
External Merge Sort for Top-K Queries
Eager input filtering guided by histograms

Yannis Chronis
∗

University of Wisconsin-Madison

chronis@cs.wisc.edu

Thanh Do

Google Inc

tddo@google.com

Goetz Graefe

Google Inc

goetzg@google.com

Keith Peters

Google Inc

petersk@google.com

ABSTRACT
Business intelligence and web log analysis workloads often

use queries with top-k clauses to produce the most relevant

results. Values of k range from small to rather large and

sometimes the requested output exceeds the capacity of the

available main memory. When the requested output fits in

the available memory existing top-k algorithms are efficient,

as they can eliminate almost all but the top k results before

sorting them. When the requested output exceeds the main

memory capacity, existing algorithms externally sort the en-

tire input, which can be very expensive. Furthermore, the

drastic difference in execution cost when the memory ca-

pacity is exceeded results in an unpleasant user experience.

Every day, tens of thousands of production top-k queries

executed on F1 Query resort to an external sort of the input.

To address these challenges, we introduce a new top-k
algorithm that is able to eliminate parts of the input before

sorting or writing them to secondary storage, regardless of

whether the requested output fits in the available memory.

To achieve this, at execution time our algorithm creates a

concise model of the input using histograms. The proposed

algorithm is implemented as part of F1 Query and is used

in production, where significantly accelerates top-k queries

with outputs larger than the available memory. We evaluate

our algorithm against existing top-k algorithms and show

that it reduces I/O traffic and can be up to 11× faster.

∗
Work done while at Google Inc.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6735-6/20/06.
https://doi.org/10.1145/3318464.3389729

CCS CONCEPTS
• Information systems→ Query operators.

KEYWORDS
Top-K; Query Operators; Out-of-core;

ACM Reference Format:
Yannis Chronis, Thanh Do, Goetz Graefe, and Keith Peters. 2020.

External Merge Sort for Top-K Queries: Eager input filtering guided

by histograms. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20), June 14–19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 15 pages. https://doi.

org/10.1145/3318464.3389729

1 INTRODUCTION
When analyzing today’s huge data volumes, e.g. web logs,

users typically want the most relevant results. Business intel-

ligence and web analytics use top-k queries for the final or

intermediate results. Users may want only a handful of result

rows, but sometimes a large amount of data selected from a

huge amount of data. Such queries are common in practice in

big internet services companies and the requested output, k,
can exceed the capacity of the main memory. For example a

data scientist at Facebook might request the 50 million most

commented and liked photos out of the 300 million photos

posted each day [17]; an engineer at Twitter might want to

perform trend analysis on the 10% most important tweets

out of the 3.5 billion tweets of the past week[32]; an engineer

at Google might calculate the intersection between the 40

million most active search users and the 40 million most

active gmail users, the user bases of both services exceeds

a billion users [34]; an operations analyst at Amazon might

request half of the 100 million US prime members that are

most likely to buy a certain product [18].

All methods for optimizing top-k algorithms attempt to

eliminate input rows not needed in the output; ideally, before

they are sorted. The standard way to evaluate top-k queries

uses an in-memory priority queue [4]. The top of the priority

queue is the last row to be included in the final output. As

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2423

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

https://doi.org/10.1145/3318464.3389729
https://doi.org/10.1145/3318464.3389729
https://doi.org/10.1145/3318464.3389729
https://creativecommons.org/licenses/by-nc-nd/4.0/

input arrives to the top-k operator, each key is compared to

the key at the top of the queue, only the row with the smaller

key is retained in the priority queue. The key at the top of

the queue serves as a cutoff key. Evaluating top-k queries

using this algorithm is very efficient, almost only the top

k rows will be sorted. However, this approach can only be

used if the requested output, fits in the available memory of

a single node.

When the requested output exceeds the capacity of the

available memory, the entire input is externally sorted. Exist-

ing top-k algorithms are not able calculate a cutoff key and

filter the input before sorting or writing to secondary stor-

age [13, 26, 27]. Externally sorting the entire input is an ex-

pensive operation and results in unpleasant user experience

as the execution of a top-k query exhibits a performance cliff;

namely the sudden and drastic change in the execution cost

when the output exceeds the memory capacity. An analysis

of our production query logs showed that, on an average day,

F1 Query [29] executes tens of thousands of top-k queries

that resort to an external sort of the entire input. We observe

that it is very common for top-k queries to use secondary

storage, due to high contention for main memory resources

or simply because of large requested outputs. With input

and output sizes fixed, the size of the required secondary

storage determines overall performance and is the principal

metric to optimize.

To address these problems, we introduce a new adaptive

algorithm for evaluating top-k queries. Our algorithm is able

to eliminate input rows before sorting or writing them to sec-

ondary storage, regardless of whether the requested output

fits in the available memory. When the output exceeds the

memory capacity, the proposed algorithm creates a concise

model of the input using histograms while sorted runs are

generated. Using the input model, a cutoff key is established

and continuously refined, while requiring significantly less

space compared to tracking the input in its entirety. Our al-

gorithm performs one pass over the input to generate sorted

runs and then merges the runs until the top k rows are pro-

duced. Additional passes over the input would incur a high

I/O cost given that we target use cases where the input is

many times larger than the requested output, which in turn

is many times larger than the available memory.

The drop in performance when our algorithm uses sec-

ondary storage is proportional to the size of the filtered input

and not equal to running an external merge sort of the en-

tire input, thus our algorithm avoids performance cliffs. Our

approach follows the recent and promising line of work that

learns the distribution of data to accelerate the execution of

core database operations while, in some cases, doing so while

requiring less space [9, 22, 33]. Our work is a complement

to earlier work on run generation [14].

We evaluate our algorithm using inputs of different sizes

and key distributions against an optimized external merge

sort algorithm [14]. Our algorithm is able to effectively elim-

inate input rows, reduce the usage of secondary storage and

can be up to 11× faster compared to our baseline. We have

implemented our algorithm in F1 Query where it is used in

production and has significantly sped up top-k queries with

outputs larger than the available memory.

The remainder of the paper is organized as follows: Sec-

tion 2 reviews related prior work. Section 3 introduces and

analyzes the proposed algorithm. Section 4 discusses the

applicability of the histogram technique on variants of top-k
operators and related operations. Section 5 evaluates the

performance of our algorithm.

2 RELATED PRIORWORK
Top-k queries are a well studied and surveyed problem [5,

10, 16, 20, 21]. This section reviews prior work and existing

execution techniques for top-k operations. If the input is

already sorted as specified by the top-k clause, the problem

is trivial. Therefore, the focus here is on cases in which the

input is unsorted with respect to the top-k clause.

Most existing research on top-k queries focuses on effi-

cient ways to compute the score based on which records are

sorted [10, 16]. Our work is complementary as it improves

the performance of a top-k operator once the score of each

record is computed.

2.1 Top-k execution strategies
Selection: Optimized top-k algorithms calculate and use a

cutoff key to discard tuples that will not be part of the out-

put. The ideal value of this key is the kth and last value of

the output. The calculation of the cutoff key seems similar to

the selection problem described by Blum et al [2], where an

algorithm is proposed to find in linear time the median value

or with a simple modification the kth value. This method

cannot be efficiently applied in our setting where the avail-

able memory is many times smaller than the input data. The

out-of-core selection algorithm requires two passes over the

input data [25] and performs random reads which are ex-

pensive. Our proposed algorithm performs a sequential pass

over the input during run generation.

Min/max statistics: A possible execution strategymaterializes

the input before the top-k operator, collects statistics, as

is common in column stores with min/max statistics, and

uses the statistics to skip parts of the input that can not be

part of the output. Eliminating parts of the input accelerates

the execution, but the cost of materialization is prohibitive

compared to using the algorithm we propose. Our algorithm

eliminates parts of the input at a finer granularity (rows

vs groups of rows for which we have statistics) without

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2424

incurring the cost of materialization of the entire input to

secondary storage before the top-k operator. Furthermore,

our algorithm can employ replacement selection [20] which

makes run-generation a pipelined operation and does not

stop consuming the input to sort the contents of the memory.

Resource Provisioning: Modern servers have amplemainmem-

ory available, and all but the most extreme datasets can prob-

ably fit in memory. In practice even if we could restrict the

size of the datasets we are able to process to the size of our

memory, a query, let alone a query’s operator, does not have

access to the entire main memory of a server. Each server

has multiple CPUs with multiple cores running hundreds or

thousands of threads at any time, consequently, each thread

is only allocated a small fraction of the total main memory.

