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Abstract

Feature screening is a useful feature selection
approach for high-dimensional data when the
goal is to identify all the features relevant to
the response variable. However, common fea-
ture screening methods do not take into ac-
count the correlation structure of the covari-
ate space. We propose the concept of a fea-
ture relevance network, a binary Markov ran-
dom field to represent the relevance of each
individual feature by potentials on the nodes,
and represent the correlation structure by po-
tentials on the edges. By performing infer-
ence on the feature relevance network, we
can accordingly select relevant features. Our
algorithm does not yield sparsity, which is
different from the particular popular fam-
ily of feature selection approaches based on
penalized least squares or penalized pseudo-
likelihood. We give one concrete algorithm
under this framework and show its superior
performance over common feature selection
methods in terms of prediction error and re-
covery of the truly relevant features on real-
world data and synthetic data.

1 Introduction

The dimensionality of machine learning problems
keeps increasing, and feature selection becomes a nec-
essary procedure in many applications, resulting in im-
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proved performance, greater efficiency and better in-
terpretability (Guyon & Elisseeff, 2003). However, fea-
ture selection in many applications becomes more and
more challenging due to both the increasing number of
features and the complex correlation structure among
the features. For instance, in genome-wide association
studies (GWAS), researchers are interested in identify-
ing all relevant genetic makers (single-nucleotide poly-
morphisms, or SNPs) among millions of candidates
with hundreds or thousands of samples. Usually the
truly relevant markers are rare and only weakly asso-
ciated with the response variable. A screening feature
selection procedure is usually the only method compu-
tationally feasible because of the high dimension, but
it is typically unreliable and suffers from high false
positive rate. On the other hand, the features are
usually correlated with one another. For example in
GWAS, most SNPs are highly correlated with one or
more nearby SNPs, with squared Pearson correlation
coefficients well above 0.8. In the next paragraph, we
give a toy example showing that taking into account
the correlation between features can be beneficial.

Suppose that our measured features are correlated be-
cause they are all influenced by some hidden variable.
This is often the case in GWAS, where our features
are markers that are easy to measure, but the actual
underlying causal genetic variation is not measured.
Suppose that our data are generated from the Bayesian
network in Figure 1(a). All variables are binary. Hid-
den variables are denoted by H1 and H2. H1 is weakly
associated with the class variable. H2 is not associ-
ated. Both H1 and H2 have a probability of 0.5 of be-
ing 1. Observed variables A and B are associated with
H1. Observed variables C and D are associated with
H2. We label the arc from H1 to A with a 0.8 to denote
that A is 0 with probability 0.8 whenH1 is 0, and A is 1
with probability 0.8 when H1 is 1. Under the distribu-
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tion, the probability that A and the class variable take
the same value is 0.8×0.6+(1−0.8)×(1−0.6) = 0.56,
and it is the same for B. The probability that H2

takes the same value with the class variable is 0.5.
C and D take the same value with the class vari-
able with probability 0.5 respectively. The probability
that A and B take the same value is 0.68, and it is
the same for C and D. Suppose that there are more
nonassociated hidden variables than associated ones
and we generate a small sample set from this distri-
bution specified by the Bayesian network. There will
be some nonassociated variables (i.e. C) that appear
to be as promising as associated features (i.e. B) if
we only look at the sample-based probability of agree-
ment with the class variable. Suppose that C appears
as promising as A and B, with a probability of 0.56
agreement with the class variable. In Figure 1(b), the
number on the dotted edges stands for the sample-
based probability of agreement with the class variable.
Since D is expected to show agreement with C with
probability 0.68, we expect the sample-based probabil-
ity of agreement between D and the class variable to
be 0.56×0.68+(1−0.56)×(1−0.68) = 0.52. If we are
using any screening method to evaluate the features,
it will rank A, B and C equally high. However in this
case, we should make use of the information that C is
more likely to be a false positive because its highly cor-
related feature D does not appear as relevant as does
A’s (B’s) highly-correlated feature. Therefore, we seek
a way of taking into account the correlation structure
in this manner during the procedure of feature selec-
tion.
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Figure 1: One Bayesian network example.

Markov random fields provide a natural way of repre-
senting the relevance of each feature and the correla-
tion structure among the features. The relevance of
each feature is represented as a node that takes the
values in {0, 1}. The correlation structure among the
features is captured as the potentials on the edges. We
can regard the feature selection problem in the orig-
inal covariate space as an inference problem on this
binary Markov random field which is called a feature
relevance network. Section 2 gives a precise descrip-
tion of the feature relevance network and introduces
one feature selection algorithm. Sections 3 and 4 eval-
uate the algorithm on synthetic data and real-world
data respectively. We finally conclude in Section 5.

