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Abstract—Selective queries are not uncommon in large-scale
data analytics, for example, when drilling down into a specific
customer in a dashboard. Traditionally, selective queries are
accelerated by creating secondary indexes. However, because of
their large size, expensive maintenance, and difficulty to tune
and automate, indexes are typically not used in modern cloud
data warehouses or data lakes. Instead, such systems rely mostly
on full table scans and lightweight optimizations like min/max
filtering, whose effectiveness depends heavily on the data layout
and value distributions.

We propose SPA as the vision for automatically optimizing
selective queries for immutable copy-on-write data formats.
SPA adaptively indexes subsets of the data in an incremental
and workload-driven manner. It makes fine-grained decisions
and continuously monitors their benefit, dynamically allocating
an optimization budget in a way that bounds the additional
cost of indexing. Furthermore, it guarantees a performance
improvement in the cases where indexes—potentially partial
ones—prove to be beneficial. When indexes lose their benefit
due to a shifting workload, they are gradually deconstructed in
favor of optimizations that accommodate recent trends. As SPA
does not require information about updates performed on the
data, it can also be employed as an accelerator for systems that
do not control the data, e.g., in cloud data lakes.

I. INTRODUCTION

Indexing in cloud data warehouses. For analytics on data
lakes and warehouses, the conventional wisdom is that full-
blown secondary indexes (e.g., B-trees) are not very useful.
Creating a secondary index is time-consuming, and the ad-
ditional storage cost may simply be too expensive for large
data sets. Keeping indexes up-to-date is also costly, as tables
are typically periodically appended or updated while shedding
data using life-cycle management. It is also difficult to antic-
ipate whether specific columns will be targeted by selective
queries or not, which may preclude an upfront decision to
create indexes. In cloud data lakes, there tends to be less
oversight over workloads, and there may be no human database
administrator (DBA) to make such decisions. Moreover, the
system performing updates might not be the same system
performing analytical queries. For these reasons, today’s cloud
analytics systems often miss optimization opportunities for
selective queries, and workloads are unnecessarily expensive
in these systems.
Smooth Predicate Acceleration. In this work, we propose
Smooth Predicate Acceleration (SPA), a framework that op-

timizes queries with selective predicates in an automatic and
adaptive way, guided by an economic model that can be tai-
lored to cloud environments. It achieves this by incrementally
constructing and deconstructing partial indexes based on their
observed benefit at runtime. As a vision, our aim for SPA is
not to propose one specific way to perform such optimizations.
We rather raise the awareness that adaptive indexing based on
economic models could yield unique benefits. This vision is
especially attractive in the cloud, where compute and storage
are virtually limitless. Therefore, an optimization that proves
to be economical is always a valid one.
Desiderata. The framework envisioned in this paper is:
• Workload-driven: indexes are automatically constructed and

deconstructed solely based on workload observations, with-
out upfront decisions, manual DBA interventions, or knowl-
edge of updates on the underlying data.

• Smooth: index maintenance is carried out in small incre-
mental steps, as a side-effect of table scans and without
spikes in query latency or long-running background tasks.

• Cost-bounded (i.e., “do no harm”): bad decisions should not
impact the user-observed response times and monetary cost
by more than a small configurable percentage.

• Economical: decisions are taken and evaluated based on
the monetary cost in comparison to a baseline of full table
scans.

• Modular: the framework does not prescribe the types of
index or summary structures used, supports various eco-
nomic models, and is configurable in the way indexes are
maintained.

General approach. Without an index, every query has to
perform an expensive (O(n)) full table scan. The SPA frame-
work observes the workload and maintains partial indexes
automatically and incrementally. The decisions taken by the
framework are purely economical: it tracks the additional cost
of index maintenance (for both compute and storage) and the
benefit provided by indexes during scans. A positive balance
on this benefit gives the framework more budget to continue
constructing indexes; a negative balance, on the other hand,
leads to a gradual deconstruction of indexes. Thus, index
construction can be seen as an investment with continuously
evaluated returns. The additional cost of indexing is bounded
by a configurable budget (or “investment deposit”), which can



be specified as a percentage of the cost of a full table scan (e.g.,
1%). If none of the indexing investments pay off, the system
guarantees that queries will not be slowed down and their
execution costs will not increase by more than this percentage
on average. The cost-based nature of our approach also allows
incorporating different kinds of index structures. The ideas
behind SPA are applicable to different systems in different
ways, which is why we present it as a general framework in
a vision paper rather than a specific implementation for one
particular system.