Avoiding using secondary storage in the context of a top-k
operator would require provisioning enough main memory

to store the output. Such an execution strategy in practice is

impossible without wasting resources. Predicting resource

requirements and execution times even in the context of

well-defined database operators is far from perfect. Lacking

such prediction mechanisms the need for efficient adaptive

algorithms is apparent.

LateMaterialization: To reduce thememory footprint of a top-

k operation and turn an out-of-memory algorithm into an

in-memory algorithm, one could choose to retain in-memory

only the columns involved in the sort expression, augmented

with a row-id. The final top-k result would be materialized

by a join. With input and output sizes many times larger

than the available memory, the cost of the necessary join

lookup and fetch for the materialization depends on the cost

of random I/Os [6, 12]. Local NVM and SSD storage could

provide efficient random reads; in our environment, however,

storage is disaggregated and handled by servers separate

from the ones executing the query logic [29]. The cost of

an I/O is a network round trip, plus the invocation of the

storage service, plus an I/O in a shared and busy disk drive.

In this environment, random I/Os are extremely expensive

and thus our execution strategy is to retain any information

once gained rather than temporarily placing it on secondary

storage.

Partitioning: Using random or hash partitioning, we could

find the top k elements per input partition and then pro-

duce the final result using a serial selection. This approach

works best for small values of k that do not overwhelm the

serial step. Range partitioning specifically for top-k is an

interesting approach and we discuss it further in Section 3.3.

2.2 Query optimization
For complex queries, there are specific optimization tech-

niques e.g., based on integrity constraints [23]. In the present

paper, we focus on the cases that query optimization has

produced a promising query execution plan that requires a

top operation for an unsorted input of unknown size, as is

typical for the result of a complex query. In general, query

optimization is orthogonal to the improvements of execution

algorithms, the focus of this work.

2.3 Top-K with a priority queue
For small values of k, i.e. when the requested row count fits

in the available memory, the simplest algorithm for top-k
operators over an unsorted input, uses an in-memory priority

queue to track the k smallest key values seen so far in a scan

of the input [16]. The top entry in the priority queue is the

kth-smallest item. This key decides the disposition of further

input rows. Input rows with keys above this key value are

eliminated immediately; input rows with keys below this key

value are inserted into the priority queue after the current

top entry has been deleted.

This design and implementation is perfectly suitable for

the easiest cases but it is neither scalable nor robust. If in-

dividual rows are unexpectedly large due to variable-size

fields, or if the memory allocation is unexpectedly small due

to concurrent activity, or if rows with key values equal to the

kth key value are desired and the number of duplicate rows

is unknown, then this algorithm may unexpectedly fail.

Extending this algorithm to work across multiple levels of

a memory/storage hierarchy is possible but has severe per-

formance implications. AlphaSort [27], for example, which is

optimized for the difference between cache and DRAM per-

formance, benefits from an internal sort algorithmwithin the

CPU cache and a traditional external sort algorithm beyond.

A priority queue "paging" in virtual memory or a database

buffer pool would incur multiple page faults per heap traver-

sal. As an example of the performance implications, consider

the creation of a b-tree. Random insertions into a b-tree are

no substitute for an external merge sort, which is precisely

why database products implement a "create index" operation

by sorting future index entries and then creating the b-tree

left-to-right. A page fault per index entry is a terrible write

amplification. Similarly, a page fault per key replacement in

a priority queue is a terrible performance penalty.

2.4 Top-K with traditional external
merge sort

Usually, the second algorithm implemented for top-k opera-

tors is external merge sort [14]. The entire input is consumed

and written to sorted runs on secondary storage, the final re-

sult is produced by scanning and merging all the sorted runs

until k records have been produced.We refer to this approach

as “traditional external merge sort algorithm" from here on.

Query execution usually starts with the in-memory algo-

rithm but switches to this failback algorithm when it runs

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2425

out of memory. Many systems rely on their “vanilla" sort,

omitting numerous simple optimizations, e.g., limiting the

size of each run to the final output size. This algorithm was

made obsolete by the algorithm we describe in Section 2.5.

2.5 Top-K with optimized external
merge sort

External merge sort can be optimized specifically for top-k
operations as described in [14]. The present paper is a con-

tinuation and complement of this prior work. The work pre-

sented in [14] focuses on cases in which the desired final

output is smaller than a sorted run created by in-memory

sorting, but still larger than the available memory. For such

small desired outputs, the earlier work describes an incre-

mentally sharpening filter. Run generation uses the kth key

value in the first run to eliminate subsequent input rows

immediately as they arrive, thus limiting the second run

to smaller key values, whereupon the kth key value in the

second run can eliminate more input keys for the third run,

etc. The earlier work uses replacement selection [20] in run

generation: new input rows with large keys go to the current

run but input rows with small keys are deferred to the next

run. When sorting for a top operation, deferment of an input

row to the next run may shorten the current run. The shorter

the current run is, the more it can sharpen the input filter.

When k, the desired output, is larger than a sorted run

(and the available memory) the recommendation from [14] is

to merge sorted runs to produce an intermediate run larger

than the final output, derive a cutoff key from the merge

output, and filter all further input with this cutoff key. It may

be useful to force an intermediate merge step quite early, long

before an ordinary external merge sort would invoke its first

merge step, just for the purpose of establishing a cutoff key.

This technique is much better than a full external sort of the

entire input. However, it disrupts the continuous data flow

in run generation by replacement selection, performs merge

steps that are sub-optimal due to a less-than-maximal merge

fan-in, and provides a cutoff key for input removal much

later than is possible by using the algorithm we introduce.

The present work focuses on the latter case with large re-

quested outputs, avoids intermediate merge steps, yet filters

the input more effectively.

2.6 Massively Parallel Hardware
Shanbhag et al [30] show that the massive parallelism of

GPUs can accelerate top-k operations. The best performing

top-k algorithms for GPUs, Radix-Select and Bitonic Top-k,
can substantially speedup execution compared to sorting

the entire input or a top-k with a priority queue algorithm

(Section 2.3). GPUs can accelerate various database operators

but their deployment can be costly, especially for a large

scale deployment that supports tens of billions of queries

a day on clusters with thousands of nodes. Shanbhag et

al [30] consider cases where the requested output fits in

the available memory. The presented algorithms are not

applicable in our target use case similarly to the top-k with a

priority queue algorithm; when the requested output exceeds

the memory capacity in order to locate the kth row the input

must be externally sorted.

2.7 Pause-and-resume
Some query engines can create a query result page-by-page

or one screenfull at a time. The first page is like a top-k
query. Each subsequent page uses the same output size, k,
plus an offset clause to skip over the previous result rows,

contained in the already presented pages. Thus, not only

top-k queries require efficient support in a query engine

but also combinations of “limit" and “offset" clauses. The

algorithm we introduce in Section 3 supports “offset" clauses

effectively.

3 TOP-K WITH HISTOGRAMS
This section introduces our algorithm and analyzes its per-

formance. We defer full evaluation of our production imple-

mentation to Section 5.

3.1 The Algorithm
3.1.1 Overview. Our algorithm behaves as the in-memory

top-k with a priority queue algorithm while the requested

output fits in memory (Section 2.3). Similar to existing ap-

proaches, when the output exceeds the memory capacity,

secondary storage is leveraged to externally sort the input.

Our algorithm differs from existing approaches, as it elimi-

nates parts of the input before being sorted and/or written

to runs. During execution, while sorted runs are created, our

algorithm creates and refines a concise model of the input.

A cutoff key is derived from the input model, continuously

sharpened and used to filter input rows. Our algorithm is

adaptive, it uses two different ways of calculating a cutoff

key, depending on whether the requested output fits in the

available memory.

Figure 1 shows how our algorithm works at a high level,

when the requested output size exceeds the available mem-

ory. The input is consumed by the run-generation logic,

which creates and writes sorted runs to secondary storage.

The run-generation logic uses the cutoff key to eliminate

input rows before reaching the in-memory sort but also be-

fore writing them to runs. The cutoff filter logic creates a

histogram from each sorted run, combines histograms from

multiple runs into the input model, calculates a cutoff key as

soon as possible, and continuously refines it while writing

runs (explained in detail in Section 3.1.2). When all the input

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2426

Input

Run
generation

2 5 9 70

5 12 50 52

1 3 8 10

9, 70, 2
5, 50, 52

 1, 8, ...
10, 3, 170

...

. . .

. . .

12, 5, 200

Sorted Runs
(secondary storage)

Histogram Priority Queue

(70, 2)

Cutoff
Filter

(12, 2)

(5, 2)

(boundary key, bucket size)

(52, 2)

Cutoff Key
(after each run)

No cutoff key

Cutoff key = 70

Cutoff key = 12

(12, 2)

(10, 2)

(5, 2) (3, 2)

State after run #2 State after run #3

Figure 1: Our algorithm at a high level: The run-
generation logic consumes and writes the input to
sorted runs in secondary storage. Input rows are elimi-
nated using the cutoff key. The cutoff filter logicmain-
tains a priority queue to track the histogram buckets,
calculates and refines the cutoff key as sorted runs are
created. Each input row is represented by its sort key.

is consumed, the final result is produced by merging the

sorted runs until k records have been produced.