2 Method

2.1 Feature Relevance Network

Suppose that we have a supervised learning problem
with d features and n samples (d� n). A feature rele-
vance network (FRN) is a binary Markov random field
on a random vector X = (X1, ..., Xd) ∈ {0, 1}d de-
scribed by an undirected graph G(V,E) with the node
set V and the edge set E. The relevance of featurei is
represented by the state of nodei in V . Xi = 1 rep-
resents that featurei is relevant to the response vari-
able whereas Xi = 0 represents that featurei is not
relevant. Correlation between Xi and Xj is denoted
by an edge connecting nodei and nodej in E. The
potential on nodei, φ(Xi), depicts the relative proba-
bility that featurei is relevant to the response variable
when featurei is analyzed individually. The potential
on the edge connecting nodei and nodej , ψ(Xi, Xj),
depicts the relative joint probability that featurei and
featurej are relevant to the response variable jointly.
For a given FRN, the probability of a given relevance
state x = (x1, ..., xd) is

P (x) =
1

Z

|V |∏

i=1

φ(xi)
∏

(i,j)∈E
ψ(xi, xj)

=
1

Z
exp





|V |∑

i=1

log φ(xi) +
∑

(i,j)∈E
logψ(xi, xj)



 ,

(1)

where Z is a normalization constant, and |V | = d.

Performing feature selection with an FRN involves a
construction step and an inference step. To construct
an FRN, one needs set φ(Xi) for i = 1, ..., |V | and
ψ(Xi, Xj) for (i, j) ∈ E. Section 2.2 continues to dis-
cuss the construction step in detail. In the second step,
one has to find the most probable state (maximum a
posterior, or MAP) of the FRN, and the features can
be selected according to its MAP state. For a binary
pairwise Markov random field, finding the MAP state
is equivalent to an energy function minimization prob-
lem (Boykov et al., 2001) which can be exactly solved
by a graph cut algorithm (Kolmogorov & Zabih, 2004).
Section 2.3 discusses the inference step in detail.

2.2 The Construction Step

In the construction step, we set the potential func-
tions φ(Xi) and ψ(Xi, Xj). Suppose that we are using
hypothesis testing to evaluate the relevance of each
individual feature, and we observe the test statistic
S = (S1, ..., Sd). We assume that Si’s are indepen-
dent given X. Suppose that the probability density
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Table 1: Empirical counts at featurei with a binary
response variable Y .

featurei = 0 featurei = 1 Total

Y = 1 u0 u1 u
Y = 0 v0 v1 v
Total n0 n1 n

function of Si given Xi = 0 is f0, and the density
of Si given Xi = 1 is f1. If f0 and f1 are Gaussian,
the model is essentially a coupled mixture of Gaussians
model(Wainwright & Jordan, 2006). Here we give one
concrete example. Suppose that we are trying to iden-
tify whether a binary featurei is relevant to the binary
response variable Y ∈ {0, 1} with the empirical counts
from data shown in Table 1.

If we use a two-proportion z-test to test the relevance
of featurei with Y , the test statistic is

Si =
u1/u− v1/v√

u0u1/u3 + v0v1/v3
. (2)

Si|Xi = 0 is approximately standard normally dis-
tributed. Si|Xi = 1 is approximately normally dis-
tributed with variance 1 and some nonzero mean δi.
Many GWAS applications employ logistic regression
followed by a likelihood ratio test to identify associ-
ated SNPs. We call this testing procedure LRLR. In
this situation, Si|Xi = 0 has an asymptotic χ2 distri-
bution with 2 degrees of freedom and Si|Xi = 1 has an
asymptotic non-central χ2 distribution with 2 degrees
of freedom. We give the details in the supplementary
material.

In the FRN, we only connect a pair of nodes if their
corresponding features are correlated. After specifying
the structure of the FRN, we have a parameter learn-
ing problem in the Markov random field. The param-
eters include φ(Xi) for i = 1, ..., |V | and ψ(Xi, Xj)
for (i, j) ∈ E. We claim learning all these param-
eters is extremely difficult and practically unrealistic
for three reasons. First, learning parameters is difficult
by nature in undirected graphical models due to the
global normalization constant Z (Wainwright et al.,
2003; Welling & Sutton, 2005). Second, there are too
many parameters to estimate. Last but not least, X
is latent and we only have one training sample which
is S. Therefore, we propose a compromise solution as
follows. Although this solution looks arbitrary, it can
be easily applied in practice and has an interpretation
given in formula (9).

The way of setting ψ(Xi, Xj) comes from the observa-
tion that the chance that Xi and Xj agree increases

as the magnitude of the correlation between featurei
and featurej increases. Therefore, if we can estimate
the Pearson correlation coefficient rij between featurei
and featurej , we set

ψ(Xi, Xj) = eλ|rij |I(Xi=Xj), (3)

where λ (λ > 0) is a tradeoff parameter and I(Xi =
Xj) is an indicator variable that indicates whether Xi

and Xj take the same value.

