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Abstract 

Matrix variate skew elliptically contoured distributions generalize 
several classes of important distributions. This paper defines and 
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explores matrix variate skew elliptically contoured distributions. In 
particular, we discuss the first two moments of the matrix variate skew 
elliptically contoured distributions. 

1. Introduction 

The moments of matrix variate distributions are necessary both in theory 
and in applications, but often, their derivation is not straightforward and can 
constitute a work in and of itself. For example, Wen and Zhu derived 
stochastic representations and the first two moments, among other properties, 
of the multivariate skew Pearson type VII distribution and the skew 
t-distribution [1, 2]. In addition, Chen and Gupta extended several important 
properties of the multivariate skew normal distributions to the matrix variate 
case [3]. Also, Gupta et al. derived the first two moments of the multivariate 
skew normal distributions [4, 5, 6]. Furthermore, Akdemir and Gupta 
discussed more general matrix variate skew normal distributions, including 
moments [7]. 

In a previous work [8], we obtained the stochastic representations of the 
matrix variate skew elliptically contoured distributions (MSE). This paper 
extends that work by deriving the first two moments of the matrix variate 
skew elliptically contoured distributions (MSE). 

In Section 2, we recall several definitions pertinent to the paper as well 
as the results from [8] for stochastic representations of matrix variate skew 
elliptically contoured distributions (MSE). In Section 3, we obtain moments 
of matrix variate skew elliptically contoured distributions. 

2. Notation and Definitions 

Matrix variate distributions have been studied by Gupta and Nagar, 
among others [9]. Below we include the results from [8] necessary for the 
derivation of moments. We refer the reader to [9] and [8] for additional 
definitions and theorems. 



Moments of Matrix Variate Skew Elliptically Contoured Distributions 15 

Let X be a mp ×  random matrix, which has a matrix variate normal 

distribution, i.e., ( ),,~ , Ψ⊗ΣMNX mp  where mpM ×∈ R  is a mp ×  mean 

matrix, Σ is a pp ×  positive definite matrix and Ψ is an mm ×  positive 

definite matrix. We use bold face upper and lower case letters to denote 
vectors, uppercase letters without bold face for matrices, and lowercase 
letters without bold face for elements of a vector or a matrix. 

We list below the theorems and corollaries from [8] which are used in the 
following section. 

Theorem 1 (Theorem 2 in [8]). Assume 
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Then the random matrix X has a matrix variate skew elliptically contoured 
distribution. Specifically, 
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1
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where 
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In the following corollaries, we use the notation and definitions found in 
Theorem 1. 
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matrix X has a matrix variate skew normal distribution. The pdf of the 
random matrix X can be written as 

( ) ( ) ( )
1

0 00
1

02
1

2
1

0 2
1exp2det

−

<
−−−

⎥
⎦

⎤
⎢
⎣

⎡
⎭⎬
⎫

⎩⎨
⎧ ′Ψ−πΨ= ∫X

XXX dXf m  

( ) ( ) ( ) ( )
⎭⎬
⎫

⎩⎨
⎧ ΨΣ′−πΨΔΣΔ+δ′δ× −−

δ
−−− 112

1
2
1

2
1

2
1exp2detdet XXtrpmpm  

( ) ( ) ( )∫ <
−−− πΨΩ×

0
2
1

2
1

2
1

2.11
0

2detdet
X

mm  

(( ) ( ) ) 0
11

0
1

2.11
1

02
1exp XXX dXXtr

⎭⎬
⎫

⎩⎨
⎧ ΨΣδ′−Ω′′Σδ′−−× −−

δ
−−

δ  

( ) ( )Ψ⊗Σφ⎥⎦
⎤

⎢⎣
⎡ Ψφ= δ

−

<∫ ,0,,0, ,

1

0 00
0

XdX mpmX
X  

( )ΨΩδΣ′Φ× −
δ 2.11

1 ,0,Xm  

which is denoted by ( ).,,, 2.11
1

, ΨΩΨΣδΣ δ
−
δmpMSN  
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random matrix X has a matrix variate skew Pearson type VII distribution. 
The pdf of the random matrix X can be written as 
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This matrix variate skew Pearson type VII distribution is denoted by 

( ).,,,,, 2.11
1

, λΨΩΨΣδΣ δ
−
δ qMSPVII mp  

In the next theorem, we use the same notation and definitions as in 
Theorem 1. 