The histograms, and consequently the input model, de-

pend on the input data, the top-k clause and the memory

capacity and are specific to each top-k query. While the re-

quested output fits in the available memory, it is stored in a

priority queue and the run-generation logic is not activated.

3.1.2 Cutoff Key Calculation. The cutoff filter logic main-

tains a priority queue that stores the histograms created

from each run, which constitute the model of the input. A

histogram, here, is a collection of buckets. As runs are written

to secondary storage histogram buckets are pushed to a pri-

ority queue. Each bucket is inserted to the priority queue and

thus combined with the buckets from different runs. Each

histogram bucket is defined by its maximum (boundary) key

and by the number of rows it represents (bucket size), the size

of each bucket is variable. As new runs are created a sizing

policy determines the new buckets. If all histogram buck-

ets have the same size, say 100, then the histogram priority

queue tracks 100× fewer rows than the requested output.

The priority queue that stores the histogram buckets sorts

in the inverse direction compared to the requested output.

Therefore, the bucket at the top of the priority queue contains

the largest of the bucket boundary keys, which also is the

value of the cutoff key. A cutoff key is established, namely

it can be used to eliminate input rows, when the sum of the

sizes of the histogram buckets in the priority queue is equal

or larger to the size of the desired output, Σ(bucket size) ≥ k .
This condition guarantees that together all the histogram

buckets represent at least k rows, in other words the last row

to be included in the output has a key less or equal to the

cutoff key. If this condition does not hold we can not use the

cutoff key to eliminate input rows as we might discard a row

that could be part of the output.

The cutoff key is refined when a bucket is popped from the

priority queue and the top boundary key is replaced by the

next smaller key. We check if we can pop from the priority

queue after every insertion. A pop can occur when the sum

of the buckets sizes in the priority exceeds k by more than

the size of the the bucket at the top of the queue. Essentially,

a cutoff key can be established if the histogram bucket at the

top of the queue is removed. We insert buckets to the priority

queue as runs are written to secondary storage, therefore

the cutoff key may be sharpened and used to eliminate parts

of the same, currently being written, run.

In Figure 1, the sizing policy creates a histogram bucket

using every second key as a boundary key (marked bold), the

size of each bucket is 2, which is also saved in the priority

queue. Figure 1, presents the first three runs written to disk,

the value of the cutoff filter immediately after each run is

written to disk and the state of the histogram priority queue

after runs 2 and 3. Here, k=8, so after the first two runs are

written to secondary storage, 4 buckets will be inserted to

the priority queue. The sum of the sizes of the 4 buckets is

8 ⩾ k , therefore, a cutoff key is established. The value of the

cutoff key is the boundary key of the histogram bucket at the

top of the priority queue. After the 2nd run the cutoff key is

70, all future runs will not contain rows with keys greater

than 70. Consequently, input rows with keys 200 and 170 are

eliminated. After run 3 the cutoff key is sharpened and can

eliminate rows with keys greater that 12.

The cutoff filter logic used in our algorithm can be com-

bined with any run-generation algorithm. This allows us to

take advantage of run-generation optimizations introduced

in [14] and described in Section 2.5.

3.1.3 Algorithm Pseudocode. Algorithm 1, presents a pseu-

docode implementation of our top-k algorithm. We present

the logic used when the requested output is larger than the

available memory.

Procedure Top-k implements the main logic for the top

operator. Line 2, initializes the cutoff filter logic that pro-

vides the cutoff key, initialization entails creating the pri-

ority queue that stores the histogram buckets as shown in

Figure 1. Lines 3-5 consume and sort the input. For each

input row, the top-k operator uses the cutoff filter logic to

decide if it can be eliminated (line: 4), if not the row is passed

on to the run-generation logic (line: 5). To decide if a row

can be eliminated function eliminate compares its value to

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2427

Algorithm 1
Input: Input, k, SortInfo: sorting columns and direction

Output: Top k rows of Input
1: procedure Top-k(Input ,k, SortIn f o)
2: cutoffFilter ← initFilter(k, SortInfo)
3: for row in Input do
4: if !cutoffFilter.eliminate(row) then
5: SortRow(row, cutoffFilter)
6: returnMerge sorted runs until k rows are produced

7: procedure SortRow(row, cutoffFilter)
8: if Available memory is full then
9: rowsToSpill ← row(s) to write to sorted runs

10: for r in rowsToSpill do
11: if !cutoffFilter.eliminate(r) then
12: spillToSecondaryStoraдe(r)
13: cutoffFilter.rowSpilled(r)
14: Add row to the operator’s memory

the cutoff key according to the sorting order. If a cutoff key

is not established yet, then no input rows are eliminated.

The input rows that were not eliminated at line 4, are

passed on to the SortRow function (line: 7), which imple-

ments the run-generation logic. The input rows are sorted

and written to runs according to the run-generation logic. In

Algorithm 1, we don’t assume any specific run-generation

algorithm. The production implementation of our algorithm,

used in the evaluation (Section 5), uses replacement selec-

tion and other relevant optimizations described in Section 2.5.

Replacement selection does not require stopping the con-

sumption of the input to sort the contents of the memory

and create sorted runs, like using quicksort does.

Before a row is added to the top operator’s memory, the

run-generation logic checks if there is enough available mem-

ory (line: 8). If there is no memory available, one or more

rows currently stored in memory are sorted and written to

secondary storage. Before each row is written to secondary

storage, it is again compared to the cutoff key (line: 11).

The cutoff key may have been sharpened after the row to

be spilled was admitted to the run-generation logic. If the

row(s) are not eliminated they are written to secondary stor-

age (line: 12), and also passed to the cutoff filter logic (line: 13).

Function rowSpilled manages the histogram priority queue;

it creates new histogram buckets based on the sizing pol-

icy used and sharpens the cutoff key (described in detail in

Section 3.1.2).

3.2 Algorithm Analysis
This section examines the ability of our algorithm to elim-

inate input rows when the requested output exceeds the

memory capacity. Section 3.2.1 presents a detailed execution

example. Section 3.2.2 analyzes the performance of the pro-

posed algorithm when the input size, output size, memory

capacity and the histogram sizing policy is varied. The anal-

ysis here focuses on efficiency and scalability to large inputs.

The input for the experiments in this section contains keys

with values uniformly distributed in the range [0,1].

3.2.1 A specific example. As a concrete example, assume

a top 5,000 query over an unsorted input of 1,000,000 row,

the memory capacity is 1,000 rows. Clearly (because 5,000 >
1,000), the request cannot be handled in memory.

Since the key values are floating point values uniformly

and randomly distributed between 0 and 1 inclusively, the fi-

nal result contains key values between 0 and 0.005; all higher

values should be eliminated as soon as possible. Table 1 tracks

the progress of the run generation and the cutoff filter logic.

In Table 1, each row presents the remaining input rows to be

consumed and the value off the cutoff key before each run

as well as the values of the keys for each run at each 10%

quantile (decile) from 10% up to 90%. For simplicity, in this

section, to create a run we fill our available memory with

input rows, sort and write them to disk. We create a new

histogram bucket when the row at each decile from 10% up

to 90% is written to secondary storage, the key at each decile

is used as the boundary keys of the bucket. The size of each

bucket is 100 (10%∗1000) because it represents the number

of sorted keys of the run written to secondary storage since

the previous histogram bucket was created. After a cutoff

key is established, to generate a run with 1000 rows we may

need to consume more than 1000 input rows, as rows can

be filtered before added to a run. When a run is written to

secondary storage it might contains less than 1,000 rows as

the cutoff filter may eliminate parts of the run. When rows

after a decile are eliminated and not written to disk we leave

the corresponding decile cells empty in Table 1.

Runs 1-6 contain key values from 0 to 1 with decile values

about 0.1, 0.2, 0.3... 0.9. The information in the histograms

gathered from these runs guarantees that there are more

than 5,000 keys below key 0.9, because 6 ∗ 900 rows = 5,400

rows > 5,000 rows. We can eliminate rows with keys above

0.9 in run 6, because those rows are not going to be part of

the requested top 5,000 final output rows.

After run 6, all key values larger than the cutoff key (0.9)

can be eliminated immediately from the remaining input.