The way of setting φ(Xi) is as follows. We set

φ(Xi) = e|Xi−qi|, (4)

where qi = 1 − pi and pi = P (featurei is relevant).
With hypothesis testing in (2), we usually set pi to be
1 if the absolute value of the test statistic is greater
than or equal to some threshold ξ and 0 if otherwise.
We call the pi (from such a “hard” method using some
threshold) pHi , namely

pHi =

{
1, if |Si| ≥ ξ,
0, otherwise.

We can also set pi by Bayes’ rule if we know f1 and
f0. We call it pBi .

pBi =
1

αf0(si) + 1
, (5)

where

α =
P (Xi = 0)

f1(si)P (Xi = 1)
. (6)

However in most of the cases, the parameter δi in f1 is
unknown to us. In the two-proportion z-test in (2), δi
refers to the mean parameter in f1 which is Gaussian.
In LRLR, δi refers to the non-centrality parameter in
f1 which is non-central χ2. We can use its data-driven
version δ∗i . This step has a flattening effect on calculat-
ing pi because it assumes the values of the test statistic
for relevant features are uniformly distributed. There-
fore, we introduce an adaptive procedure for calculat-
ing pi by

pi = γpHi + (1− γ)pBi , (7)

where 0 ≤ γ ≤ 1. We choose ξ in pHi to be the test
statistic that makes pBi be 0.5 in (5). Eventually, we
have three parameters in the construction step, namely
λ, γ and α. In practice, one can tune the three param-
eters from cross-validation.
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2.3 The Inference Step

For a given FRN, we need to find the most proba-
ble state which maximizes the posterior probability of
(1) so as to select the relevant features. Finding the
MAP state of the Markov random field specified by
(1) is equivalent to minimizing its corresponding en-
ergy function E, which is defined as

E(x) = −
|V |∑

i=1

log φ(xi)−
∑

(i,j)∈E
log ψ(xi, xj). (8)

As long as − log ψ(Xi, Xj) is submodular, the en-
ergy minimizing problem can be exactly solved by
the graph-cut algorithm on a weighted directed graph
F (V ′, E′) (Kolmogorov & Zabih, 2004) in polynomial
time. If φ(Xi) and ψ(Xi, Xj) are set as formula (4)
and formula (3), the optimization problem is

min
x





|V |∑

i=1

|xi − pi|+ λ

|V |∑

i,j=1

I(xi 6= xj)|rij |



 , (9)

which can be interpreted as seeking a state of the FRN
with two different goals. The first goal is that the MAP
state is close to the relevance of the features when eval-
uated individually, which is implied by the first term.
The second goal is that strongly correlated features
arrive at the same state, which is implied by the sec-
ond term. We can run a max-flow-min-cut algorithm,
such as the push-relabel algorithm (Goldberg & Tar-
jan, 1986) or the augmenting path algorithm (Ford &
Fulkerson, 1958), to find the minimum-weight cut of
this directed graph; a cut is a set of edges whose re-
moval eliminates all paths between the source and sink
nodes. Finally, after we cut the graph, every feature
node is either connected to the source node or con-
nected to the sink node. We select the features that
are connected with the source node.

2.4 Related Methods

A variety of feature selection algorithms appear in
both the statistics and machine learning communi-
ties, such as FCBF (Yu & Liu, 2004), Relief (Kira
& Rendell, 1992), DISR (Meyer et al., 2008), MRMR
(Peng et al., 2005), “cat” score (Zuber & Strimmer,
2009) and CAR score (Zuber & Strimmer, 2011). Vari-
ables can be selected within SVM (Guyon et al., 2002;
Zhang et al., 2006; Ye et al., 2011). With the rapid
increase of feature size, some approaches focus on high-
dimensional or ultrahigh-dimensional feature selection
(Wasserman & Roeder, 2009; Fan et al., 2009). One

particular popular family of approaches is based on pe-
nalized least squares or penalized pseudo-likelihood.
Specific algorithms include but are not restricted to
LASSO (Tibshirani, 1996), SCAD (Fan & Li, 2001),
Lars (Efron et al., 2004), Dantzig selector(Candés &
Tao, 2007), elastic net (Zou & Hastie, 2005), adaptive
elastic net (Zou & Zhang, 2009), Bayesian lasso (Hans,
2009), pairwise elastic net (Lorbert et al., 2010), ex-
clusive Lasso (Zhou et al., 2010) and regularization
for nonlinear variable selection (Rosasco et al., 2010).
Several recent algorithms also take into account the
structure in the covariate space, such as group lasso
(Yuan & Lin, 2006), fused lasso with a chain struc-
ture (Tibshirani & Saunders, 2005), overlapping group
lasso (Jenatton et al., 2009; Jacob et al., 2009), graph
lasso (Jacob et al., 2009), group Dantzig selector (Liu
et al., 2010) and EigenNet (Qi & Yan, 2011). How-
ever, most of the penalized least squares or penalized
pseudo-likelihood feature selection methods are to find
a minimal feature subset optimal for regression or clas-
sification, which is termed the minimal-optimal prob-
lem (Nilsson et al., 2007). However in this paper, the
goal of feature screening is to identify all the features
relevant to the response variable which is termed the
all-relevant problem (Nilsson et al., 2007). The hidden
Markov random field model in our FRN has also been
used in other problems, such as image segmentation
(Celeux et al., 2003) and gene clustering (Vignes &
Forbes, 2009).