II. FRAMEWORK

This section describes the general operation of the SPA
framework and how it achieves the five desiderata above.

A. Preliminaries

Use case. This paper focuses on the use case of data analytics
in the cloud, where data is stored on highly-available and
elastic object stores like Amazon S3, potentially in open
file formats like Apache Parquet [1] that are not necessarily
under exclusive control of a single system (i.e., data lakes).
Nevertheless, the framework is general enough to also be ap-
plicable to other database architectures, e.g., on-premise data
warehouses or modern copy-on-write database systems [2],
[3]. Queries—which are often exploratory or ad-hoc—contain
arbitrary predicates that are pushed down into scan operators.
Scans make use of basic filtering techniques (such as min/max
synopses [4] or zone maps [5]) to skip data ranges that cannot
satisfy the given predicates. Selective predicates where such
early filtering is not very effective (e.g., because there is no
correlation between the selected column and the order of tuples
on storage) require full table scans, whose monetary cost can
often be calculated (e.g., $5 per TB scanned for BigQuery or
Athena).
Physical layout. We assume that tables are split horizontally
into immutable chunks we hereinafter call blocks. Thus, any
update will create a new block instead of mutating an existing
one and therefore an index on a given set of blocks always
stays valid. Many modern data warehouse and data lake tech-
nologies, but also general analytical or HTAP systems employ
such a form of immutable blocks, making SPA applicable to a
wide range of systems. Examples include proprietary systems
such as Snowflake [6] or Hyper [2], open columnar file formats
like Apache Parquet [1] or Apache ORC [7], open data-lake
table formats such as DeltaLake [8] or Apache Iceberg [9],
as well as Hyrise’s chunk architecture [3]. These formats
may have different interpretations and granularities for what
constitutes a block (e.g., a file or a row group), but this can be
abstracted away in a general discussion of the SPA framework.
For cloud-native engines, immutable blocks are a necessity, as
cloud object stores such as Amazon S3, Google Cloud Storage,
or Azure Blob Storage only allow immutable objects in the
first place.
Block-based, partial indexing. Like traditional secondary
indexes, SPA only manages additional indexes for speeding up
queries and does not affect the primary data representation. But

unlike traditional secondary indexes, SPA constructs partial
indexes at the block granularity, which has two implications:
first, only a subset of blocks of a table may be covered by
indexes at any given point in time; second, key values are
mapped to block identifiers rather than individual tuples. Thus,
as in other filtering techniques, the benefit comes from skip-
ping blocks during table scans and saving I/O costs, rather than
answering queries using only indexes or optimizing the intra-
block scan efficiency. Of course, a particular implementation
of SPA could go beyond block skipping, but the complexity
and implications of this design choice are beyond the scope
of this vision paper. Similarly, potential reorganization or
replication of primary storage to optimize predicates [10]—
as an alternative to secondary structures—is an orthogonal
concern.

Note that we use the term partial to imply not only a
partially built index, but also partial coverage of the tuples
in primary storage. Other adaptive indexing approaches like
database cracking [11] are partial only in the sense that an
index is maintained partially sorted, but it still covers all
values of the indexed columns. SPA indexes, on the other hand,
only cover a subset of blocks of primary storage.