Thus, finding 1,000 key values for run 7 consumes about

1,111 input rows. Run 7 contains key values from 0.0 to 0.9

and its 9 decile keys are 0.09, 0.18, 0.27...0.81. While run 7

is written the cutoff key is refined and run 7 ends with key

value 0.72.

After run 7, the new cutoff key for run 8 is 0.72 because

this cutoff guarantees at least 5,000 key values from the first

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2428

Run

Remaining

Input Rows

Cutoff Key

(before each run)

Values of Keys at Quantiles For Each Run

10% 20% ... 70% 80% 90%

1 1,000,000 - 0.1 0.2 ... 0.7 0.8 0.9

... ... -

6 995,000 - 0.1 0.2 ... 0.7 0.8 0.9

7 994,000 0.9 0.09 0.18 ... 0.63 0.72

8 992,889 0.72 0.072 0.144 ... 0.504 0.576

9 991,501 0.6 0.06 0.12 ... 0.42 0.48

10 989,835 0.504 0.0504 0.1008 ... 0.3528 0.4032

11 987,851 0.45 0.045 0.09 ... 0.315 0.36

12 985,629 0.4 0.04 0.08 ... 0.28

13 983,130 0.315 0.0315 0.063 ... 0.2205 0.252 0.2845

14 979,956 0.288 0.0288 0.0576 ... 0.2016 0.2304

15 976,484 0.24 0.024 0.048 ... 0.168 0.192

16 972,318 0.2 0.02 0.04 ... 0.14 0.16 0.18

17 967,319 0.18 0.018 0.036 ... 0.126 0.144

18 961,764 0.1512 0.01512 0.03024 ... 0.10584 0.12096

19 955,151 0.126 0.0126 0.0252 ... 0.0882 0.1008

20 947,215 0.10584 0.010584 0.021168 ... 0.074088 0.084672 0.095256

21 937,767 0.1 0.01 0.02 ... 0.07 0.08

22 927,768 0.0882 0.00882 0.01764 ... 0.06174 0.07056

23 916,431 0.074088 0.007409 0.014818 ... 0.051862 0.05927

24 902,934 0.063 0.0063 0.0126 ... 0.0441 0.0504

25 887,061 0.054 0.0054 0.0108 ... 0.0378 0.0432

26 868,543 0.048 0.0048 0.0096 ... 0.0336 0.0384

27 847,710 0.04 0.004 0.008 ... 0.028 0.032 0.036

28 822,711 0.036 0.0036 0.0072 ... 0.0252 0.0288

29 794,934 0.03024 0.003024 0.006048 ... 0.021168 0.024192

30 761,866 0.02646 0.002646 0.005292 ... 0.018522 0.021168

31 724,074 0.02226 0.002223 0.004445 ... 0.015558 0.017781

32 679,083 0.02 0.002 0.004 ... 0.014 0.016

33 629,084 0.01764 0.001764 0.003528 ... 0.012348 0.014112

34 572,395 0.014818 0.001482 0.002964 ... 0.010372 0.011854

35 504,908 0.0126 0.00126 0.00252 ... 0.00882 0.01008

36 425,543 0.0108 0.00108 0.00216 ... 0.00756 0.00864

37 332,951 0.0096 0.00096 0.00192 ... 0.00672 0.00768

38 228,785 0.008 0.0008 0.0016 ... 0.0056 0.0064 0.0072

39 103,786 0.0072 0.000964 0.001927 ...

Table 1: Approximate quantiles and cutoff keys. Empty quantile cells indicate eliminated rows.

7 runs: at least 700 rows each from runs 1-6 plus 800 rows

from run 7 have keys less than or equal to 0.72. With a cutoff

key of 0.72, 1,000 rows for run 8 require consuming 1,388

input rows. Run 8 contains key values from 0.0 to 0.72 and

its 9 decile keys are 0.072, 0.144, 0.216... 0.576, 0.648. Writing

run 8 ends immediately after writing the key value equal to

or higher than the new cutoff key, i.e., 0.6. After run 8, the

new cutoff key is 0.6, because runs 1-8 contain at least 5,000

key values less than 0.6, namely 600 rows in each of runs

1-6, 600 − 700 rows in run 7, and 800 rows in run 8, with

6 ∗ 600 + 600 + 800 = 5,000 rows. After run 9, the cutoff key

is 0.504.

After run 10, the cutoff key is 0.45. Therefore, after con-

suming about 1% of the input, 55% of the remaining input can

be eliminated immediately. Thus, even without further sharp-

ening of the cutoff key, this algorithm spills 2× less than the

traditional external merge sort algorithm, i.e., fully sorting

the input. Using the early merge step technique (employed

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2429

by the optimized external merge sort algorithm), merging

10 initial runs establishes a cutoff key able to eliminate
1

2
of

the remaining input immediately. Note that this merge step

may stop after producing 5,000 rows; as the top 5,000 query

has no need for more rows. On the other hand, a small his-

togram for each run containing as few as 9 buckets enables

elimination of 10% of the remaining input after only 6 runs,

without the merge effort. After 7 runs, the eliminated input

increases to more than 20%; and to about 50% of the remain-

ing input after 10 runs, again without the merge effort. Due

to continuing incremental improvements in the cutoff key,

only 39 runs are required containing less than 35,000 rows.

In total, our algorithm will write to secondary storage 12×

less input rows compared to the optimized external merge

sort (Section 2.5) and 28× fewer rows than the traditional

external merge sort algorithm for this example. These calcu-

lations assume perfectly uniform random distributions but

illustrate the crucial effects clearly.

The advantage of decreasing cutoff keys begins after k
input rows have been processed. With additional runs the

cutoff key is refined, eventually approaching the largest key

value in the final output. Larger histograms permit sharper

input filters. For example, with 19 buckets per run, the cutoff

key after 6 runs can be 0.85 rather than 0.9 as in the example

above, 37 runs are required rather than 39 and the final cutoff

key is 0.006024. The total size of the 37 runs is less than 32,000

rows. One extreme case tracks each key value, equivalent

to a histogram with 1,000 buckets. This case requires only

35 runs containing less than 30,000 rows. Interestingly, a

mere 50 histogram buckets already reduce the number of

runs to 35. The opposite extreme case tracks only the median

key value of each run, which requires 66 runs containing

less than 63,000 rows. Note that this is still 15× less than

in the traditional external merge sort algorithm (sorting all

1,000,000 input rows) and 7× less than in the optimizedmerge

sort algorithm proposed in [14] for our problem setting.

3.2.2 Analysis. This section evaluate the ability of our al-

gorithm to compute a cutoff key and reduce the number

input rows written to secondary storage. Tables 2-5 present

each a series of experiments where one parameter is varied.

Each row of the following tables indicates one experiment,

the first column shows the varied parameter. The Runs col-

umn shows how often the memory contents are sorted and

written to secondary storage. The Rows column lists the

number of input rows that were sorted and written to runs.

The Cutoff column contains the cutoff key after the last run

is written, which is also the key that ends the last run. The

Ratio column is the quotient between the Cutoff column and

the ideal cutoff key (smaller is better). The ideal cutoff key

is the last key value in the final output; of course it is not

known until the output is produced.

#Buckets Runs Rows Cutoff Ratio

0 1,000 1,000,000 - 200

1 66 62,781 0.015625 3.13

5 44 39,150 0.007373 1.47

10 39 34,077 0.0063 1.26

20 37 31,568 0.00567 1.13

50 35 30,156 0.00532 1.06

100 35 29,780 0.005162 1.03

1,000 35 29,258 0.005014 1

Table 2: Varying histogram size.

Varying Histogram Size. Table 2 illustrates the effects of sizing
policies that create a diffferent number of histogram buckets

per run, i.e., the amount of information gathered for each run

is varied. This series of experiments repeats that of Table 1

(top 5,000 of 1,000,000 unsorted rows with memory for 1,000

rows). Here, the ideal cutoff key is 5,000 / 1,000,000 = 0.005.

The three extreme sizing policies are: no buckets collected

at all, one bucket with the median of the run as a boundary

key per run, and 1,000 buckets per run are collected, i.e., each

key is retained as a histogram bucket of size 1. A compar-

ison of the first two experiments in Table 2 demonstrates

the value of retaining even the least bit of information about

each run, i.e.,one bucket per run. More detailed information

is useful but decreasingly so. A small histogram per run suf-

fices to obtain most of the possible performance benefits.

More specifically, with the absolutely minimal histogram

our algorithm spills 16 times less than the traditional exter-

nal merge sort algorithm (62,781 vs 1,000,000 rows spilled).

Creating 100 buckets per run enables 30 times less spilling

(29,780 vs 1,000,000 rows spilled).