3 Simulation Experiments

In this section, we generate synthetic data and com-
pare the FRN-based feature selection algorithm with
other feature selection algorithms. We generate bi-
nary classification samples with an equal number (n)
of positive samples and negative samples. In order
to generate correlated features, we introduce h hidden
Bernoulli random variables H1,...,Hh. For each hidden
variable Hi, we generate m observable Bernoulli ran-
dom variables Xij (j = 1, ...,m), where Xij takes the
same value as Hi with a probability ti. We set the first
πh hidden variables to be the true associated hidden
variables and accordingly we have πhm true associated
observable features, where π is the prior probability of
association. For associated hidden variable Hi, we set
P (Hi = 1) to be uniformly distributed on the inter-
val [0.01,0.5]. We also set the relative risk, defined as
follows,

rr =
P (positive|Hi = 1)

P (positive|Hi = 0)
. (10)

For each nonassociated hidden variable Hi we also set
P (Hi = 1) to be uniformly distributed on the interval
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Figure 2: ROC curves of two-proportion z-test, FRN
and elastic net for different prior probabilities and dif-
ferent relative risks.

[0.01,0.5]; this stays the same for the positive samples
and negative samples.

One baseline feature screening method is the two-
proportion z-test which is given in formula (2). We
rank the features with the P-values from the tests. The
other baseline feature selection method is the elastic
net (in the R package “glmnet”). Unlike other penal-
ized least squares or penalized pseudo-likelihood fea-
ture selection methods, the elastic net approach does
not select a sparse subset of features and is usually
good at recovery of all the relevant features. For the
elastic net penalty, we set α to be 0.5, and we use a
series of 20 values for λ. For our FRN-energy minimiz-
ing algorithm, we exactly follow formula (5), formula
(6) and formula (7). We choose a series of 20 values for
α, and set γ to be 0, and λ to be 1. Since we have the
ground truth of which features are relevant to the re-
sponse variable, we can compare the ROC curves and
the precision-recall curves for feature capture (i.e., we
treat associated features as positives).

For the first set of experiments, we set n = 500, h =
1000, m = 5, ti uniformly distributed on the interval
(0.8, 1.0), π = {0.025, 0.05}, and rr = {1.1, 1.2, 1.3}.
Because we have 2 values for π and 3 values for the rel-
ative risk rr, we run the simulation a total of 6 times
for different combinations of the two parameters. The
results are shown in Figure 2 and Figure 3. When
the relative risk is 1.1, it is difficult for all three al-
gorithms to recover the relevant features. When the
relative risk is 1.2 or 1.3, our FRN algorithm outper-
forms the two baseline algorithms. The prior of asso-
ciation π does not make too much difference for the
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Figure 3: Precision-recall curves of two-proportion z-
test, FRN and elastic net for different prior probabili-
ties and different relative risks.

ROC curves. However for the precision-recall curves,
when π is larger, the precision will be higher for the
same recall value in the same parameter configuration.

For the second set of experiments, we set n = 500,
h = 1000, π = 0.05, rr uniformly distributed on
the interval (1.1, 1.3), m = {2, 5, 10}, and ti uni-
formly distributed on the interval (τ, 1.0) where τ =
{0.5, 0.8, 0.9}. Because we have 3 values for m and 3
choices for ti, we run the simulation a total of 9 times
for different combinations of the two parameters. The
results are shown in Figure 4 and Figure 5. When the
features have a lot of highly correlated neighbors, the
FRN approach shows an advantage over the ordinary
screening method and the elastic net. However, when
the features do not have a lot of neighbors or when the
neighbors are not highly correlated, the FRN does not
help a lot.

4 Real-world Application: A
Genome-wide Association Study on
Breast Cancer

4.1 Background

A genome-wide association study analyzes genetic
variation across the entire human genome, search-
ing for variations that are associated with a given
heritable disease or trait. The GWAS dataset
on breast cancer for our experiment comes from
NCI’s Cancer Genetics Markers of Susceptibility web-
site (http://cgems.cancer.gov/data/). We name this
dataset CGEMS data. It includes 528, 173 SNPs as
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Figure 4: ROC curves of two-proportion z-test, FRN
and elastic net when we choose different correlation
structures of covariates.