B. Workload-driven operation

As queries come in, the SPA framework tracks predicates
that have been pushed down to table scan operators and selects
those that are good candidates for acceleration. The goal is to
identify opportunities for indexing, i.e., cases where predicates
are selective but the existing filters are ineffective (because too
many blocks are scanned without finding a matching tuple).
More interestingly, there might be predicates where filters are
effective for some blocks but not for others; in this case,
the incremental nature of SPA enables finding an optimal
combination of filters and indexes.
Predicate tracking. Predicates can refer to multiple columns
and contain arbitrary expression trees—usually in disjunctive
normal form—of which the framework can select one or mul-
tiple sub-expressions for tracking and indexing. Furthermore,
to account for skew within each predicate, the same expression
can be tracked either as a general pattern (e.g., a < ?) or with
literals instantiated (e.g., a < 0). Related work on semantic
caching [12], [13] provides a solid foundation for selecting
and manipulating predicates, which we consider orthogonal
to the framework. For each selected predicate, the framework
keeps track of the selectivity and the effectiveness of block
skipping observed in scans. The general framework does not
dictate how to track and compute these metrics. A simple
implementation might record how many times each block is
accessed without finding a matching tuple and divide this value
by the total number of accesses. A high value then indicates
that queries containing that particular predicate might benefit
from indexing; in an ideal scenario, this metric would be zero.
Cost and benefit metrics. In addition to predicate statistics,
the framework keeps track of cost (for both space consumption
and maintenance) and benefit metrics for each index structure
it maintains. It is useful to think of these metrics in terms of
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Fig. 1. Dynamic index construction, merge, and deconstruction. (color: access
frequency, arrows: example query)

economics, i.e., as investment and returns: an index is useful
for as long as the cost it incurs justifies the savings it provides
in avoiding full table scans. Lastly, statistics on a per-block
level are useful to implement policies for deconstructing or
evicting indexes under a shifting workload; for instance, if
data analysis tends to focus more on the last months, then
the economic benefit of indexing will gradually shift away as
blocks age, eventually removing their indexes.
State maintenance. With costs and benefits being tracked,
it might appear that SPA relies on fine-grained maintenance
of many metrics, which is a challenge on its own, especially
in a distributed system. However, SPA does not prescribe the
granularity and accuracy of tracking. A system might opt to
track only the most impactful predicates, or it could entirely
rely on probabilistic models. For example, one could decide to
construct a partial index with a certain probability whenever a
block was scanned but had no matches for a predicate. Such
a design would incur minimal state maintenance compared to
a deterministic and fine-granular approach.
Example. To illustrate the dynamic lifecycle of indexes,
Figure 1 shows a table consisting of eight blocks (B0-B7)
across three snapshots in time (a, b, c), from top to bottom. The
blocks are colored based on how frequently they are accessed
without a predicate match: red blocks have high frequency, and
thus are good candidates for indexing; blue blocks have low
frequency, which means they either have matching tuples very
often or are skipped very often thanks to an existing index.
The arrows represent the blocks and indexes accessed in an

arbitrary table scan with the relevant predicate. In snapshot a,
there are no indexes. Thus, every block is accessed. In snapshot
b, indexes I1, I3, I4, I5, and I7 are constructed on their
corresponding blocks. The scan only skips blocks B3, B5, and
B7, as the other indexed blocks (B1 and B4) contain matching
tuples. Snapshot c illustrates the merge and deconstruction of
indexes, which we discuss in the following.

C. Smooth, cost-bounded index maintenance

After or during table scans, the collected statistics might in-
dicate that more indexing would benefit a particular predicate.
This can be the case if, e.g., the ratio between the number
of blocks not containing matches and the number of blocks
scanned is above a certain threshold. Once an opportunity
for indexing is detected, the cost statistics dictate if the SPA
framework should construct indexes or not, i.e., if there is
currently enough budget for further indexing. At first, indexes
are constructed at the lowest level of granularity, which is a
block. The choice of which block to index could be random
or guided by per-block statistics. As SPA constructs and de-
constructs partial indexes with a fine granularity and never as
a whole, the resulting query performance is smooth, meaning
that no sudden performance cliffs are to be anticipated.
Index construction. Once an index is constructed for a
particular block, the cost incurred by that construction is
deducted from the available budget. When the table is scanned
again with the same predicate, the scan logic detects the
existence of an index for that block and probes it. If no
matches are found, or all data needed can be retrieved from
the index, then the scan operator can skip that block and the
index has provided a benefit. Otherwise, the index has not
provided any benefit, and in fact the additional cost of such
lookups could be detrimental in the long run. Both of these
events inform the cost-benefit statistics and also determine the
budget available to construct more indexes in the future. This
budget is what allows the framework to bound the additional
cost of indexing on average, and tweaking the mechanism by
which it increases enables a choice between conservative and
aggressive strategies.
Index merge. As more indexing budget is accrued and
indexes on individual blocks prove their benefit, the framework
may merge them into larger, multi-block indexes, which are
overall more compact and efficient: Larger indexes keep track
of a list of blocks for each key value, and they allow the scan
operator to skip multiple blocks with a single lookup. Merge
operations are guided by and affect the budget in the same way
as the initial construction of single-block indexes. When an
indexing opportunity is identified in the predicate statistics, the
framework can choose between constructing new indexes or
merging existing ones. Once again, this choice can be random
or guided by additional statistics. The simplest implementation
only takes localized decisions (e.g., by only merging indexes
on neighboring blocks) rather than global ones. In workloads
with many selective queries on the same predicate, SPA will
eventually converge into a full index.