Table 2 also suggests that adaptable bucket sizes may pro-

vide only limited advantage. For example, one might consider

using large buckets early within a run and smaller buckets

later, with the expectation that the small buckets will enable

earlier, even if smaller, decreases of the cutoff key. However,

even 10× more buckets give only a limited improvement in

run count and total run sizes. For example, using 100 instead

of 10 buckets improves the total run count from 34,077 to

29,780 or by less than 15%. Going from 100 to 1,000 buckets

provides an even smaller, practically negligible, advantage.

Varying Output Size. Table 3 illustrates the effect of large

requested output sizes. This series of experiments repeats

that of Table 1 but varies the number of output rows. The

number of runs written grows as the output size grows,

which is expected as more input needs to be consumed for a

sharp input filter to be produced. Nevertheless, our algorithm

is able to eliminate substantial parts of the input. The last

experiment is run thrice, with 10, 100, and 1,000 histogram

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2430

Output Runs Rows Cutoff Ratio

2,000 20 14,858 0.00245 1.23

5,000 39 34,077 0.0063 1.26

10,000 67 62,072 0.0126 1.26

20,000 113 109,016 0.025 1.25

50,000

222 218,539 0.06048 1.21

204 200,161 0.050803 1.01

202 198,436 0.050076 1

Table 3: Varying output size. The last experiment is
run thrice, with 10, 100, and 1,000 histogram buckets
per run respectively.

buckets per run respectively. Larger histograms help but

only moderately so. Going from 10 to 100 histogram buckets

reduces by only 10% the total usage of secondary storage.

Varying Input Size. Table 4 illustrates the effect of large in-
puts. This series of experiments repeats that of Table 1 but

varies the number of input rows. Note that the ideal cutoff

key decreases because a fixed output size of 5,000 rows is a

smaller fraction for larger inputs. The Cutoff column shows

the incremental sharpening of the input filter for large inputs.

For example, when processing an input of 100,000,000 rows,

the state of the algorithm after 1% of the input is indicated

by the entries for the experiment with 1,000,000 inputs rows.

Interestingly, comparing the experiments with input size

20,000 and 10,000, the 10,000 additional input rows require

only 4 additional runs containing about 3,500 additional rows

(13 vs 9 runs, 11,840 vs 8,332 rows); comparing the experi-

ments with input size 200,000 and 100,000, the second 100,000

input rows require only 4 additional runs containing 4,000

additional rows; etc. Even the second 50,000,000 input rows,

comparing the experiments with input size 100,000,000 and

50,000,000, require only 5 additional runs containing just

over 4,000 additional rows (71 vs 66 runs, 61,235 vs 57,182

rows). There could hardly be a better illustration of the ef-

fectiveness of histograms in producing an input model that

incrementally sharpens the cutoff key.

Varying Input Size - Minimal Histogram. Table 5 repeats the
experiments shown in Table 4 but with a minimal histogram

for each run, i.e., only one bucket is created from each run

which has the median key as a boundary key. This minimal

histogram sizing policy leads to twice as many run on aver-

age as the input size grows, compared to the results shown in

Table 4. While sub-optimal, this configuration is still usable

and vastly superior to a standard external merge sort of the

entire input. For example, for the largest input size in Table 5,

a traditional external sort spills the entire input whereas our

algorithm reduce this to
1

8
% of the input rows, i.e., it filters

out 99
7

8
% of the input.

Input size Runs Rows Cutoff Ideal Ratio

6,000 6 5,900 0.9 0.833333 1.08

7,000 7 6,699 0.8 0.714286 1.12

10,000 9 8,332 0.532978 0.5 1.06

20,000 13 11,840 0.288 0.25 1.15

50,000 19 16,690 0.116482 0.1 1.16

100,000 24 20,627 0.06174 0.05 1.23

200,000 28 24,638 0.0315 0.025 1.26

500,000 35 30,008 0.0126 0.01 1.26

1,000,000 39 34,077 0.0063 0.005 1.26

2,000,000 44 38,188 0.003175 0.0025 1.27

5,000,000 50 43,565 0.00126 0.001 1.26

10,000,000 55 47,683 0.000635 0.0005 1.27

20,000,000 60 51,735 0.000318 0.00025 1.27

50,000,000 66 57,182 0.000127 0.0001 1.27

100,000,000 71 61,235 0.000064 0.00005 1.28

Table 4: Varying input size.

Input size Runs Rows Cutoff Ideal Ratio

6,000 6 6,000 1 0.833333 1.2

7,000 7 7,000 1 0.714286 1.41

10,000 10 9,500 0.5 0.5 1

20,000 15 14,500 0.5 0.25 2

50,000 25 24,000 0.25 0.1 2.5

100,000 34 32,250 0.125 0.05 2.5

200,000 44 41,125 0.0625 0.025 2.5

500,000 56 53,437 0.03125 0.01 3.13

1,000,000 66 62,781 0.015625 0.005 3.13

2,000,000 76 72,203 0.007812 0.0025 3.13

5,000,000 90 85,499 0.003425 0.001 3.43

10,000,000 100 94,999 0.001773 0.0005 3.55

20,000,000 110 104,500 0.000903 0.00025 3.61

50,000,000 123 116,209 0.000244 0.0001 2.44

100,000,000 133 125,708 0.000122 0.00005 2.44

Table 5: Varying input size, minimal histograms.

3.3 Summary of the analysis
In summary, even histograms of moderate size allow our

algorithm to efficiently eliminate input rows. Compared to

early merge steps (Section 2.5) our algorithm establishes a

cutoff key faster and sharpens it more effectively without the

effort of premature sub-optimal merge steps. Our algorithm

is not very effective for input sizes only slightly larger than

the desired output size, but its effectiveness increases rapidly

with larger inputs, as seen in Table 4.

Our algorithm is vastly superior to the traditional external

merge sort algorithm commonly used today. For example,

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2431

in Table 4, the Rows column shows the I/O effort required

by our algorithm, whereas the Input Size column shows

the I/O effort required by the traditional external merge

sort algorithm, which will sort and write the entire input

to secondary storage. The difference exceeds two orders of

magnitude for inputs of moderate size (e.g., 5,000,000 versus

43,565 rows) and it exceeds three orders of magnitude for

very large inputs (100,000,000 versus 61,235 rows). In other

words, the proposed algorithm is both efficient and scalable

to very large inputs and by not externally sorting the entire

input when the output becomes larger that the available

memory, avoids performance cliffs and provides a pleasant

and consistent user experience.

It may be useful to compare our algorithm with the top-k
with a priority queue algorithm (Section 2.3). They seem

more similar than different. Both use a priority queue in a

sort order opposite to the sort order of the top-k clause. Both
track a number of key values proportional to the desired

output size k. The first difference is that the priority queue

in our algorithm tracks key values only, not entire rows;

the second difference is that its entries (histogram buckets)

represent groups of rows rather than individual rows.

Range partitioning specifically for top-k is an interesting

approach and has many similarities to our algorithm. Range

partitions and histogram buckets are very similar concepts.

As soon as the partitions holding input rows with low val-

ues are sufficiently populated, partitions holding input rows

with high values can be filtered. Changing the number of

partitions has the same effect on filtering as the histogram

sizing policy for our algorithm. Effective range partition-

ing requires foreknowledge of the key value distribution,

specifically of approximate quantiles.

4 APPLICATIONS OF THE HISTOGRAM
TECHNIQUE

Sections 4.1-4.5 discuss how the histogram technique used

in our algorithm can improve variations of the top-k oper-

ator and relevant operations. The experimental evaluation

of which is out of the scope of this paper, but we believe

describing them is worthwhile as they showcase the wide

applicability and benefits of the histogram technique.

4.1 Merge optimizations
The histogram logic presented in Section 3 pertains to run

generation but can be extended to the merging of sorted

runs, in particular when multiple merge steps are required.

A merge step ends when the row count desired for the final

output is reached or when the value of the latest merged row

exceeds the cutoff key. Each merge step can also reduce the

cutoff key, which is particularly useful if any original input

remains unsorted and requires run generation.

The traditional policy for merging runs chooses the small-

est remaining runs, so it reduces the remaining number of

runs with the least effort. In a top operation, however, each

merge step should choose the runs with the lowest keys, i.e.,

the runs produced most recently.

Histograms can also speed up run generation and merging

in the presence of an offset clause, which is commonly used

to support paging. The combined histogram from all runs

can determine the highest key value (in an ascending sort)

with a rank lower than the offset; this is the key value where

the merge logic should start. Searching for this key value

in merge input requires searching within runs. If runs are

stored in search structures, e.g., a partitioned b-tree or a

linear partitioned b-tree, this search is quite efficient.