Theorem 2 (Theorem 3 in [8]). Assume  
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Then the random matrix X has the following stochastic representation: 

( ) ,21 BAURX ′Δ+δ= U  (1) 

where R is a nonnegative random variable, 1U  is m×1  and uniformly 

distributed on sphere ,mS  2U  is mp ×  and ( )2Uvec ′  is uniformly distributed 
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on sphere .pmS  In addition, R, ,1U  and 2U  are independent. Furthermore, 
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characteristic function of ( ),2Uvec ′  and ( )rF  denotes the distribution 

function of r. 

The next corollary follows immediately. Moreover, its statement uses the 
same notation as in Theorem 2 and also assumes that ., BBAA ′=Ψ′=Σ  
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Then the random matrix Z is distributed as matrix variate skew normal and 
has the following stochastic representation: 

( ) ,210 BAURZ ′Δ+δ= U  (2) 

where BAU ,,, 21U  are the same as in Theorem 2. 

Based on the definitions and the stochastic representation obtained in [8], 
the moments of matrix variate skew elliptically contoured distribution can be 
derived, as we now show. 

3. Moments of Matrix Variate Skew Elliptically Contoured Distribution 

The moments of matrix variate skew elliptical distributions can be found 
using the moments of the matrix variate skew normal distribution since the 
latter is easy to find. Suppose that the random matrix X is distributed as a 
general matrix variate skew elliptically contoured distribution (MCD) such as 
in Theorem 2 and also suppose that the random matrix Z is distributed as a 
matrix variate skew normal as in Corollary 3. Then the moments of the skew 
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MCD X are associated with the moments of skew normal Z. Specifically, we 
have the following relationship between them: 
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where ijX  is the ( )ji,  element of random matrix X, ijZ  is the ( )ji,  

coefficient of the random matrix Z, and 2
0R  is distributed as 2χ  with degrees 

of freedom pm. Equation (3) leads to the following results: 
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It also leads to our next theorem. 

Theorem 3. Suppose that the random matrix X is distributed as a 
matrix variate skew Pearson type VII defined in Corollary 2, i.e., 
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Proof. Based on (2.5.17) on p. 59 of [10], the pdf of the random variable 
R can be found using the function h defined in (6) of [8]: 
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Hence, equations (6), (7) and (8) are proved using (9) and (10).  
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In order to use Theorem 3 to find the first two moments of any matrix 
variate skew elliptically contoured distribution, we have to first find the first 
two moments of matrix variate skew normal distributions. Gupta et al. 
derived the first two moments of multivariate skew normal distributions [4, 
5, 6]. To generalize these results to matrix variate skew normal distribution, 
we utilize moment generating functions. In particular, Arellano-Valle and 
Azzalini derived the moment generating function (mgf) of a multivariate 
unified skew normal distribution [11]. Harrar and Gupta presented the mgf 
for general matrix variate skew normal distributions [12]. The following 
lemma is from Harrar and Gupta [12]. 
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where ( ) jimkD +−1,  is the element ( )( )jimk +−1,  of matrix D, ( )
1−Ξ k  is the 

matrix constructed by eliminating the kth row and the kth column of ,1−Ξ  
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Therefore, the theorem is proved.  

Finally, we have the following theorem, whose proof – like that of 
Theorem 4 – requires a long elementary calculation of a second derivative 
which is similar in details to derivations in [4, 5, 6]. 
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Theorem 5. Suppose ( ).,,,~ , ΩΨΣbmpMSNX  Then the expectation 
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where kkΞ  is the element ( )kk,  of 1−Ξ  and ( )
1
,

−Ξ ji  is the matrix constructed 

by eliminating the ith and jth rows and the ith and jth columns of ,1−Ξ  with 

( ) ( )( ).,
11

, jiji
−− Ξ=Ξ  

Proof. Based on (11), we have 
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Hence, 

[ ( ) ( ) ] ( )
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4. Concluding Remarks 

The set of skew elliptically contoured distributions contains the 
elliptically contoured distributions. In [8], we defined and explored the 
matrix variate skew elliptically contoured distribution, obtaining in the 
process two stochastic representations. In this work, we have extended that 
effort by obtaining the first two moments of a subfamily of this large family 
of distributions. 

In particular, the moment results obtained in this paper are useful in both 
theory and application. Future directions include expanding upon the utility 
and importance of these results. 
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