features for 1, 145 patients and 1, 142 controls. De-
tails about the data can be found in the original study
(Hunter et al., 2007). This GWAS also exhibits weak-
association, and the relative risk of the several identi-
fied SNPs are between 1.07 and 1.26 (Pharoah et al.,
2008). The reasons for weak association are that (i)
it is estimated that genetics only accounts for about
27% of breast cancer risk and the rest is caused by
environment (Lichtenstein et al., 2000) and (ii) breast
cancer and many other diseases are polygenic, namely
the genetic component is spread over multiple genes.
Therefore, given equal numbers of breast cancer pa-
tients and controls without breast cancer, the highest
predictive accuracy we might reasonably expect from
genetic features alone is about 63.5%, obtainable by
correctly predicting the controls and correctly recog-
nizing 27% of the cancer cases based on genetics. If we
select SNPs which are already identified to be associ-
ated with breast cancer by other studies (for example,
one study (Pharoah et al., 2008) uses a much larger
dataset which includes 4,398 cases and 4,316 controls,
and confirms results on 21,860 cases and 22,578 con-
trols), we get a set of 19 SNPs (the closest feature set
we have the ground truth for this task). Using these
19 SNPs as input to leading classification algorithms,
such as support vector machines, results in at most a
55% predictive accuracy.
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Figure 5: Precision-recall curves of two-proportion z-
test, FRN and elastic net when we choose different
correlation structures of covariates.

4.2 Experiments on CGEMS Data

Since we do not know which SNPs are truly associ-
ated, we are unable to evaluate the recovery of the
truly relevant features as what we do in Section 3.
Instead, we compare the performance of supervised
learning when coupled with the feature selection al-
gorithms. The baseline feature selection methods in-
clude (i) logistic regression with likelihood ratio test
(LRLR), (ii) FCBF (Yu & Liu, 2004), (iii) Relief (Kira
& Rendell, 1992) and (iv) lasso penalized logistic re-
gression (LassoLR) (Wu et al., 2009). Because SVMs
have been shown to perform particularly well on high-
dimensional data such as genetic data (Wei et al.,
2009), we employ it as our machine learning algorithm
to test the performance of feature selection methods.
All the experiments are run in a stratified 10-fold cross-
validation fashion, using the same folds for each ap-
proach, and each feature selection method is paired
with a linear SVM. For running the SVM, we convert
the SNP value AA into 1, AB into 0, and BB into
−1 where A stands for the common allele at this lo-
cus and B stands for the rare allele. For each fold,
the entire training process (feature selection and su-
pervised learning) is repeated using only the training
data in that fold before predictions are made on the
test set of that fold, to ensure a fair evaluation. For all
feature selection approaches, we tune the parameters
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in a nested cross-validation fashion. In each training-
testing experiment of the 10-fold cross-validation, we
have 9 folds for training and 1 fold for testing. On the
9 folds of training data, we carry out a 9-fold cross-
validation (8 folds for training and 1 fold for tuning)
to select the best parameters. Since we have almost
equal numbers of cases and controls, we use accuracy
to measure the classification performance for both in-
ner and outer cross-validation.

We build the FRN based on LRLR. Namely, we follow
the calculation of pi in Section 2.2. Then we exactly
use formula (4) and formula (3) to set the φ(Xi) and
ψ(Xi, Xj). α in (5) and (6) essentially determines the
threshold of the mapping function which maps the test
statistic to the association probability pi. Our tuning
considers 5 values of α, namely 500, 1000, 1500, 2500,
and 5000. γ in (7) determines the slope of the mapping
function. We considers 5 values of γ, namely 0.0, 0.25,
0.5, 0.75, and 1.0. λ in (9) is the tradeoff parameter
between fitness and smoothness. Our tuning considers
4 values of λ, namely 0.25, 0.5, 0.75, and 1.0. Usually
if there are multiple parameters to tune in supervised
learning, one might use grid search. However, since
we will have in total 100 parameter configurations if
we grid-search them, it might overfit the parameters.
Instead, we tune the parameters one by one. We first
tune α based on the average performance over the dif-
ferent γ and λ values. With the best α value, we then
tune γ based on the average performance over differ-
ent λ values. Finally we tune λ with the selected α
and γ configuration. The computation for correlation
between features can result in high run-time and space
requirements if the number of features is large. Gen-
eral push-relabel algorithms and augmenting-path al-
gorithms both have O(|V |2|E|) time complexity. Ow-
ing to these two reasons, it is necessary to remove a
portion of irrelevant SNPs in the first step to reduce
the complexity when applying the FRN-based feature
selection algorithm to this GWAS data. Therefore, in
the experiments on the GWAS data we only keep the
top k SNPs based on the individual relevance mea-
surements. Tuning k may lead to better performance.
Since we already have three parameters to tune for the
energy minimizing algorithm, we fix k at 50, 000. For
the baseline algorithms, there is one parameter f , the
number of features to select for supervised learning.
We tune it with 20 values, namely 50, 100, 150, ...,
and 1000.