4.2 Partially sorted inputs
Before comparing the sort orders of the query’s “order by"

clause and of the input table, the lists of columns ought to

be reduced based on functional dependencies [31]. If the

definition of the input order and the top-k ordering clause

share a prefix then we can perform a top-k operation once for
each distinct value of the prefix, also known as segmented

execution. The same is true if the first segment satisfies the

top-k clause, subsequent segments can be ignored. More gen-

erally, the sort proceeds segment by segment and ignores

subsequent segments once it has produced k rows. The opti-

mizations we introduce pertain to the last relevant segment

but not to the earlier segments which are required in their

entirety.

4.3 "Top K" for groups and partitions
Sometimes there is a need for the top-most data items not

just globally but within disjoint groups or partitions. An

example is finding the 10 million most active customers

from each country. The principal difficulty here is additional

bookkeeping. Instead of tracking only a single cutoff key, a

grouped top operation must track cutoff keys separately for

each group. In the example above, if there are customers in

180 countries, each country has its own histogram priority

queue, cutoff key, etc. Smaller histograms can reduce the

size of the created input models. As some groups might have

only a few input rows in each run, the decision about the

size of each bucket should be made independently for each

group.

4.4 Parallel and distributed algorithms
A top operation can run in parallel by running the original

top specification in a separate thread. While retaining many

more input rows than required, and more rows than a single

thread would retain, it eliminates many of the input rows. If

the participating threads share an address space, they may

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2432

share a histogram priority queue. Such a group of threads

retains basically the same number of input rows as a single

thread. Across address spaces, threads may chatter or inform

each other of current cutoff keys or even of the contents of

their priority queues, thus reducing the number of retained

input rows to nearly that of a single thread.

An alternative approach puts the sort and top logic on

the consumer side of the data exchange and the filtering on

the producer side. The producers ship to the consumers full

data packets and the consumers send to the producers flow

control packets containing the current cutoff key. This alter-

native implementation approach promises less development

effort but probably also suffers from lower effectiveness than

sharing histogram priority queues.

4.5 Approximate solutions
There are at least two forms of approximate top-k queries.

First, the row count may be approximate. For example, a “top

100" request may produce 90, 100, or 110 rows, or anything in

between. Second, the selection of rows may be approximate.

For example, a “top 100" request may produce 100 rows, all

of which belong to the true "top 120" rows. For grouped top

requests, an approximate query response may include only

some or many but not all of the groups. There may also be

combinations of these types of approximation.

More research may suggest clever ways to exploit the free-

dom to approximate the true query result for reduced com-

putation, reduced I/O, or reduced communication in parallel

and distributed algorithms. One opportunity is immediately

obvious, use approximate bucket sizes. However, even an

conservatively estimated final cutoff key may lead to fewer

final result rows than requested in the query.

5 EVALUATION
In this section, we present an empirical evaluation of our al-

gorithm and compare the results to the analysis of Section 3.2.

We evaluate the performance of our algorithm while we vary

the input size, the output size, the distribution of keys and

the size of the histograms.

The speedup achieved by our algorithm and the reduction

of rows spilled to secondary storage are perfectly correlated.

This correlation is natural as the performance of the baseline

algorithm is I/O bound and our algorithm reduces the I/O

effort.

5.1 Experimental Methodology and Setup
5.1.1 Experimental Methodology. Each of our experiments

executes a query that scans an input table, sorts on a single

column, applies a limit, k, and projects on all of the columns

of the table. For the input table we use the schema of the

Lineitem table from the TPC-H benchmark [8], we sort on

the L_ORDERKEY column, the remaining columns serve

as a payload. The input tables are unsorted. We sort keys

that follow various distributions by using values from the

distributions described in Section 5.1.4 for the sort column.

The specific query we use is:

SELECT L_ORDERKEY ,..., L_COMMENT -- full projection

FROM LINEITEM

ORDER BY L_ORDERKEY

LIMIT K;

5.1.2 Setup. Our algorithm is implemented as part of F1

Query which we use as the platform for our evaluation. The

implementation of our algorithm uses replacement selection

to perform run-generation [20] and limits run sizes to k. Run
sizes when replacement selection is used are variable, their

size depends on the order of the input as well as the input

row sizes (which can change when variable sized attributes

are used). A best effort is made to decide the target number

of histogram buckets collected from each run (default: 50). If

the histogram priority queue holds too many buckets (each

with a small size), it might exceed its memory allocation

(default: 1 MB). In that case, a consolidation step replaces

all existing histogram buckets with a single bucket. The

boundary key of the new bucket is the boundary key of the

bucket previously at the top of the priority queue. The size of

the new bucket is equal to the sum of the sizes of the buckets

present in the queue at the time of the consolidation. The

cost of consolidation is negligible and equal to one insertion

to the histogram priority queue.

F1 Query is an internal production system and due to con-

fidentiality restrictions we don’t report absolute execution

time. Instead, we report the improvement of the execution

time and the reduction of the number of rows written to

secondary storage compare to our baseline (Section 5.1.3).

The experiments presented in this paper were run on a

workstation with one Intel(R) Xeon(R) CPU E5-1650 v3 run-

ning at 3.50GHz, 64GB of main memory and a 7200 rpm

hard drive. The CPU Governor setting [3] is set to the “Per-

formance” option. In our evaluation, the default memory

allocation for a top-k operator is 1 GB, which given our in-

put datasets is sufficient for 7 million rows. The sizes of the

input tables we use range from 5 million to 2 billion rows.

5.1.3 Baseline. We compare against the top-k operator pre-

viously used by F1 Query. A priority queue is used to eval-

uate queries when the output fits in memory (Section 2.3).

Otherwise, an optimized external merge sort is used, which

employs the optimizations introduced in [14] and described

in Section 2.5 (i.e. cycle initials runs, early merge steps, limit

run size).

5.1.4 Distributions. We evaluate our algorithm by sorting

keys that follow various distributions. To experiment with

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2433

key values following a uniform distribution we use the val-

ues from the L_ORDERKEY column of the Lineitem table

from the TPC-H benchmark [8]. We call this dataset uniform.

To experiment with keys following non-uniform distribu-

tions we use the values from two synthetic datasets fal and
lognormal as in [33]. The fal dataset models values that fol-

low a Zipf distribution, which is observed in numerous real

world phenomena, including population of cities, and web-

site visits [7, 24, 28]. For the fal distribution, we specify how

quickly the values grow by using a shape parameter, z. The
shape parameter allows us to model distributions ranging

from uniform to hyperbolic. fal is created using the original

generator from [11], in which f al : N /r z , where N = size of

dataset, r = rank in the dataset, and z = shape. For our exper-

iments we use multiple shapes [1], which drastically change

the rate of growth of the keys. The values in the lognormal
dataset follow the log-normal distribution. This distribution

has been found to model various natural phenomena, such

as the time spent by users reading articles online [35] and

the size of living tissue [15]. To generate the lognormal val-
ues, we draw samples from a log-normal distribution, we

parameterize the distribution with µ = 0, σ = 2.

5.2 Varying Output Size
In the experiments shown in Figure 2 we vary the output size

requested from the top-k operator. We use datasets with keys

that follow the uniform distribution and the fal distribution
with a shape parameter of 1.25. The size of the input is 2

billion rows and the memory capacity is 1 GB (7 million

rows). Our algorithm performs similarly or slightly better

compared to the baseline algorithm when the output size

is the less than memory capacity or slightly larger (k < 10

million), as both algorithms are able to establish cutoff filters.

As the output size increases our algorithm is up to 11×

faster than the baseline, as it is able to eliminate input rows

and reduce the I/O effort needed while the baseline algorithm

externally sorts the entire input. As k becomes a substantial

percentage of the input the achieved speedup decreases. This

is expected as the input size stays the same, our algorithm

consumes more of the input to establish a sharp cutoff key

and thus a smaller part of the input will be eliminated. The

speedup of our algorithm is a direct translation of the savings

in secondary storage usage (and I/O operations), as is shown

in Figure 2 bottom plot. The distribution of the sort keys

does not affect the performance of our algorithm.

Our algorithm provides a significant improvement for

our target setup where the memory capacity is many times

smaller than the size of the output which is many times

smaller than the input size. Importantly, even when the out-

put fits in the available memory and the existing top-k opera-
tor is effective, our algorithm is equally effective and thus an

5M 10
M

15
M

20
M

25
M

30
M

50
M

80
M

10
0M

1×
4×
7×

10×
13×

T
im

e
S

p
ee

d
u

p

fal-1.25 uniform

5M 10
M

15
M

20
M

25
M

30
M

50
M

80
M

10
0M

Output Size (N)

1×
4×
7×

10×
13×
16×

S
p

ill
ed

R
ow

s
D

ec
re

as
e

Figure 2: Improvement achieved by our algorithm
when the output size is varied. Top: Speedup of exe-
cution time. Bottom: Spilled rows reduction.

a-priori choice of algorithm is not required. Our algorithm

automatically switches between establishing a cutoff filter

the same way as the baseline algorithm while the output

fits in memory and using a concise input model created by

collecting histograms otherwise.