Index deconstruction. In addition to constructing and merg-
ing indexes, the SPA framework also needs a mechanism to
deconstruct indexes over time (i.e., drop single-block indexes
or split large indexes into single-block ones). There are two
main driving forces behind such mechanism, which a cost
model can combine in different ways: the storage cost of
index structures over time, and the lookup cost (including CPU
and I/O cost) of indexes when blocks cannot be skipped. A
model that focuses primarily on the storage cost would be
a cache, in which case deletes would only take place when
free space is low. On the other hand, a model focused on
lookup cost could deconstruct already when the utility of an
index decreases. The latter model can be especially useful
in a cloud context where access cost dominates space cost
and storage is elastic and virtually limitless. Indexes that are
deemed not worth their cost by the model are deconstructed.
There are many possible ways of deciding at what point to
deconstruct indexes and SPA does not prescribe a certain
way. Even simplistic, stateless strategies like deconstructing
random indexes might be feasible, as useful indexes would be
eventually re-constructed automatically. Since deconstruction
is fundamentally guided by usefulness, an average steady state
is achieved in which only useful indexes are kept alive—
without bulk or offline maintenance tasks.
Merge and deconstruction example. The example of Fig-
ure 1c shows how indexes can be deconstructed and merged
in a dynamic workload. Index I1 did not lead to a reduction
of B1’s access frequency after its construction in snapshot b,
so it is deconstructed in snapshot c. In contrast, because B6’s
frequency increased from the measurement in snapshot a (i.e.,
the block became red), a new index I6 is constructed. Lastly,
indexes I3, I4, and I5 are merged, allowing blocks B3 and
B5 to be skipped in a single lookup.
Data updates. As we assume immutable blocks and copy-
on-write updates, a value in a block is never updated in place
but rather deleted and reinserted. Consequently, indexes also
are immutable like the blocks they refer to. Deletion of whole
blocks can be handled automatically in a deferred way, since
indexes on a deleted block gradually lose their value with
respect to the cost model and thus become candidates for
deconstruction. Similarly, creating a block does not trigger any
immediate action in the SPA framework, as index construction
is guided by usefulness in table scans. These properties imply
that data updates are entirely decoupled from index mainte-
nance. Thus, SPA can be used to accelerate data-lake query
engines that do not control data updates and ingestion.

D. Economic cost modeling

Indexing cost. Keeping track of maintenance costs and
benefits allows SPA to bound the compute overhead of index
maintenance, but it does not answer the question of how much
space to use for indexes. Space vs. time is, of course, a
classical computer science trade-off, and a simple approach
would be to rely on unused storage capacity or let the user
decide how much space to invest on secondary indexing.
However, we argue that pushing this responsibility to users

is unsatisfactory: how should a user know how much space to
use? In a cloud setting, where resources can be allocated on
demand, one can instead incorporate both compute and storage
costs into one model that optimizes overall workload cost.
Workload cost optimization. Let us consider an example
scenario—based on realistic prices—where keeping 1TB of
data in a cloud object store costs $25 per month, and one
processor core costs $50 per month. These prices imply that a
2TB index is economically worthwhile as long as it saves more
than one CPU-month of work. But of course, construction
of that index also has compute and transfer costs, which
must be added to the investment part of the investment/return
calculation. Assuming a one-time cost of $25 to compute and
store a terabyte of index data, a 1TB index would be at the
break-even point for the scenario above. A fully cloud-native
implementation of SPA would incorporate the pricing model
for the cloud in use, and therefore be able to directly optimize
for overall workload cost. We believe such an economic model
is not only more appropriate for the cloud, but also makes for
a simpler implementation of the SPA framework. Note that in
a caching-oriented model where space is fixed, the decision
of how much space to allocate for indexes is taken outside
the framework, whereas the proposed approach makes that
decision within the framework.

