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Abstract 

Matrix variate skew elliptically contoured distributions generalize 
several classes of important distributions. This paper defines and 
explores matrix variate skew elliptically contoured distributions. In 
particular, we discuss two stochastic representations of the matrix 
variate skew elliptically contoured distributions. 

1. Introduction 

Although a collection of random variables can always be arranged into a 
vector or matrix, the generalization of univariate distribution results to 
analogous multivariate results is not necessarily obvious or immediate. 
Certainly, there are some properties whose extension to a matrix or 
multivariate context is straightforward, but just as often such extensions can 
be extremely difficult. For example, if X is a normally-distributed univariate 
random variable, i.e., ( ),1,0~ NX  then the expectation E  of X satisfies 

( ){ } ( )21 hkkhX +Φ=+ΦE  

for any real scalars h and k. However, it is not obvious how this univariate 
normal distribution property could be generalized to the context of 
multivariate normal distributions, and further, to that of matrix variate normal 
distributions (see [1] for details). Likewise, the matrix variate generalization 
of the power exponential family of distributions is far from obvious [8]. 

However, obtaining properties of matrix and multivariate skew 
distributions is important in both theory and applications. Wen and Zhu 
derived stochastic representations and the first two moments, among other 
properties, of the multivariate skew Pearson type VII distribution and the 
skew t-distribution [9, 10]. In addition, Chen and Gupta extended several 
important properties of the multivariate skew normal distributions to the 
matrix variate case [1]. Furthermore, Harrar and Gupta discussed more 
general matrix variate skew normal distributions [7]. In particular, they 
obtained the stochastic representation of a subfamily of matrix variate skew 
normal distributions. 
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Elliptically-contoured distributions are also an important class of 
multivariate distributions closely related to several different families of 
multivariate distributions. This paper, motivated by and in parallel with [7], 
derives stochastic representations of the matrix variate skew elliptically 
contoured distributions (MSE). 

In particular, we extend several results in [2-4], and the multivariate 
skew Pearson type VII distributions and skew t-distributions in Wen and Zhu 
[9, 10] to the matrix variate case. 

In Section 2, we recall several definitions pertinent to the paper. In 
Section 3, we obtain stochastic representations of the matrix variate skew 
elliptically contoured distributions (MSE). 

2. Notation and Definitions 

Matrix variate distributions have been studied by Gupta and Nagar 
among others [5]. We recall the definitions and notation they introduced.      
In particular, we use their definition of a matrix variate skew normal 
distribution. 

Let X be a mp ×  random matrix, which has a matrix variate normal 

distribution, i.e., ( ),,~ , Ψ⊗∑MNX mp  where mpM ×∈ R  is a mp ×  

mean matrix, ∑  is a pp ×  positive definite matrix and Ψ  is an mm ×  

positive definite matrix. We use bold face upper and lower case letters to 
denote vectors, upper case letters without bold face for matrices, and lower 
case letters without bold face for elements of a vector or a matrix. 

Definition 1. The density of a normal matrix variate X takes the 
following form: 

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ′−Ψ−∑−Ψ∑π= −−−−− MXMXXf pmpm 11222

2
1etr2  

 (1) 

which is denoted by ( ),,,, Ψ⊗∑φ MXmp  or ( )Ψ⊗∑φ ,, Xmp  if the mean 

matrix M is null, where for A a square matrix, ( ) ( ){ }.expetr AtraceA =  
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In addition, the cdf of an m-dimensional normal random vector with 
mean vector M, covariance matrix ,Ψ  taking value at vector b, is denoted by 

( ),,, ΨΦ Mbm  or ( ),, ΨΦ bm  if the mean vector M is null. 