Top in PostgreSQL. The advantage of our algorithm comes

from its ability to filter input rows, when the output size

is larger than the available memory. In this case, F1 Query

used to perform an optimized external merge sort of the

input. PostgreSQL
1
uses a traditional external merge sort

algorithm. Existing database systems use one of these two

approaches. The top-k operator of PostgreSQL creates sorted
runs using quicksort and writes them to disk, when the en-

tire input is sorted the runs are merged. We ran a set of

experiments in PostgreSQL version 10, where we gradually

increased the requested output size. We observed an order

of magnitude increase in execution time when the use of

secondary storage is required. This behavior is similar to the

baseline top-k operator and therefore by using our proposed

algorithm we expect a significant performance improvement

in PostgreSQL and systems that perform an external sort of

the input.

5.3 Varying Input Size
In the analysis presented in Table 4 we observed the abil-

ity of our algorithm to sharpen the cutoff key resulting in

producing only a few additional runs when doubling the

input size (i.e. increasing the input size from 1,000,000 rows

to 2,000,000 rows only 5 extra runs where produced for the

same k). Therefore, doubling the input size should increase

1
https://www.postgresql.org/

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2434

50
M

15
0M

60
0M 1B 2B

1×

4×
6×
8×

10×
12×

T
im

e
S

p
ee

d
u

p

fal-1.05

fal-1.25

fal-1.5

uniform

lognormal

fal-0.50

50
M

15
0M

60
0M 1B 2B

Input Size [Rows]

1×
6×

12×

S
p

ill
ed

R
ow

s
D

ec
re

as
e

Figure 3: Improvement achieved by our algorithm
when the input size is varied for sort keys follow-
ing multiple distributions. Top: Speedup of execution
time. Bottom: Spilled rows reduction.

the speedup achieved by the our algorithm as the baseline

top-k algorithm will sort and spill twice as many rows.

Figure 3 presents the improvement achieved by our al-

gorithm when the input size is varied from 50 million to 2

billion rows and k is 30 million. The keys being sorted follow

various distributions (uniform, lognormal and fal with shape

parameters of 0.5, 1.05, 1.25, 1.5). The memory capacity is

1 GB (7 million rows). Our algorithm achieves a speedup

up to 11× and decreases the number of rows spilled to sec-

ondary storage up to 13×. The results in Figure 3 validate our

expectations, the benefit for input sizes slightly larger than

the output size is small, 1.1× faster when the input contains

50 million rows and 2× for an input of 150 million rows, but

it rapidly increases as the input size increases. The behavior

of our algorithm is not affected by the distribution of the sort

keys, both the execution time speedup and spill reduction are

almost identical for uniform and non-uniform distributions.

5.4 Varying Histogram Size
In Figure 4, we replicated the same experiment 3 times, each

time we collect a different number of histogram buckets from

each sorted run (the input size is varied, k=30 million rows,

memory capacity is 1GB). The line named uniform creates

50 buckets per run (default configuration), lines uniform-
size-1 and uniform-size-5 create 1 and 5 bucket(s) per run

respectively. Even a minimal histogram of size 1, results in a

significant speedup of up to 6.6×.

In Figure 5 we vary the size of the histogram used by our

algorithm, input size is 2 billion rows, k is 30 million, and

50
M
15

0M
60

0M 1B 2B

1×

4×
6×
8×

10×
12×

T
im

e
S

p
ee

d
u

p uniform

uniform-size-1

uniform-size-5

50
M
15

0M
60

0M 1B 2B

Input Size [Rows]

1×
6×

12×

S
p

ill
ed

R
ow

s
D

ec
re

as
e

Figure 4: Improvement achieved by our algorithm
when the input size is varied. The size-1 and size-5
lines present the improvement when from each run
we collect histograms with 1 bucket and 5 buckets re-
spectively. Top: Speedup of execution time. Bottom:
Spilled rows reduction.

we use the uniform distribution. A histogram of size 0 does

not eliminate any input rows. The benefit of increasing the

histogram size diminishes after a certain point, increasing

the histogram size from 50 to 100 increases the speedup by

less than 0.1×. These results verify the analysis presented in

Table 2.

5.5 Overhead of the cutoff filter
The benefits of filtering are obvious when a substantial

part of the input is discarded before going through the run-

generation logic and/or spilled to secondary storage. The

effectiveness of the filtering depends on the ability of the

input model to establish and sharpen the cutoff key and it is

a combination of the input data, k and memory budget. It is

crucial to ensure that when the filter is not effective the cost

of maintaining and updating the priority queue that stores

the histogram buckets and the cost of comparisons between

the input records and the cutoff key do not hurt the query

performance.

To measure this overhead we created an artificial adversar-

ial input, which continuously sharpens the filter but no input

rows are eliminated. We observed a 3% overhead compared

to the same top-k operator without the cutoff key logic. Thus,

discarding even a small fraction of the input is enough to off-

set the overhead of maintaining and refining the cutoff key.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2435

0 1 2 5 50 100
1×
4×
6×
8×

10×
12×

T
im

e
S

p
ee

d
u

p

uniform

0 1 2 5 50 100

Histogram Size [Buckets]

1×
6×

12×

S
p

ill
ed

R
ow

s
D

ec
re

as
e

Figure 5: Improvement achieved by our algorithm
when the histogram size is varied. Top: Speedup of ex-
ecution time. Bottom: Spilled rows reduction.

5.6 Cost of resource utilization
In this section, we are interested in the cost of executing

a top-k operation when the requested output is large but

can still fit in the memory of a single node. We define cost

similarly to a pay-as-you-go (i.e. cloud) environment, namely

the cost is calculated as size of resource * time used. The
resource we are interested in is main memory. We compare

the cost of executing our algorithm against the cost of an

in-memory top-k with a priority queue operator (Section 2.3).
Figure 6 presents the cost improvement and the difference

in execution time between our algorithm and the in-memory

top-k algorithm. We vary the input size and keep k fixed to

30 million. Our algorithm has a memory budget of 1GB (7

million rows), the in-memory algorithm is allocated suffi-

cient main memory for the entire output. Our algorithm is

cheaper to run for all but the smallest input sizes. The cost

benefit increases as input sizes increase, our algorithm can

be up to 3× cheaper to run for the experiments presented

in Figure 6. The in-memory implementation can be up to

4× faster, which is expected as it does not use secondary

storage. The performance difference diminishes as the input

size increases. For an input of 2 billion rows the in-memory

top-k operator is only 1.59× faster but 3× more expensive.

Larger requested outputs result in bigger improvements.

The trade-off between memory usage and latency should

be tuned based on specific workload and operational needs.

Effectively, this result shows that it is cheaper to runmore top

operations concurrently, where each one is allocated a small

part of the available memory rather than running, fewer

concurrent top-k operations, where each one is allocated

sufficient memory to avoid using secondary storage. Memory

is a space-shared resource [19], making large allocations to

one operator costly.

150M 600M 1B 2B
1×
2×
3×

C
os

t
Im

p
ro

ve
m

en
t

150M 600M 1B 2B

Input Size [Rows]

1×
2×
3×
4×

T
im

e
S

lo
w

d
ow

n

Figure 6: Cost improvement and execution time com-
parison between our algorithmand an in-memory top-
k algorithm for various input sizes, k=30 million

6 CONCLUSION
Business intelligence and web log analysis workloads use

top-k queries to produce the most relevant results. Top-k

queries may produce a small amount of data but sometimes

a large amount of data selected from a huge amount of data.

Existing top-k algorithms are efficient when the requested

output fits in memory, as they can eliminate input rows

before sorting them, but resort to an external sort of the

entire input otherwise. Externally sorting the input results

to far from ideal performance and user experience. In our

workloads, every day tens of thousands of top-k queries

resort to an external sort of the input, due to large requested

outputs or high contention for main memory resources.

In this paper, we introduced a new adaptive algorithm

that is able to filter input rows, regardless of whether the

requested output fits in the available memory, reduce the

usage of secondary storage and accelerate the execution of

top-k queries. Our algorithm is scalable to large inputs and

outputs and is used in production as a part of F1 Query where

it has significantly sped up top-k queries with large outputs.

ACKNOWLEDGMENTS
We would like to thank Stratis Viglas, Herald Kllapi and Jeff

Naughton for their valuable comments on drafts of this paper.