E. Index-structure modularity

Our presentation of SPA so far used the general term index
without assuming any underlying data structure. A particular
implementation may either assume a single type of index,
e.g., B-trees, or support multiple types that can be chosen
depending on the access pattern. For equality predicates, for
instance, the system might choose to construct block-level
hash indexes like cuckoo index [14] or—in the approximate
case—Bloom filters [15]. The latter are already quite common
in column-store systems, but the benefit of SPA is that no
upfront decision is required when loading the data, and filters
are only constructed where they indeed provide a benefit to the
workload. With range predicates, ordered indexes like B-trees
or radix trees can be considered.
Interaction with static filters. Simple static filters like
min/max statistics could in principle be managed by SPA,
but given their simplicity and small, bounded cost to both
compute and store, a simple and effective implementation
would likely always create them on every block. We argue that
SPA should manage only more complex structures, e.g., when
size depends on the key distribution in each block, when cost
to compute at load time is not negligible, or when effectiveness
is sensitive to workload characteristics. Bloom filters are an
example of such structures. On the other hand, certain types of
SPA indexes could aim for a symbiosis with min/max statistics.
For example, the partial index could be used to store (all data
of) frequently accessed items in the block, yielding a form
of partial semantic caching. Alternatively, the index could
store outliers explicitly and tighten min/max bounds on the
underlying block, making skipping more effective [5].



Specialization and refinement. Depending on the types
of predicates and various statistics collected by the frame-
work, more specialized structures might be chosen. Similarly,
structures can be refined to increase precision at the cost of
additional space. For instance, a SuRF data structure [16] can
be incrementally rebuilt to eventually form an adaptive radix
tree (ART) [17] and cover an entire key space. For arbitrary
predicates where a particular constant is used very frequently
(e.g., a > 0), compressed bitmaps (where a bit is set for tuples
where the predicate matches) can also be very effective—these
can be seen as a predicate evaluation cache, used in systems
like PowerDrill [18].
Mergeability. One important property of index structures that
SPA considers is mergeability, i.e., the ability to construct large
indexes from multiple smaller indexes on subsets of the data.
In principle, indexes can always be reconstructed on the large
sets by re-scanning the primary data, but it is desirable to
construct large indexes by simply merging existing ones.

III. PROOF OF CONCEPT

SPA is a general framework—or rather a set of ideas—
which we introduced in the previous sections and from which
multiple design instantiations are possible. In this section, we
discuss a bare-bones algorithm for such an instantiation and
discuss a proof-of-concept implementation and evaluation in
the Hyper database system [19]. We scan data stored in the
Apache Parquet file format [1]. The blocks on which SPA
operates are the row groups in the Parquet file. We use a simple
cost model tailored to index maintenance in main memory.

A. Index construction

Whenever a predicate pc on a column c is pushed down
to a scan operator, an index on that column might be helpful.
Therefore, we maintain an indexing budget bc for each column.
We need the following parameters for our model:
• Deposit factor fd: How much additional query time are we

willing to spend to construct indexes? For example, with
fd = 0.1, 10% more time per query can be spent on index
construction.

• Reinvest factor fr: What fraction of time saved by using
an index do we want to reinvest into constructing further
indexes? For example, with fr = 0.5, 50% of the time saved
by using indexes can be re-invested to construct further
indexes on the column.

Our access method is a table scan with block skipping:
Scanning a table with a predicate pc on a column c requires
scanning or skipping each block of that table. For each block,
we first do a cheap skipping check using the min/max bounds
of the row group stored in the Parquet file. If this quick check
does not allow us to skip the block, we check whether there
is an index on c for this block.