Definition 2. The density of a matrix variate Pearson type VII X takes 
the following form: 

( ) ( )
( ) ( ) 222 2 pmpm pmq

qXf
Ψ∑−Γπλ

Γ=  

(( ) ( ) ) ,tr1
11 q

MXMX
−−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ

Ψ−∑′−+×  (2) 

where .2,0, pmqq >>λ  

We denote the matrix variate Pearson type VII distribution defined above 

by ( ).,,,,VII , rqMP mp Ψ∑  Particularly, when ,2
λ+= pmq  X is said to 

have a matrix variate t-distribution with r degrees of freedom and it is 
denoted by ( ).,,, Ψ⊗∑λ MMT mp  

When ,1=λ  (2) reduces to a matrix variate Cauchy distribution, 

denoted by ( ).,,1, Ψ⊗∑MMC mp  When ,1=p  the matrix variate Pearson 

type VII distribution reduces to the multivariate Pearson type VII 
distribution, denoted by ( ),,,,VII λΨ qP m M  whose pdf is given by 

( ) ( )
( ) ( )

( ) ( ) ,1
2

1

212

q

m mq
qf

−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ

′−Ψ−+
Ψ−Γπλ

Γ= MXMXX  (3) 

where .2
mq >  Particularly, when ,2

λ+
=

mq  X is said to have a 

multivariate t-distribution with r degrees of freedom and it is denoted by 
( ).,, Ψλ MmMT  When ,1==λ p  Definition 2 reduces to multivariate 

Cauchy distribution, denoted by ( )., ΨMMCm  
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Definition 3. Suppose that ( )mpX ×  is a random matrix. Then X is 

said to have a matrix variate elliptically contoured (MEC) distribution if it 
has a characteristic function ( ) ( ) ( )( ),tretr Ψ∑′ψ′=φ TTXTiTX  where 

[ ) .,0: R→∞ψ  This distribution is denoted by ( ).,,, ψΨ⊗∑ME mp  

An MEC reduces to a multivariate elliptically contoured distribution if 
,1=p  denoted by ( ),,, ψΨMmE  where M is an m-dimensional mean 

vector. By Theorem 2.2.1 in [6], ( )ψΨ⊗∑ ,,~ , MEX mp  if and only if 

the probability density function (pdf) of X is given by 

( ) ( (( ) ( ) )),tr 1122 −−−− Ψ−∑′−Ψ∑= MXMXhXf pm  (4) 

where h and ψ  determine each other for specified p and m. 

One can see that the matrix variate normal distributions and matrix 
variate Pearson type VII distributions are special cases of MEC distributions. 
If X is distributed as matrix variate normal ( ),,, Ψ⊗∑MN mp  then ( ) =ψ x  

( )2exp x−  and the characteristic function of X can be written as 

( ) ( ) .2
1etretr ⎟

⎠
⎞⎜

⎝
⎛ Ψ∑′−′=φ TTXTiTX  

Also, ( ) ( ) .2 22 xpm exh −−π=  If X is distributed as matrix variate Pearson 

type VII, i.e., ( ),,,,,~ , λΨ∑ qMPVIIX mp  then ( ) ( ) ,1 qxx −λ+=ψ  the 

characteristic function of X can be written as 

( ) ( ) ( ) q
X

TTtrXTiT
−
⎟
⎠
⎞⎜

⎝
⎛

λ
Ψ∑′+′=φ 1etr  (5) 

and the function h can be written as 

( ) ( )

( )
.1

2
2

q

pm
x

pmq

qxh
−
⎟
⎠
⎞⎜

⎝
⎛

λ
+

⎟
⎠
⎞⎜

⎝
⎛ −Γπλ

Γ=  (6) 



Shimin Zheng, Chunming Zhang and Jeff Knisley 88 

Definition 4. Assume ( )( ) ( ),,,0~1 ,1
0 ψΨ⊗∑⎟
⎠
⎞

⎜
⎝
⎛=×+ ∗

+ mpE
X

mpZ
X

 

where ,
1

⎟
⎠
⎞

⎜
⎝
⎛

∑′
=∑∗

k
k

 ∑  is a pp ×  positive definite matrix, Ψ  is an 

mm ×  positive definite matrix, 0X  is ,1 m×  X is .mp ×  Then the random 

matrix mpX ×  is said to have a matrix variate skew elliptically contoured 

distribution with parameters ,,,, ψΨ∑b  denoted by ( ,,~ , ∑bmpMSEX  

)ψΨ,  if the pdf of X has the form 

( ) ( )[ ] ( ) ( ( ) ),,,,,;,,0 1
XqXFXfFXf ψΨ′ψΨ∑ψΨ= − b  (7) 