As listed in Table 2, linear SVM’s average accuracy
is 53.08% when the FRN algorithm is used. When
LRLR, FCBF, Relief and LassoLR are used, linear
SVM’s average accuracies are 50.64%, 51.68%, 50.90%
and 48.75% respectively. We perform a significance
test on the 10 accuracies from the 10-fold cross-

Table 2: The classification accuracy (%) of linear SVM
coupled with different feature selection methods, lo-
gistic regression with likelihood ratio test (LRLR),
FCBF, Relief, lasso penalized logistic regression (Las-
soLR) and feature relevance network (FRN) followed
by the P-values from significance test (two-sided paired
t-test) comparing the baseline algorithms with FRN.

Alg LRLR FCBF Relief LassoLR FRN

Acc 50.64 51.68 50.90 48.75 53.08
P 0.021 0.367 0.069 0.007 –

validation using a two-sided paired t-test. The FRN
algorithm significantly outperforms the logistic regres-
sion with likelihood ratio test algorithm and the lasso
penalized logistic regression algorithm at 0.05 level.

4.3 Validating Findings on Marshfield Data

The Personalized Medicine Research Project (Mc-
Carty et al., 2005), sponsored by Marshfield Clinic,
was used as the sampling frame to identify 162 breast
cancer cases and 162 controls. The project was re-
viewed and approved by the Marshfield Clinic IRB.
Subjects were selected using clinical data from the
Marshfield Clinic Cancer Registry and Data Ware-
house. Cases were defined as women having a con-
firmed diagnosis of breast cancer. Both the cases and
controls had to have at least one mammogram within
12 months prior to having a biopsy. The subjects also
had DNA samples that were genotyped using the Il-
lumina HumanHap660 array, as part of the eMERGE
(electronic MEdical Records and Genomics) network
(McCarty et al., 2011). In total 522, 204 SNPs have
been genotyped after the quality assurance step. De-
spite the difference in genotyping chips and the dif-
ferent quality assurance process, 493, 932 SNPs also
appear in the CGEMS breast cancer data. Due to
the small sample size, it is undesirable to repeat the
same experiment procedure in Section 4.2 on Marsh-
field data. However, we can use it to validate the re-
sults from the experiment on the CGEMS data. We
apply FRN and LRLR on CGEMS data, and compare
the log odds-ratio of the selected SNPs by the two ap-
proaches on Marshfield data. The CGEMS dataset
was also used by another study (Wu et al., 2010).
They proposed a novel multi-SNP test approach logis-
tic kernel-machine test (LKM-test) and demonstrated
that it outperformed individual-SNP analysis method
and other state-of-the-art multi-SNP test approaches
such as the genomic-similarity-based test (Wessel &
Schork, 2006) and the kernel-based test (Mukhopad-
hyay et al., 2010). Based on the CGEMS data, LKM-
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Figure 6: Q-Q plots for (a) comparing log odds-ratio
of the SNPs selected by FRN and the SNPs selected by
LRLR and (b) comparing log odds-ratio of the SNPs
selected by FRN and the SNPs selected by LKM-test.
The selection of SNPs is done on CGEMS data. The
log odds-ratio is calculated on Marshfield data.

test identified 10 SNP sets (genes) to be associated
with breast cancer. The 10 SNP sets include 195
SNPs. We set FRN to select the same number of rel-
evant SNPs on the CGEMS data, and we compare
the SNPs identified by LKM-test and the SNPs iden-
tified by FRN on a different real-world GWAS dataset
on breast cancer so as to compare the performance of
LKM-test and FRN.

We run FRN and LRLR on the entire CGEMS dataset
and validate the selected SNPs on Marshfield data.
For FRN, we tune the parameters from the 10-fold
cross validation similarly. The selected parameters for
FRN are α = 1000, γ = 0.5, and λ = 0.75. In total,
FRN selected 428 SNPs from the CGEMS data; 393 of
them appear in the Marshfield data. We pick the top
423 SNPs selected by LRLR which also result in 393
overlapped SNPs with Marshfield data. On Marshfield
data we compare the log odds-ratio of the 393 SNPs se-
lected by FRN and the 393 SNPs selected by LRLR via
the quantile-quantile plot (Q-Q plot) which is given in
Figure 6(a). On the CGEMS data the LKM-test se-
lected 195 SNPs, 178 of which appear in Marshfield
data. To ensure a fair comparison, we pick the 194
of the 428 SNPs selected by FRN using their individ-
ual P-values, which also yields 178 SNPs in Marsh-
field data. We also compare the log odds-ratio of the
178 SNPs selected by FRN and the 178 SNPs selected
by LKM-test via Q-Q plot, which is given in Figure
6(b). If the log odds-ratios of the SNPs selected by
two different methods are from the same distribution,
the points should lay on the 45 degree line (the red
straight lines in the plots) in the Q-Q plot. However
in both of the two plots we observe obvious discrepan-
cies at the tails. When comparing the log odds-ratio
on a different cohort, the top SNPs picked up by FRN
appear to be much more relevant to the disease than
the top SNPs selected by either LRLR or LKM-test.