If there is no index on c for this block yet, we scan the
block, taking time tscan. We apply pc and check whether it
filtered out all tuples in the block. If it did, an index on c
for this block would have been helpful. We add fd · tscan (the
fraction we are willing to invest) to our indexing budget bc.

Then, given that constructing an index on the block would take
time tbuild, we check whether we have accrued enough budget
(i.e., bc ≥ tbuild). If we have, we construct an index on this
block and deduct tbuild from bc. Construction is performed
directly by the thread(s) executing the query. The I/O cost of
index construction is low, as the values are already loaded.

If there is already an index on c for the block we are
scanning, we probe that index to see whether pc can have
a match. Probing the index takes time tprobe and we assume
that tprobe � tscan. If we probe an index for pc and it returns
that pc could match, we deduct a penalty of tprobe from
our indexing time budget bc, as the index was not helpful
in this case, as we need to scan the block anyway. This
penalty prevents us from retaining indexes for non-selective
predicates. In case the index probe returns that this block
cannot have a match, we do not need to scan it and therefore
saved tsaved = tscan − tprobe. We reinvest the fraction fr of
the saved time and therefore add fr · tsaved to our budget bc.

B. Index deconstruction

For our proof-of-concept, we pick the most simple yet
effective strategy of simply deconstructing indexes at random
whenever we run into memory pressure. The adaptive con-
struction process ensures that high-value indexes will quickly
be re-constructed. The advantage of this approach is that it
does not require to keep any state about the usefulness of
indexes besides bc.

C. Algorithm properties

Even though this algorithm is as simple as it gets, it displays
the following desirable properties:
• The additional processing time spent indexing is roughly

bounded by fd, so no query will be significantly slower if
this value is chosen low enough.

• We will never index a block that contains matches for all
predicates pc we see on column c. Thus, in case we have
skewed data where some blocks always contain matches
while others contain no matches, we will only index the
blocks where the index can indeed help us skipping.

• The more selective a predicate is, the more blocks will
contain no matches, the faster we will accrue budget, and
the faster we will construct an index.

• In case a column often has unselective predicates, an index
that does not help with skipping these predicates could
become a burden. By penalizing probing an index in vain
with tprobe, we dampen the index construction on the
column, again leading to a state where columns with more
selective predicates have more indexes constructed than
ones with less selective ones.

• The more queries with a selective predicate on pc are issued,
the faster the index on c will be constructed, so we favor
columns that are queried and restricted often.

D. Evaluation

We implemented the algorithm discussed above in the
Hyper database system scanning Apache Parquet files. In our
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experiments, we keep the adaptively-built indexes in main
memory. We opt for a simple index: A sorted list of the domain
values. Binary search on this sorted list is used to check
whether a value is in the block. We could also answer range
queries with this index structure, but we focus on equality
predicates here. For further simplicity, we do not merge these
lists but only build single-block lists.

Our focus is on selective predicates where simple min/max
pruning is not sufficient, as these are the only predicates where
SPA will construct an adaptive index. One example for such
queries are look-ups of a specific UUID. UUIDs are often
used as key or foreign-key columns and as UUIDs are pseudo-
random, their value is usually not clustered or correlated to the
insertion time, so min/max pruning does not help. We scan a
22GB Parquet file containing 600 million rows in 3000 row
groups. The file mimics the TPC-H scale factor 100 lineitem
table with an added unique UUID column. The test is run
on an AWS EC2 instance of type m5d.8xlarge. All measured
times are CPU time. We run the following query repeatedly:
SELECT * FROM ’lineitem.parquet’
WHERE uuid = ’<random UUID present in the table>’

As the values are unique, only one of the 3000 row groups
in the file ever contains a matching tuple. Therefore, all row
groups are viable candidates for index construction. Figure 2
shows the results after running the query 10 times. On the
first run, adaptive indexing is disabled. After the first query,
we enable adaptive indexing using the parameters fr = 0.5
and fd = 0.1. Thus, we are willing to invest an extra 10% of
time into index construction and we use 50% of the time we
save by using an index into constructing more indices.