where ( ) ,1 2
11 −− ′∑−′∑= kkkb  ( ) ( ),tr 11 −− Ψ∑′= XXXq  ( )ψΨ⋅ ,;F  is the 

cumulative distribution function (cdf) of ( ),,,0 ψΨmE  ( )ψ∑Ψ⋅ ,,;f  is the 

pdf of ( ),,,0, ψΨ⊗∑mpE  ( ( ) )XqF ψΨ⋅ ,;  is the cdf of ( ( ) ).,,0 XqmE ψΨ  

Definition 5. The random matrix ( )mpX ×  is said to have a matrix 

variate skew normal distribution, written as ( ),,,,~ , ΩΨ∑bmpMSNX  if 

its pdf is given by 

( )[ ] ( ) ( ),,,,0 ,
1 Ω′ΦΨ⊗∑φΨ∑′+ΩΦ − bbb XX mmpm  (8) 

where mR∈b  is a vector of shape parameters, other notation are the same 
as defined in Definition 1. 

Besides the above stochastic representation of the matrix variate skew 
elliptical contoured distribution, we introduce a different one, the linear 
transformation method. The first theorem in Section 3 provides an alternative 
stochastic representation for a subfamily of ( ).,,,,, ψΩΨ∑bmpMSE  

3. Stochastic Representations of MSE 

Multivariate skew normal distributions have been shown to arise from 
multivariate normal distributions by truncating on some of the variates. This 



Stochastic Representations of the Matrix Variate Skew Elliptically … 89 

property can be generalized to the matrix variate skew elliptically contoured 
distributions. The following theorem provides a stochastic representation for 
the matrix variate skew elliptically contoured distributions of the type 

( ).,,,,, ψΩΨ∑bmpMSE  

Theorem 1. Assume that ( )( )mpZ ×+ 1  as in Definition 4. Then the 

conditional pdf of X given the constraint 00 >X  is ( )ψΨ∑ ,,,, bmpMSE  

as defined in (7). 

Proof. It follows from Theorem 2.3.1 in [6] that the marginal distribution 
of 0X  is ( ),,,0 ψΨmE  which we denote by ( ),0Xf  and the marginal 

distribution of X is ( ),,,0, ψΨ⊗∑mpE  which we denote by ( ).Xf  On the 

other hand, it follows from Theorem 2.6.4 in [6] that the conditional 

distribution of 0X  given X is ( ,1k′∑′ −XEm ( ) ( ) ),,1 XqψΨ′∑− kk  where 

( ) ( ).tr 11 −− Ψ∑′= XXXq  We denote the density of this distribution by 

( ).0 Xf |X  Therefore, the pdf of X under the constraint 00 >X  can be 

written as 

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ |××⎥⎦

⎤
⎢⎣
⎡=>| ∫∫ >

−

< 0 00

1

0 000
00

0
XX

XXXXX dXfXfdfXf  

( )[ ] ( ) ( ( ) ).,,,,,,0 1
XqFXfF ψΨψΨ⊗∑ψΨ= − b  (9) 

  

Theorem 1 immediately leads to the following two corollaries. 

Corollary 1. Assume that ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=×+

X
mpZ 01

X
 has a matrix variate 

Pearson type VII distribution, i.e., ( ).,,,,0~ ,1 λΨ∑∗
+ qPVIIZ mp  Then 

the distribution of X under the constraint 00 >X  is called a matrix variate 

skew Pearson type VII distribution, denoted by ( ),,,,,, λΨ∑ qMSPVII mp b  

whose pdf can be written as 

( )[ ] ( ) ( ),,,,,,,,,,,0 1 λΨλΨ∑Ψ − qFqXfrqF b  
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where ( )rqF ,,.; Ψ  is the cdf of ( ),,,,0 λΨ qPVIIm  ( )λψΨ∑ ,,,,.; qf  is 

the pdf of ( ).,,,,0, rqPVII mp Ψ∑  

Corollary 2. Assume that ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=×+

X
mpZ 01

X
 has a matrix variate 

normal distribution, ( ).,0~ ,1 Ψ⊗∑∗
+ mpNZ  Then the distribution of X 

under the constraint 00 >X  is called a matrix variate skew normal, denoted 

by ( ),,,,0,, ΩΨ∑bmpMSN  whose pdf can be written as 

( )[ ] ( ) ( ),,0,,0,,0,0 ,
1 Ω′ΦΨ⊗∑φΨΦ − bXX mmpm  

where kb ′∑= −1  and ( ) .1 Ψ′∑−=Ω kk  

A more general matrix variate skew normal distribution was defined by 
Harrar and Gupta [7]. Moreover, we also have the following theorem. 