5 Discussion

We propose the feature relevance network as a further
step for feature screening which takes into account the
correlation structure among features. For simulations
in Section 3, it took a few hours to finish all runs on
a single CPU. For results in Section 4, we finished,
including tuning parameters, in two weeks in a paral-
lel computing environment (∼ 20 CPUs). Besides the
computation burden, another drawback is that our al-
gorithm only returns the selected variables according
to the MAP state. It doesn’t provide P-values or other
measures for each variable. In this paper, the corre-
lation structure among the features is pairwise, which
is represented as edges in an undirected graph. How-
ever, there are also other types of correlation structure
which one might want to provide as prior knowledge,
such as the features coming from groups (may or may
not overlap), chain structures or tree structures. Rep-
resenting all these types of correlation structure with
the help of Markov random fields will be one important
direction for future research.

In this paper, the goal of feature screening is to iden-
tify all the features relevant to the response variable,
which is termed the all-relevant problem (Nilsson et al.,
2007), although we also compare the prediction per-
formance of supervised learning due to the lack of the
ground truth in the real-world GWAS application in
Section 4. In some other applications, the goal of fea-
ture selection is to find a minimal feature subset opti-
mal for classification or regression, which is termed
the minimal-optimal problem (Nilsson et al., 2007).
We do not address the minimal-optimal problem at
all in the present paper. For solving the minimal-
optimal problem in high-dimensional structured co-
variate space, many approaches have been well-studied
under the lasso framework (Tibshirani, 1996). Specific
algorithms include but are not restricted to group lasso
(Yuan & Lin, 2006), fused lasso with a chain struc-
ture (Tibshirani & Saunders, 2005), overlapping group
lasso (Jenatton et al., 2009; Jacob et al., 2009), graph
lasso (Jacob et al., 2009) and group Dantzig selector
(Liu et al., 2010).

Supplementary materials (other results and code) are
available via http://www.cs.wisc.edu/∼jieliu/frn/.
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1 Connection with Main Text

In Section 2.2 of the main text, we introduce how to
calculate pi from hypothesis testing. We feel this may
not interest the common AISTATS community, and
therefore we did not give many details. Here we give
more details by using two hypothesis testing examples.
One example is the two-proportion z-test for binary
features (e.g. the simulations in Section 3 of the main
text), and the other is logistic regression with likeli-
hood ratio test for GWAS data (e.g. the application
in Section 4 of the main text).

In Section 3 of the main text, we compare our al-
gorithm with elastic net. For elastic net, we set
the α parameter (the tradeoff parameter between l1
penalty and l2 penalty) to be 0.5. Readers may won-
der whether the α parameter will make a difference.
Here, we also show the results for the other choices of
α parameter in the elastic net penalty.

2 Two-proportion z-test

Suppose that we are trying to identify whether a bi-
nary featurei is relevant to the binary response variable
Y ∈ {0, 1} with the empirical counts from data shown
in Table 1.

Table 1: Empirical counts at featurei with a binary
response variable Y .

featurei = 0 featurei = 1 Total

Y = 1 u0 u1 u
Y = 0 v0 v1 v
Total n0 n1 n

F+
i denotes the random variable of the featurei in the

positive samples. F−i denotes the random variable of
the featurei in the negative samples.

F+
i ∼ Bernoulli(P

+
i ), F−i ∼ Bernoulli(P

−
i ). (1)

P+
i and P−i are the population probability that

featurei is 1 in the positive and negative population,
respectively. Accordingly, P̂+

i and P̂−i are sample-

based version of P+
i and P−i . We can calculate P̂+

i

and P̂−i from Table 1 as

P̂+
i =

u1
u
, P̂−i =

v1
v
. (2)

The test statistic for featurei is

Si =
P̂+
i − P̂

−
i√

V ar(P̂+
i − P̂

−
i )
. (3)

Si is approximately normally distributed with variance
1 and mean δi , where

δi =
P+
i − P

−
i√

P+
i (1−P+

i )

u +
P−

i (1−P−
i )

v

. (4)

δi is termed the non-centrality parameter. Under the
null hypothesis H0 of no association, Si is approxi-
mately standard normally distributed. Under alter-
native hypothesis H1, Si is approximately normally
distributed with variance 1 and some nonzero mean
δi. For any given significance level, the power of the
test is entirely determined by the absolute value of the



Supplementary Material — High-Dimensional Structured Feature Screening Using Binary MRFs

non-centrality parameter. For a given sample set, the
larger |δi| we have, the larger the power of the test is.

With hypothesis testing, we usually set pi to be 1 if
the absolute value of the test statistic is greater than
or equal to some threshold ξ (for example, the crit-
ical value at a certain level) and 0 if otherwise. We
term the pi (from such a “hard” method using some
threshold) pHi ,

pHi =

{
1, if |Si| ≥ ξ,
0, otherwise.