REFERENCES
[1] Spyros Blanas, Yinan Li, and Jignesh M Patel. 2011. Design and eval-

uation of main memory hash join algorithms for multi-core CPUs.

In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. ACM, 37–48.

[2] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest,

and Robert Endre Tarjan. 1973. Time bounds for selection. J. Comput.
Syst. Sci. 7, 4 (1973), 448–461.

[3] Dominik Brodowski and N Golde. 2016. Linux CPUFreq governors.

http://www.mjmwired.net/kernel/Documentation/cpufreq/governors.txt

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2436

(2016).

[4] Michael J. Carey and Donald Kossmann. 1997. Processing top n and

bottom n queries. IEEE Data Eng. Bull. 20, 3 (1997), 12–19.
[5] Michael J Carey and Donald Kossmann. 1998. Reducing the braking

distance of an SQL query engine. In VLDB, Vol. 98. 24–27.
[6] Josephine Cheng, Don Haderle, Richard Hedges, Balakrishna R Iyer,

Ted Messinger, C Mohan, and Yun Wang. 1991. An efficient hybrid

join algorithm: A DB2 prototype. In [1991] Proceedings. Seventh Inter-
national Conference on Data Engineering. IEEE, 171–180.

[7] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009.

Power-law distributions in empirical data. SIAM review 51, 4 (2009),

661–703.

[8] Transaction Processing Performance Council. 2008. TPC-H benchmark

specification. Published at http://www. tcp. org/hspec. html 21 (2008),
592–603.

[9] Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yinan Li, Chi Wang,

Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, and

David Lomet. 2019. ALEX: an updatable adaptive learned index. arXiv
preprint arXiv:1905.08898 (2019).

[10] Ronald Fagin. 2016. Optimal Score Aggregation Algorithms. In Proceed-
ings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems. ACM, 55–55.

[11] Christos Faloutsos andHV Jagadish. 1992. On B-tree indices for skewed

distributions. (1992).

[12] Goetz Graefe. 1993. Query evaluation techniques for large databases.

ACM Computing Surveys (CSUR) 25, 2 (1993), 73–169.
[13] Goetz Graefe. 2006. Implementing sorting in database systems. ACM

Computing Surveys (CSUR) 38, 3 (2006), 10.
[14] Goetz Graefe. 2008. A general and efficient algorithm for "top" queries.

In Data Engineering Workshop, 2008. ICDEW 2008. IEEE 24th Interna-
tional Conference on. IEEE, 548–555.

[15] Julian Huxley, Richard E Strauss, and Frederick B Churchill. 1932.

Problems of relative growth. (1932).

[16] Ihab F Ilyas, George Beskales, andMohamed A Soliman. 2008. A survey

of top-k query processing techniques in relational database systems.

ACM Computing Surveys (CSUR) 40, 4 (2008), 11.
[17] Business Insider. 2019. Facebook Photos Statistics. Re-

trieved 02/16/2019 from https://www.businessinsider.com/facebook-

350-million-photos-each-day-2013-9

[18] Business Insider. 2020. Amazon Prime Users Statistics. Re-

trieved 04/09/2020 from https://www.businessinsider.com/amazon-

more-than-100-million-prime-members-us-survey-2019-1

[19] Herald Kllapi, Eva Sitaridi, Manolis M Tsangaris, and Yannis Ioannidis.

2011. Schedule optimization for data processing flows on the cloud.

In Proceedings of the 2011 International Conference on Management of
Data. ACM, 289–300.

[20] Donald Ervin Knuth. 1973. The art of computer programming: sorting
and searching. Vol. 3. Pearson Education.

[21] D Kossmann and M Carey. 1997. On saying" enough already!". In SQL,
inProc. of the 1997 ACM-SIGMOD Conference on Management of Data’,
Tucson, Arizona.

[22] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.

2018. The case for learned index structures. In Proceedings of the 2018

International Conference on Management of Data. 489–504.
[23] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F Ilyas, and Sumin Song.

2005. RankSQL: query algebra and optimization for relational top-k

queries. In Proceedings of the 2005 ACM SIGMOD international confer-
ence on Management of data. ACM, 131–142.

[24] Wentian Li. 2002. Zipf’s Law everywhere. Glottometrics 5 (2002),

14–21.

[25] Tian Mi and Sanguthevar Rajasekaran. 2013. A two-pass exact algo-

rithm for selection on Parallel Disk Systems. In 2013 IEEE Symposium
on Computers and Communications (ISCC). IEEE, 000612–000617.

[26] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and Dave

Lomet. 1994. AlphaSort: A RISC machine sort. In ACM SIGMOD Record,
Vol. 23. ACM, 233–242.

[27] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and Dave

Lomet. 1995. Alphasort: A cache-sensitive parallel external sort. The
VLDB Journal 4, 4 (1995), 603–627.

[28] David MW Powers. 1998. Applications and explanations of Zipf’s

law. In Proceedings of the joint conferences on new methods in language
processing and computational natural language learning. Association
for Computational Linguistics, 151–160.

[29] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis,

Chanjun Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani

Apte, Felix Weigel, David Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li,

Zhan Yuan, Craig Chasseur, Qiang Zeng, Ian Rae, Anurag Biyani,

Andrew Harn, Yang Xia, Andrey Gubichev, Amr El-Helw, Orri Erling,

Zhepeng Yan, Mohan Yang, Yiqun Wei, Thanh Do, Colin Zheng, Goetz

Graefe, Somayeh Sardashti, Ahmed M. Aly, Divy Agrawal, Ashish

Gupta, and Shiv Venkataraman. 2018. F1 Query: Declarative Querying

at Scale. Proc. VLDB Endow. 11, 12 (Aug. 2018), 1835–1848. https:

//doi.org/10.14778/3229863.3229871

[30] Anil Shanbhag, Holger Pirk, and Samuel Madden. 2018. Efficient Top-K

Query Processing on Massively Parallel Hardware. In Proceedings of
the 2018 International Conference on Management of Data (SIGMOD ’18).
Association for Computing Machinery, New York, NY, USA, 1557–1570.

https://doi.org/10.1145/3183713.3183735

[31] David Simmen, Eugene Shekita, and Timothy Malkemus. 1996. Funda-

mental Techniques for Order Optimization. SIGMOD Rec. 25, 2 (June
1996), 57–67. https://doi.org/10.1145/235968.233320

[32] Internet Live Stats. 2020. Twitter statistics. Retrieved 04/09/2020 from

https://www.internetlivestats.com/twitter-statistics/

[33] Peter Van Sandt, Yannis Chronis, and Jignesh M Patel. 2019. Efficiently

Searching In-Memory Sorted Arrays: Revenge of the Interpolation

Search?. In Proceedings of the 2019 International Conference on Man-
agement of Data. ACM, 36–53.

[34] The Verge. 2019. Google’s billion user services. Retrieved 04/09/2020

from https://www.theverge.com/2019/7/24/20708328/google-photos-

users-gallery-go-1-billion

[35] Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. 2013. Silence

is also evidence: interpreting dwell time for recommendation from

psychological perspective. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,

989–997.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2437

https://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
https://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
https://www.businessinsider.com/amazon-more-than-100-million-prime-members-us-survey-2019-1
https://www.businessinsider.com/amazon-more-than-100-million-prime-members-us-survey-2019-1
https://doi.org/10.14778/3229863.3229871
https://doi.org/10.14778/3229863.3229871
https://doi.org/10.1145/3183713.3183735
https://doi.org/10.1145/235968.233320
https://www.internetlivestats.com/twitter-statistics/
https://www.theverge.com/2019/7/24/20708328/google-photos-users-gallery-go-1-billion
https://www.theverge.com/2019/7/24/20708328/google-photos-users-gallery-go-1-billion

	Abstract
	1 Introduction
	2 Related Prior Work
	2.1 Top-k execution strategies
	2.2 Query optimization
	2.3 Top-K with a priority queue
	2.4 Top-K with traditional externalmerge sort
	2.5 Top-K with optimized externalmerge sort
	2.6 Massively Parallel Hardware
	2.7 Pause-and-resume

	3 Top-K with histograms
	3.1 The Algorithm
	3.2 Algorithm Analysis
	3.3 Summary of the analysis

	4 Applications of the histogram technique
	4.1 Merge optimizations
	4.2 Partially sorted inputs
	4.3 "Top K" for groups and partitions
	4.4 Parallel and distributed algorithms
	4.5 Approximate solutions

	5 Evaluation
	5.1 Experimental Methodology and Setup
	5.2 Varying Output Size
	5.3 Varying Input Size
	5.4 Varying Histogram Size
	5.5 Overhead of the cutoff filter
	5.6 Cost of resource utilization

	6 Conclusion
	Acknowledgments
	References