Theorem 2. Assume that ( ),,,0~ ,1
1

0 ψΨ⊗∑⎟
⎠
⎞

⎜
⎝
⎛= ∗

+ mpE
V

V
V

 =∑∗  

,
0

01
⎟
⎠
⎞

⎜
⎝
⎛

∑
 ∑  is ,pp ×  Ψ  is ,mm ×  0V  is ,1 m×  1V  is .mp ×  For 

( ),1,1−∈δ j  let 

( )

( )

( ) ( )

( ( ))⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

′ΨΨ=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

′′′=′′′=

=

=δ−+δ==

∫ <
−−

∗

0 00
1

0
21

1

0

10

002010

212
000

0
.tr

,

,...,,,,

,...,,,

,...,,2,1,1,

X
XXX

V
XXX

V

VVXVX

dhp
V

V

XXZ

vvv

pj

c

p

m

jjjj
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Then the random matrix X has a matrix variate skew elliptically contoured 
distribution. Specifically, 

( ),,,,,~ 2.11
1

, ψΨΩΨ∑δ∑ δ
−
δmpMSEX  

where ( ) ,...,,, 21
′δδδ=δ p  ,Δ∑Δ+δ′δ=∑δ  

(( ) ( ) )2
122

12
1 1...,,1diag pδ−δ−=Δ  

and  

.1 1
2.11 δ∑δ′−=Ω −

δ  

Proof. The density of ∗V  is ( ),,,0,01 ψΨ⊗∑∗− Fpc  where ( ,0,⋅F  

)ψΨ⊗∑∗ ,  is the cdf of ( ).,,0,1 ψΨ⊗∑∗
+ mpE  One can see that the pdf 

of X can be written as 

( ) ( ( ))∫ ≥
−−∗+−∗− Ψ∑′Ψ∑=

0 0
112

1
2
11

0
tr

X
XdZZhpXf

p
c  

( ) ( )∫ ≥
− |=

0 001
1

0
,

X
XX dXfXfpc  

where  

( ) ( ( )).tr 1122
1

−−
δ

−−
δ Ψ∑′Ψ∑= XXhXf pm  

The distribution of Z is 

( ( )),tr 112
1

21 −
δ

−∗
δ

+−−∗− Ψ∑′Ψ∑ XXhJp
pm

c  

where  

( ( ) ( ) ).1...,,1, 02
12

0112
12

10 XXXXXX ′β−′δ−′β−′δ−′=′ −−
δ ppp  
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Let .
01
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δδ
=B  Then 

( )
( )

( )
( )

.

100
1

001
1

0001

2
12

2
12

2
12

1
2
12

1

1

1

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

δ−
δ−

δ−

δ−
δ−

δ−

=

−

−

−

p

p

p

B  

Hence, ∗= BVZ  and ( ) ( ) [ ( ) ] .1 212
1

1 m
i

p
i

mBZVJ −
=

−∗ δ−∏==→  

Therefore, the density of Z can be written as 

( ) ( ( ) ( ) )11112
1

21 tr −−−∗−+−−∗− Ψ∑′Ψ∑= ZBZBhJpZf
pm

c  

( ( )),tr 112
1

21 −−+−−∗− ΨΩ′Ψ∑= ZZhJp
pm

c  

where .
1

2221

1211 ⎟
⎠
⎞

⎜
⎝
⎛

ΩΩ
ΩΩ

⎟
⎠

⎞
⎜
⎝

⎛
∑δ
δ′

=′∑=Ω
δ

∗BB  

Consequently, we have 

( ) ( ) ( ( )),tr 112121 −−+−−− ΨΩ′ΨΩ= ZZhpZf pm
c  

since .222 mmmn BJ −−∗−−∗ Ω=∑=∑  

Therefore, based on Theorem 2.6.4 in [6], the pdf of X can be written as 

( ) ( ) ( ( ))∫ ≥
−−+−−− ΨΩ′ΨΩ=

0 0
112121

0
tr

X
XdZZhpXf pm

c  (10) 