If we know δi, we will also know the probability den-
sity function of Si under H1 (denoted as fSi|H1

) as
well as the probability density function of Si under
H0 (denoted as fSi|H0

). By Bayes’ rule, we can set

pBi =
1

αfSi|H0
(si) + 1

, (5)

and

α =
P (H0)

fSi|H1
(si)P (H1)

. (6)

However, in most of the cases δi is unknown to us,
but we can use its data-driven version δ∗i by replac-
ing P+

i and P−i in (4) with the sample probabilities

P̂+
i and P̂−i (as (2)). This step has a flattening ef-

fect on calculating pi because it assumes the values
of the test statistic for relevant features are uniformly
distributed. Therefore, we introduce an adaptive pro-
cedure for calculating pi by

pi = γpHi + (1− γ)pBi , (7)

where 0 ≤ γ ≤ 1. We choose ξ in pHi to be the test
statistic that makes pBi be 0.5 in (5). In addition, we
also need to specify P (H0)/P (H1) which can be given
from prior knowledge.

3 Logistic Regression with Likelihood
Ratio Test

Many GWAS applications employ logistic regression
followed by a hypothesis test to identify associated
SNPs. A first step builds a logistic regression model
(in (8)) to predict disease from each SNP individually;
in such a model the SNP is coded by two indicator vari-
ables, one for heterozygous carrier of the minor allele
(X1) and one for homozygous carrier of the minor al-
lele (X2). In other words, we convert AA into “X1=0,
X2=0”, AB into “X1=1, X2=0”, and BB into “X1=0,

X2=1” where A stands for the common allele at this
locus and B stands for the minor allele. The dichoto-
mous response variable Y is coded as 1 for cases and
0 for controls.

log
P (Y = 1|X1, X2)

1− P (Y = 1|X1, X2)
= β0 + β1X1 + β2X2. (8)

In the second step, a hypothesis test is performed to
test the fit of each logistic model and to return a P-
value for each SNP. In the test, the null hypothesis
H0 is that the SNP is not associated, namely β1 and
β2 are zeros. The alternative hypothesis H1 is that
the feature is associated, namely either β1 or β2 are
nonzero. Finally, SNPs are ranked by the P-values.
The likelihood ratio test is the most commonly used
method, and the test statistic is

S = 2(logL1 − logL0), (9)

where logL1 and logL0 are the log-likelihood underH1

and H0 respectively. Under H0, the test statistic has
an asymptotic χ2 distribution with 2 degrees of free-
dom. Under H1, the test statistic has an asymptotic
non-central χ2 distribution with 2 degrees of freedom.
The rest of the calculation of pi is the same as in the
binary feature case, namely using formulas (5), (6) and
(7).

4 More Simulations

In Section 3 of the main text, we compare our al-
gorithm with elastic net. For elastic net, we set
the α parameter (the tradeoff parameter between l1
penalty and l2 penalty) to be 0.5. Readers may won-
der whether different α parameter will make a differ-
ence. Here, we show the results for the other choices
of α parameter in the elastic net penalty.

For the first set of experiments, we set n = 500, h =
1000, m = 5, ti uniformly distributed on the interval
(0.8, 1.0), π = {0.025, 0.05}, and rr = {1.1, 1.2, 1.3}.
For elastic net, we try 4 values for α, namely 0.2, 0.4,
0.6, and 0.8. The ROC curves are shown in Figure 1.
The precision-recall curves are shown in Figure 2.

For the second set of experiments, we set n = 500,
h = 1000, π = 0.05, rr uniformly distributed on
the interval (1.1, 1.3), m = {2, 5, 10}, and ti uni-
formly distributed on the interval (τ, 1.0) where τ =
{0.5, 0.8, 0.9}. For elastic net, we try 4 values for α,
namely 0.2, 0.4, 0.6, and 0.8. The ROC curves are
shown in Figure 3. The precision-recall curves are
shown in Figure 4.
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Figure 1: ROC curves of two-proportion z-test (Two-
prop z-test), feature relevance network (FRN) and
elastic net (α = 0.2, α = 0.4, α = 0.6, and α = 0.8)
when we choose different prior probabilities and differ-
ent relative risk levels.
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Figure 2: Precision-recall curves of two-proportion
z-test (Two-prop z-test), feature relevance network
(FRN) and elastic net (α = 0.2, α = 0.4, α = 0.6,
and α = 0.8) when we choose different prior probabil-
ities and different relative risk levels.
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Figure 3: ROC curves of two-proportion z-test, feature
relevance network (FRN) and elastic net (α = 0.2, α =
0.4, α = 0.6, and α = 0.8) when we choose different
correlation structures of covariates.
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Figure 4: Precision-recall curves of two-proportion z-
test, feature relevance network (FRN) and elastic net
(α = 0.2, α = 0.4, α = 0.6, and α = 0.8) when we
choose different correlation structures of covariates.
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