As shown in the figures, we need 8 queries to construct
indexes on all 3000 row groups with these settings, so we
actually converge rather quickly. Once all blocks have an
index, the query is almost four orders of magnitude faster
(from 120 seconds CPU time to 20 milliseconds), so our
investment quickly pays off. The first query that starts indexing
(Query 2) takes indeed around 10% more CPU time than the
query that does not index (from 121 seconds to 132 s). It uses
this time to construct 182 indexes. In the next query (Query
3), the existing indexes already provide some savings, so that
more indexes can be constructed (242), and so on. With Query
9, the time drops drastically, as the previous query constructed
almost all remaining indexes, skipping 2966 blocks.

Figure 3 depicts the impact of varying the parameters fr
and fd. We vary fr between 25%, 50%, and 100%. With
fr = 100%, we re-invest all time we save by using an index
into index construction. Therefore, the query time barely gets
faster in the first runs, as index construction eats up all time
saved. However, as it uses all time to construct indexes, it
finishes constructing all indexes the fastest and then the query
time quickly drops. With fr = 25%, we only invest one fourth
of the savings back into index construction, so we converge
slower but smoother. fd is varied between 10% and 1%,
which are both conservative, barely noticeable slow-downs.
Even with these conservative values, the algorithm converges
quickly building indexes on all blocks of the table. Our vision
for SPA is that the initial deposit should not hurt query latency
visibly, so we advise against being more aggressive here.

This proof-of-concept experiment shows the feasibility of
constructing an index adaptively during a scan and guided by a
cost model. The experiment is simplified, as we only construct
the indexes in main memory, so we converge exceptionally
quickly. For the sake of brevity, we neither did incorporate
an experiment using cloud storage nor an experiment where
index deconstruction or data updates are relevant. An index
stored on cloud storage will be more costly to construct and
maintain, so the approach will converge slower. fd might be
chosen slightly higher to counteract this. All such experiments
are good candidates for future research.

IV. RESEARCH AGENDA

Related research themes. The SPA framework is intended
to spur research into a number of areas, emboldened by our
initial results and the observation that economical principles
like deposits, gains, and re-investment can be unified with data
management—with monetary workload cost becoming the pri-
mary optimization goal [20]. The virtually limitless resources
of public clouds and their known performance/price-points and
quantifiable economic cost can break the barriers to adoption
that have historically stood in the way of, e.g., completely
automatic physical design [21]. In other words, quantifiable
value improvements hold promise for completely automatic
decision-making. This realization we marry with well-known
design principles that aim for performance robustness [22],
smoothness [23], and adaptive indexing [11].



Economic decision making. We call for cross-disciplinary
work between economics, econometrics, and data management
to develop economic strategies that guide data management
decision making. While in this paper we spoke of a single
economic actor, in cloud environments the cloud provider is
another actor who could make smooth investment decisions to
offer value propositions to their users. In the future, the opti-
mization of workloads could become the terrain of investment-
willing third parties.
Economic data structures. We mention index structures such
as bloom and cuckoo filters that can exclude the possibilities of
matching. These data structures are probabilistic in the sense
that there is a false-hit probability and we usually attempt to
minimize this. Rather than optimizing a false-hit probability
or performance optimality [15], SPA data structures should
maximize economic value.
Partial indexing and caching. An important observation is
that workloads make certain data much more valuable to index
than other, and this leads to opportunities for indexes that are
by definition partial. While most indexing examples in this
vision paper aim for negative queries that trigger the skipping
of a block, one can also design data structures that benefit
from positive queries (semantic caching [13], [12]).
Data reorganization. In addition to min/max pruning, some
systems offer user-defined [24] or even automatic [25] data
clustering. This can be considered a kind of clustered index—
but only one clustering per table can be specified. In this
paper, we assumed that the primary data representation is
not changed by SPA. However, the SPA framework could
construct and maintain several physical data representations—
rather than just block-based indexes.
State management. As discussed, SPA does not prescribe
how to keep track of cost and benefit metrics and we proposed
some simple approaches. The trade-offs of a model tracking
more state versus a low-maintenance probabilistic model might
be a promising field for future research.
Query processing. The SPA framework calls for innovation
in areas like robust query processing, as there are many oppor-
tunities to reduce performance cliffs in query processing still,
as well as query optimization, taking into account the presence
of the SPA framework in query optimization decisions.
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