( ) ( )∫ >
− |=

0 001
1

0
,

X
XX dXfXfpc  (11) 
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where 

( )Xf |0X  

( (( ) ( ) ( ) ))1
2.11

1
0

1
0

21
2.11 tr −−

δ
−
δ

− ΨΩ∑δ′−′∑δ′−ΨΩ= XXh XX  

and .1 1
21

1
2212112.11 δ∑δ′−=ΩΩΩ−Ω=Ω −

δ
−   

In the following corollaries, we use the notation and definitions found in 
Theorem 2. 

Corollary 3. Assume that ( ).,0~ ,1
1

Ψ⊗∑⎟
⎠
⎞

⎜
⎝
⎛= ∗

+ mpN
V

V 0V
 Then the 

random matrix X has a matrix variate skew normal distribution. The pdf of 
the random matrix X can be written as 

( ) ( ) ( )
1

0 00
1

02
1

2
1

0 2
1exp2det

−

<
−−−

⎥
⎦

⎤
⎢
⎣

⎡
⎭⎬
⎫

⎩⎨
⎧ ′Ψ−πΨ= ∫X

XXX dXf m  

( ) ( ) ( ) pmpm 2
1

2
1

2
1

2detdet −−− πΨΔ∑Δ+δ′δ×  

( )
⎭⎬
⎫

⎩⎨
⎧ Ψ∑′−× −−

δ
11tr2

1exp XX  

( ) ( ) ( )∫ <
−−− πΨΩ×

0
2
1

2
1

2
1

2.11
0

2detdet
X

mm  

(( ) ( ) ) 0
11

0
1

2.11
1

0tr2
1exp XXX dXX

⎭⎬
⎫

⎩⎨
⎧ Ψ∑δ′−Ω′′∑δ′−−× −−

δ
−−

δ  

( ) ( )Ψ⊗∑φ⎥⎦
⎤

⎢⎣
⎡ Ψφ= δ

−

<∫ ,0,,0, ,

1

0 00
0

Xd mpmX
XX  

( )ΨΩδ∑′Φ× −
δ 2.11

1 ,0,Xm  

which is denoted by ( ).,,, 2.11
1

, ΨΩΨ∑δ∑ δ
−
δmpMSN  
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Proof. First, we define the function h in Theorem 2. We let ( ) =xh  

( ) .2 22 xpm e−− ×π  Then Corollary 2 can be proved using (4) in Definition 3 

and Theorem 2.  

Corollary 4. Assume that ( ).,,,,0~ ,1
1

rqPVII
V mp Ψ∑⎟

⎠
⎞

⎜
⎝
⎛ ∗

+
0V

 Then the 

random matrix X has a matrix variate skew Pearson type VII distribution. 
The pdf of the random matrix X can be written as 

( ) ( )
( ) ( )

1

0 0
0

1
0

212
0

1
2

−

<

−−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ

′Ψ
+

Ψ−Γπλ

Γ= ∫X
XXX d

mq
qXf

q

m  

( )
( ) ( )

( )
q

pmpm
XX

pmq
q

−−−
δ

δ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ

Ψ∑′
+

Ψ∑−Γπλ

Γ×
11

222
tr1

2
 

( )
( ) ( )∫ < ΨΩ−Γπλ

Γ×
0 21

2.11
2

0 2X mq
q

m  

[ ( ) ]( ) [ ( ) ]
0

1
0

1
2.11

1
01 XXX dXX

q−−
δ

−−
δ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λ

′∑δ′−ΨΩ∑δ′−
+×  

( )[ ] [ ]λΨ⊗∑λΨ= δ
− ,,,,,,0,0 1 qXfqF  

[ ],,,,0, 2.11
1 λΨΩδ∑′× −

δ qXF  

where [ ]λΨ⋅ ,,,0, qF  is the corresponding cdf to the pdf defined in (3), 

[ ]λΨ⊗∑⋅ δ ,,, qf  is the pdf defined in (2) when .0=M  This matrix 

variate skew Pearson type VII distribution is denoted by 

( ).,,,,, 2.11
1

, λΨΩΨ∑δ∑ δ
−
δ qMSPVII mp  

Proof. First, we define the function h in Theorem 2 as (6). Then 

Corollary 3 can be proved using (4) in Definition 3 and Theorem 2.   
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In the next theorem, we use the same notation and definitions as in 
Theorem 2. 

