. Prentice Hall of India Private Limited,
2nd edition, 2001.

20