Theorem 3. Assume that ( ).,,0~ ,1
1

0 ψΨ⊗∑⎟
⎠
⎞

⎜
⎝
⎛= ∗

+ mpE
V

V
V

 Also, 

assume that ,AA ′=∑  and .BB ′=Ψ  For ( ),1,1−∈δ j  let 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
Δ+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

δ

δ
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ppp V

V
V

X

X 1

0

11
 or .10 VX Δ+δ= V  

Then the random matrix X has the following stochastic representation: 

( ) ,21 BAURX ′Δ+δ= U  (12) 

where R is a nonnegative random variable, 1U  is m×1  and uniformly 

distributed on sphere ,mS  2U  is mp ×  and ( )2Uvec ′  is uniformly 

distributed on sphere .pmS  In addition, 1, UR  and 2U  are independent. 

Furthermore, ( ) ( ) ( )∫
∞
Ω=ψ

0
2 ,rdFxrx pm  ,0≥x  where ( ),tt′Ω pm  pmR∈t  

denotes the characteristic function of ( ),2Uvec ′  and ( )rF  denotes the 

distribution function of r. 

Proof. By Theorem 2.5.2 in [6], the stochastic representation for the 
random matrix V is 

,
0

01

1

0 BRU
AV

′⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛V

 

where R is a nonnegative random variable, depending on function .ψ  Also, 

U is ( ) ,1 mp ×+  ( )Uvec ′  is uniformly distributed on sphere ( ) ,1 mpS +  and 

R and U are independent. The marginal distribution 0V  of V has the 

stochastic representation .10 BR ′= UV  Thus, 0Vδ  has the stochastic 

representation .10 BR ′δ=δ UV  Furthermore, the marginal distribution 
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1V  of V has the stochastic representation .21 BRAUV ′=  Therefore, the 

random matrix X has the stochastic representation given in (12).  

The next corollary follows immediately. Moreover, its statement uses the 
same notation as in Theorem 2 and also assumes that ., BBAA ′=Ψ′=∑  

Corollary 5. Assume that ( ).,0~ ,1
1

0 Ψ⊗∑⎟
⎠
⎞

⎜
⎝
⎛= ∗

+ mpN
V

V
V

 For ∈δ j  

( ),1,1−  let 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
Δ+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

δ

δ
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ppp V

V
V

Z

Z 1

0

11
 or .10 VZ Δ+δ= V  

Then the random matrix Z is distributed as matrix variate skew normal and 
has the following stochastic representation: 

( ) ,210 BAURZ ′Δ+δ= U  (13) 

where BAU ,,, 21U  are the same as in Theorem 3. 

However, it should be noted that 0R  is not necessarily the same as R in 

Theorem 3. The random variables R and 0R  depend on the characteristic 

function ( )⋅φ  or the function ( ),⋅h  or the function ( )⋅ψ  of the corresponding 

distribution, discussed in Definition 3. 

4. Concluding Remarks 

The set of skew elliptically contoured distributions contains the 
elliptically contoured distributions. They also have some important properties 
analogous to the elliptically contoured distributions. They are useful in 
studying robustness as well as in applications. 

In this paper, we defined and explored matrix variate skew elliptically 
contoured distribution, obtaining in the process two stochastic 



Stochastic Representations of the Matrix Variate Skew Elliptically … 97 

representations. In addition, we analyzed two subclasses - the matrix variate 
skew Pearson type VII distributions and the matrix variate skew normal 
distributions, along with the relationships between them. 

We hope to follow these results up rather immediately with some results 
concerning the moments of a subfamily of this large family of distributions. 
Future directions include the extension of these results to a general class of 
the matrix variate elliptically contoured distributions. The quadratic forms of 
random matrices with elliptically contoured distributions and their 
characteristic functions are some other possible research directions. 
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